
Cryptanalysis with COPACOBANA
Tim Güneysu, Timo Kasper, Martin Novotn�y, Christof Paar, Member, IEEE, and Andy Rupp

Abstract—Cryptanalysis of ciphers usually involves massive computations. The security parameters of cryptographic algorithms are

commonly chosen so that attacks are infeasible with available computing resources. Thus, in the absence of mathematical

breakthroughs to a cryptanalytical problem, a promising way for tackling the computations involved is to build special-purpose

hardware exhibiting a (much) better performance-cost ratio than off-the-shelf computers. This contribution presents a variety of

cryptanalytical applications utilizing the Cost-Optimized Parallel Code Breaker (COPACOBANA) machine, which is a high-

performance low-cost cluster consisting of 120 field-programmable gate arrays (FPGAs). COPACOBANA appears to be the only such

reconfigurable parallel FPGA machine optimized for code breaking tasks reported in the open literature. Depending on the actual

algorithm, the parallel hardware architecture can outperform conventional computers by several orders of magnitude. In this work, we

will focus on novel implementations of cryptanalytical algorithms, utilizing the impressive computational power of COPACOBANA. We

describe various exhaustive key search attacks on symmetric ciphers and demonstrate an attack on a security mechanism employed

in the electronic passport (e-passport). Furthermore, we describe time-memory trade-off techniques that can, e.g., be used for

attacking the popular A5/1 algorithm used in GSM voice encryption. In addition, we introduce efficient implementations of more

complex cryptanalysis on asymmetric cryptosystems, e.g., Elliptic Curve Cryptosystems (ECCs) and number cofactorization for RSA.

Even though breaking RSA or elliptic curves with parameter lengths used in most practical applications is out of reach with

COPACOBANA, our attacks on algorithms with artificially short bit lengths allow us to extrapolate more reliable security estimates for

real-world bit lengths. This is particularly useful for deriving estimates about the longevity of asymmetric key lengths.

Index Terms—COPACOBANA, cryptanalysis, DES, A5/1, ECDLP, ECM, TMTO, e-passport.

Ç

1 INTRODUCTION

THE security of symmetric and asymmetric ciphers is
usually determined by the size of their security

parameters, particularly the key length. Hence, when
designing a cryptosystem, these parameters need to be
chosen according to the assumed computational capabilities
of an attacker. Depending on the chosen security margin,
many cryptosystems are potentially vulnerable to attacks
when the attacker’s computational power increases un-
expectedly. In real life, the limiting factor of an attacker is
often the financial resources. Thus, it is quite crucial from a
cryptographic point of view to not only investigate the
complexity of an attack but also study possibilities to lower
the cost-performance ratio of attack hardware. For instance,
a cost-performance improvement of an attack machine by a
factor of 1,000 effectively reduces the key lengths of a
symmetric cipher by roughly 10 bits (since 1; 000 � 210). In
this work, we make use of a special-purpose hardware
system that can offer, depending on the application, a cost-
performance ratio that is several orders of magnitude better
than that of current PCs. The hardware architecture of this
Cost-Optimized Parallel Code Breaker (COPACOBANA)
has been introduced in [29]. In this contribution, we will
describe further research on cryptanalytical applications
over the last two years.

Cryptanalysis of modern cryptographic algorithms in-
volves massive and parallel computations, usually requir-
ing more than 240 operations. Many cryptanalytical
schemes spend their computations in independent opera-
tions, which allows for a high degree of parallelism. Such
parallel functionality can be realized by individual hard-
ware blocks that operate simultaneously, improving the
runtime of the overall computation by a perfect linear
factor. At this point, it should be remarked that the high
nonrecurring engineering costs for ASICs have put most
projects for building special-purpose hardware for crypta-
nalysis out of reach for commercial or research institutions.
However, with the recent advent of low-cost programmable
ICs that host vast amounts of logic resources, special-
purpose cryptanalytical machines have now become a
possibility outside government agencies.

There are several approaches to building powerful
computing clusters for cryptanalysis. For instance, distrib-
uted computing with loosely coupled processors connected
via the Internet is a popular approach, e.g., demonstrated
by the SETI@home project [46]. However, this has the
disadvantage that the success strongly depends on the
number of participating users. Hence, distributed comput-
ing usually results in an unpredictable runtime for an attack
since the available computational power varies due to the
dynamically changing number of contributors. A second
intuitive approach could rely on utilizing supercomputers
like IBM’s BlueGene [32] or other commercial machines,
e.g., from Cray or SGI. Supercomputers tend to provide
sophisticated options for high-speed communication and
large portions of distributed memory that are mostly not
required for simple cryptanalytical number crunching.
Unfortunately, the availability of these features increases

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008 1

. The authors are with the Horst Görtz Institute for IT-Security, Ruhr-
University Bochum, Universitaetsstr 150, 44780 Bochum, Germany.
E-mail: {gueneysu, tkasper, cpaar, arupp}@crypto.rub.de,
novotnym@fel.cvut.cz.

Manuscript received 1 Nov. 2007; revised 12 Mar. 2008; accepted 18 Mar.
2008; published online 1 May 2008.
Recommended for acceptance by W. Geiselmann, Ç. Koç, and R. Steinwandt.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2007-11-0565.
Digital Object Identifier no. 10.1109/TC.2008.80.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

the costs of these systems significantly, resulting in a
nonoptimal cost-performance ratio of an attack on a cipher.
With the improvements in field-programmable gate array
(FPGA) technology, reconfigurable computing has emerged
as a cost-effective alternative for certain supercomputer
applications. FPGAs often get close to the computation
power of custom hardware.

In this contribution, we will show how to use COPA-
COBANA for a variety of cryptanalytical applications. As
already mentioned, the hardware is optimal for computa-
tional problems that are parallelizable onto independent
nodes with low communication and memory requirements.
COPACOBANA consists of up to 120 FPGA nodes that are
connected by a shared bus, providing an aggregate
bandwidth of 1.6 Gbps on the backplane of the machine.
COPACOBANA is not equipped with dedicated memory
modules but offers a limited number of RAM blocks inside
each FPGA. Even though breaking modern ciphers like
AES (128/192/256 bits of key), full-size RSA (1,024 bits or
more) or Elliptic Curve Cryptosystems (ECCs; with 160 bits
or more) is out of reach with COPACOBANA, we can use
the machine to gather data for extrapolating attacks with
realistic security parameters in terms of financial costs and
attack time. Equally important, there are numerous legacy
systems (and not-so-legacy systems such as the e-passport)
that are still operating with key lengths that can be tackled
with COPACOBANA.

Besides attacks on cryptographic primitives, we demon-
strate attacking scenarios on unfavorably used cryptogra-
phy in real-world applications. Current realizations of the
basic access control (BAC) that shall prevent unauthorized
access to the data stored on e-passports deploy symmetric
cryptography based on SHA-1 and Triple Data Encryption
Standard (DES). The corresponding encryption and authen-
tication keys are generated from the data printed on the
passport. As shown by several experts, the low entropy of
the derived key allows for straightforward attacks with a
relatively small complexity compared to an exhaustive key
search attack on Triple DES. Using COPACOBANA, this
kind of attack can be mounted almost in real time, i.e., the
time needed for a person to pass an inspection system at the
border control.

We have found several legacy systems based on a single
DES cipher that are of practical relevance. We identified a
class of crypto tokens generating One-Time Passwords
(OTPs) according to the ANSI X9.9 standard, where the
DES encryption is in use nowadays. Alarmingly, we are
aware of online-banking systems in Europe and North and
Central America that still distribute such tokens to users
for authenticating their financial transactions.1 Another
cryptosystem employing the DES is Norton Diskreet,
which has been a popular software encryption utility for
files and hard disk drives based on a weak key derivation
from a user-defined password. We also present how
to employ Time-Memory Trade-Off (TMTO) and Time-
Memory-Data Trade-Off (TMDTO) schemes on
COPACOBANA. Both schemes use precomputed tables
to improve the duration of exhaustive key search attacks.

We show how COPACOBANA can support the precom-
putations for attacking the block cipher DES and the
stream cipher A5/1 employed in the GSM system.

This manuscript is structured as follows: In the next
section, we give a brief introduction about an FPGA-based
special-purpose hardware architecture for breaking ciphers.
Since the detailed concept has been fully presented in [29],
we provide only a short overview here. In Section 3, we
highlight selected applications for an exhaustive search on
the key space of ciphers to recover the corresponding
encryption key. An implementation of the DES on COPA-
COBANA impressively shows how DES can be broken with
little effort in less than a week. This design is extended
further for two real-world applications, i.e., extracting
secrets from ANSI-X9.9-based crypto tokens and cracking
the Norton Diskreet encryption software. Furthermore, we
detail an attack aiming at identity theft with e-passports.
After these straightforward brute-force attacks, we present
more efficient ways of breaking multiple instances of a
cipher with COPACOBANA based on TMTO and TMDTO
in Section 4. After a brief introduction to TMTO, we
describe implementations for TMTO attacks on the DES and
the A5/1 cipher. Finally, we describe how COPACOBANA
can attack or support attacks on asymmetric cryptosystems
like RSA and ECC. Therefore, in Section 5, we present an
efficient hardware implementation of the elliptic curve
method (ECM) on COPACOBANA for factoring composite
integers in parallel. Section 6 is dedicated to the Elliptic
Curve Discrete Logarithm Problem (ECDLP), i.e., a widely
used one-way function employed in ECC-based cryptosys-
tems. For solving ECDLPs, we present a parallel imple-
mentation of Pollard’s Rho (PR) algorithm on special-
purpose hardware.

2 ARCHITECTURE OF COPACOBANA

The hardware architecture of COPACOBANA has been
developed according to the following design criteria [29]:
First, we assume that computationally costly operations are
parallelizable. Second, parallel instances have only a very
limited need to communicate with each other. Third, the
demand for data transfers between host and nodes is low
due to the fact that computations heavily dominate
communication requirements. Ideally, (low-speed) commu-
nication between the hardware and a host computer is only
required for initialization and the transfer of results. Hence,
a single conventional (low-cost) PC should be sufficient to
transfer the required data packets to and from the hard-
ware, e.g., connected by a standardized interface. Fourth, all
presented algorithms and their corresponding hardware
nodes demand for very little local memory, which can be
provided by the on-chip RAM modules of an FGPA.

Since the cryptanalytical applications demand for plenty
of computing power, we installed a total of 120 FPGA devices
on the COPACOBANA cluster. Building a system of
comparable dimension with commercially available FPGA
boards is certainly feasible but rather expensive. By stripping
down the hardware functionality of COPACOBANA to the
bare minimum and producing the hardware ourselves, we
are able to achieve an optimal cost-performance ratio for code
breaking. For a modular and maintainable architecture, we

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

1. Since we do not want to support hacking of bank accounts, we will not
give further details here.

designed small FPGA modules that can be dynamically
plugged into a backplane. Each of these modules in DIMM
form factor hosts six low-cost Xilinx Spartan-3 XC3S1000
FPGAs that are directly connected to a common 64-bit
data bus onboard. The data bus of the module is interfaced to
the global data bus on a backplane. While disconnected from
the global bus, the FPGAs on the same module can
communicate via the local 64-bit data bus. Additionally,
control signals are run over a separate 16-bit address bus.
Fig. 1 gives a detailed overview of the architecture of
COPACOBANA. For simplicity, a single master bus was
selected to avoid interrupt handling. Hence, if the commu-
nication scheduling of an application is unknown in advance,
the bus master will need to poll the FPGAs.

The top-level entity of COPACOBANA is a host PC that
is used to initialize and control the FPGAs, as well as for
accumulation of results. Programming can be done simul-
taneously for all or a specific subset of FPGAs. Data transfer
between FPGAs and a host PC is accomplished by a
dedicated control interface. This controller has also been
designed as a slot-in module so that COPACOBANA can be
connected to a computer either via a USB or Ethernet
controller card. A software library on the host PC provides
low-level functions that allow for device programming,
addressing individual FPGAs, and storing and reading
FPGA-specific application data. With this approach, we can
easily attach more than one COPACOBANA device to a
single host PC.

3 EXHAUSTIVE KEY SEARCH SCENARIOS

The impracticability of an exhaustive key search, i.e., testing
each key of the corresponding key space, is a precondition
for the security of symmetric ciphers. The cost of such an
attack is calculated based on the available technology and
expected future developments. Usually, the key size is
chosen such that it allows for a fast and efficient imple-
mentation of the cryptosystem on the one hand but makes
such brute-force attacks impracticable on the other hand.

3.1 Exhaustive Key Search on DES

The DES with a 56-bit key size was chosen as the first
commercial cryptographic standard by NIST in 1977 [35]. A
key size of 56 bits was considered to be a good choice
considering the huge development costs for computing
power in the late 1970s, which made a search over all the

possible 256 keys appear impractical. There have been a lot
of feasibility studies on the possible use of parallel
hardware and distributed computing for breaking DES.
The first estimates were proposed by Diffie and Hellman in
1977 [10] for a brute-force machine that could find the key
within a day at a cost of US$ 20 million. In 1998, the
Electronic Frontier Foundation (EFF) built a DES hardware
cracker called Deep Crack, which could perform an
exhaustive key search within 56 hours [11]. Their DES
cracker consisted of 1,536 custom-designed ASIC chips at a
cost of material of around US$ 250,000 and could search
88 billion keys per second. Though DES is known to be
broken and obsolete today, the costs for building a machine
like Deep Crack can still be considered impractical for
smaller organizations. COPACOBANA is a more practical
and affordable approach as a programmable off-the-shelf
hardware cracker.

Since DES has been designed to be extremely efficient in
terms of area and speed in hardware, an FPGA implemen-
tation of DES can be orders of magnitude faster than an
implementation on a conventional PC at much lower costs.
This allows a hardware-based engine for a DES key search
to be much faster and efficient compared to a software-
based approach.

Our core component is an improved version of the DES
engine of the Université Catholique de Louvain’s Crypto
Group [43] based on 21 pipeline steps. Our design can test
one key per clock per engine and the pipelined architecture
is adjusted such that the critical path is as small as possible.
On the COPACOBANA, we can fit four of such DES
engines inside a single FPGA, which allows for sharing
plaintext-ciphertext input pairs and the key space, as shown
in Fig. 2.

Since our first implementation, as presented in [29], we
have been able to tweak our design for increased
performance by the use of additional pipelined compara-
tors and improved control logic. Now, we can operate each
of the FPGAs at an increased clock rate of 136 MHz so that a
gain in performance by 36 percent is achieved, compared to
that in [29]. Consequently, an amount of 242 keys can be
checked in 240 � 7:35 ns by a single FPGA, which is
approximately 135 minutes. Since COPACOBANA hosts
120 of these low-cost FPGAs, the key search machine can
check 4� 120 ¼ 480 keys every 7.35 ns, i.e., 65.28 billion
keys per second. To find the correct key, COPACOBANA

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 3

Fig. 1. Architecture of COPACOBANA.
Fig. 2. Architecture for exhaustive key search with four DES key search

units.

has to search through an average of 255 different keys. Thus,
it can find the right key in approximately T ¼ 6:4 days on
the average. Of course, more than one COPACOBANA can
be attached to a single host and the key space shared so that
the search time is reduced to T

n , where n denotes the
number of machines.

To compare the cost-performance ratio of COPACOBANA
with respect to a software-based approach, let us relate
both architectures according to a constrained budget. With
an expense of C 10,000 required for the material of a
COPACOBANA, we can afford about 50 low-cost PCs
(Pentium 4 at 3 GHz including necessary peripherals) for
C 200 each in equal measure. A standard software imple-
mentation of DES can compute about 2 million DES
encryptions per second on such a PC. Hence, with the fixed
investment of C 10,000, we here yield a throughput of
100 million DES keys per second with the PC cluster.
Compared to the 65.28 billion DES keys searched by a single
COPACOBANA per second, we can outperform the PC
cluster in this case by a factor of more than 650. Regarding a
power consideration, we measured a fully equipped
COPACOBANA running a DES key search to consume less
than 600 W. Related to this, we assume a single Pentium 4-
based computer to require 150 W on the average. Hence,
comparing the power consumption of the entire key search on
a COPACOBANA and the PC cluster, a worst case key search
on COPACOBANA will take 184 kWh, whereas the PC
cluster consumes the immense amount of about 1.5 GWh
during runtime.

3.2 Extracting Secrets from ANSI-X9.9-Based
Crypto Tokens

In a real-world scenario, we have mounted an attack on
cryptographic tokens that are used for user authentication
and identification according to FIPS 113 or ANSI X9.9. This
technique is based on OTPs generated using the DES
algorithm and is still used in many security-relevant
applications.2 We assume that OTP tokens have a securely
integrated static key inside and do not rely on time- or
event-dependent methods for computing the passwords
(e.g., contrary to RSA SecurID tokens). In combination with
a challenge-response protocol, a decimal-digit challenge is
manually entered into the token via an integrated keypad.
The token in turn computes the corresponding response
according to the ANSI X9.9 standard. Tokens implementing
this standardized authentication scheme (incorporating
ANSI 3.92 DES encryption) often have a fixed-size LCD,
allowing displaying eight decimal digits for input and
output. Fig. 3 graphically shows how the response is
generated by the token according to a given challenge. The
mapping � is used to convert the hexadecimal digits from
the output to decimal representation to be displayed on the
LCD. We can prove that with at least two pairs of challenge-
response data, we can perform an exhaustive key search on
the DES key space implementing the specific features of
ANSI X9.9 authentication, giving only 16 key candidates on
the average.

Assuming the DES encryption function to behave like a
pseudorandom function with appropriate statistical proper-
ties, the 32 most significant bits of the DES output c can be
regarded as eight hexadecimal digits uniformly distributed
over H ¼ f0; . . . ; 9; A; . . . ; Fg. The digits are converted to
F ¼ f0; . . . ; 9g, where T ¼ f0; . . . ; 5g are doubly assigned.
Hence, we know that � ¼ F n T ¼ f6; . . . ; 9g are four fixed
points that directly correspond to the output digits of c,
yielding four bits of key information. The six remaining
decimal digits � ¼ F \ T can have two potential origins,
resulting in a variance of one bit. We can assume that the
probability for an arbitrary digit i of c being in � is
Pr½i 2 �� ¼ 1=4, expecting two out of eight hexadecimal
digits of c to be fixed points. When averaged, this leads to
knowledge of R ¼ 2 � 4þ 6 � 3 ¼ 26 bits of DES key material.
With two plaintext-ciphertext pairs, we then have 52 bits of
key information on the average, resulting in 16 possible key
candidates. With this small number of potential solutions,
the attacker can attempt to guess the right solution by trial
and error. However, in the case that three challenge-
response pairs are given, we are able to exactly determine
the key in a single exhaustive key search. We have
implemented the corresponding FPGA architecture for an
extended exhaustive key search according to the input of
two challenge-response pairs. Our design is again based on
the exhaustive key search architecture as shown in
Section 3.1 with additional logic for two pairs of input
and the final ciphertext conversion by �. After placing and
routing, the device usage of 8,729 flip-flops (56 percent of
Spartan-3 XC3S1000 device) and 12,813 lookup tables
(LUTs, 83 percent of Spartan-3 XC3S1000) running at
120 MHz has been reported by Xilinx ISE 9.1. Therefore, a
fully equipped COPACOBANA with 120 FPGAs can
compute 57.6 billion outputs of ANSI X9.9 authenticators
per second so that a successful key search will require
7.2 days. In other words, when attempting to spoil bank
accounts, an investment of C 1 million in COPACOBANA
systems can break such an account in less than 2 hours
given three challenge-response pairs acquired, for example,
by phishing attacks.

3.3 Cracking Norton Diskreet

In the 1990s, Norton Diskreet, a part of the well-known
Norton Utilities package, was a very popular encryption
tool. Diskreet can be used to encrypt single files, as well as
to create and manage encrypted virtual disks. The tool
provides two encryption algorithms that one can choose
from: a (cryptographically very weak) proprietary algo-
rithm and the DES in cipher block chaining (CBC) mode.

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

2. We are aware of online-banking systems in some places of the world
still relying on ANSI-X9.9-based tokens for authorization of financial
transactions. We prefer not to give any details at this point.

Fig. 3. Principle of the response derivation of a DES-based crypto token.

Parts of the internals and flaws of Diskreet that we consider

in the following have also been reported in newsgroup

postings by Gutmann [38] and Kocher [39].

3.3.1 DES Key Generation

To encrypt a file or virtual disk, Diskreet asks for a

password with a minimal length of 6 bytes and a maximal

length of 40 bytes. From this password, the 56-bit DES key

is generated. The password-to-key mapping works as

follows: First, leading whitespace characters are removed

before the password is converted to uppercase characters,

which are divided into chunks of 8 bytes. Then, all 8-byte

blocks are subsequently XORed with each other, and the

resulting sum is used as the DES key. Obviously, this

method of key generation is unfavorable since the pass-

word-to-key mapping is not chaotic at all. More precisely,

depending on the kind of characters of a password, we

obtain the following subspaces of the DES key space:

1. Key space �. Let us assume that all characters of a

password are from the set fA; . . . ; Z; @; ½; n; �;^ ; g. This

is the set of all ASCII characters in the range 64-95.
Thus, the binary representation of each password

character has the form 010xxxxx. Hence, due to the

XOR operation, each byte of the resulting DES key

can either have the form 010xxxxx or 000xxxxx.

Whether a key byte corresponds to the first or the

second form depends on the position of the byte and

the length of the password. It is easy to see that the

password length modulo 16 uniquely determines
which byte of a key matches which pattern, i.e., for a

particular password length mod 16, there is exactly

one key pattern. Since the least significant bit of

each key byte is a parity bit, � contains a total of

16 � 232 ¼ 236 DES keys. If the password length is

known a priori, the effective key length is reduced to

32 bits.
2. Key space �. Let us assume that the password only

consists of 7-bit ASCII characters. Then, each key

byte matches the pattern 0xxxxxxx, where the least
significant bit can be ignored again. Hence, �

contains 248 keys.
3. Key space �. If we consider passwords consisting of

arbitrary 8-bit ASCII characters, we obtain the whole

DES key space, which contains 256 different keys. We

denote this key space by �.

3.3.2 Password Check

Before performing a decryption, Diskreet first checks

whether the correct password has been entered. To enable

this kind of verification process, Diskreet performs the

following additional steps prior to the actual encryption of

user data: it puts the XOR sum of the DES key K destined

for encryption and an 8-byte mask M in the header of the

file that is used for storing the encrypted data. Then, it

encrypts the part of the header that contains K �M with

K using DES in CBC mode. We denote the corresponding

8-byte ciphertext by C. After that, the mask M is stored in

the plaintext part of the header.

Hence, in order to verify the correctness of a key K0, one
simply needs to test the following equality:3

K0 ¼ DES�1
K0 ðCÞ �M � C0; ð1Þ

where C0 denotes the 8-byte block of ciphertext that is
located just before C. In the case of Diskreet’s password
check, K0 is generated from the entered password by
applying the mapping described in Section 3.3.1.

3.3.3 Key Search Using COPACOBANA

An exhaustive key search for Norton Diskreet can easily be
performed by a slight modification of the circuit depicted in
Fig. 2. Due to marginal changes, we still assume four DES
cores on a single FPGA. The register for the plaintext
contains the constant C from (1); the register for the
ciphertext contains the (constant) value of M � C0, which
can be computed in advance on the host PC. Instead of
simply comparing the actual result of a decryption with the
value of the ciphertext register, we now have to compute an
XOR of the register’s content with the actual key and
compare the result with the corresponding output of the
DES core. Hence, an additional XOR operation is required.

Depending on the actual key space (�, �, or �), the
counter output has to be connected to the four DES cores in
different ways. In the case of key space �, the key search can
be adopted from Section 3.1. The overall runtime of an
average key search of 256 keys does not change. With key
space �, the fixed part of the key can be reduced by 7 bits,
reducing the time of an average search of 248 keys by a
factor of 28 compared to key space �.

Table 1 summarizes the number of DES operations
and absolute timings required to break Diskreet with
COPACOBANA.

3.4 Identity Theft with Electronic Passports

The e-passport, as specified by the International Civil
Aviation Organization (ICAO), is deployed in many
countries all over the world. The security and privacy
threats have been widely discussed (e.g., [26], [28], [20],
and [25]) and have provoked public debates. In this
section, we give details about our hardware implementa-
tion of the security mechanism used for the access control
of the e-passport and present practical figures for an
exhaustive key search on the COPACOBANA.

A chip embedded in the machine-readable travel
document (MRTD) contains private data as text, such as
name, date of birth, and gender, as well as biometrics
[34]. A digital facial photograph and, in some countries,

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 5

3. Note that the equality check ignores the least significant bit of each
byte.

TABLE 1
Breaking Norton Diskreet with COPACOBANA

additionally fingerprints or an iris scan of the passport
holder can be accessed via a contactless interface based on
the ISO 14443 [24] standard. The wireless communication
constitutes new opportunities for attackers, such as relay
attacks [27] or eavesdropping from a range of several
meters, as investigated in [17], [42], and [13]. To prevent
unauthorized access to the information transferred via the
radio frequency (RF) interface, some countries, among
them Germany and The Netherlands, employ the so-
called BAC. The BAC is meant to secure the interchanged
data, i.e., establish a confidential channel, by employing
symmetric cryptography.

The secret keys needed for carrying out the BAC are
stored in the embedded IC and can also be derived from a
machine-readable zone (MRZ) that is printed on the paper
document. Hence, before an e-passport reader can commu-
nicate with a passport using BAC, e.g., at the border control,
it has to optically scan the MRZ. With the MRZ information,
it can generate the secret keys kENC and kMAC for the
encryption and generation of a Message Authentication
Code (MAC), respectively. Then, the mutual three-pass
authentication according to the BAC protocol [21] is carried
out as follows:

At the beginning of the BAC, the e-passport generates a
random number RNDEpass and sends it to the reader. The
reader concatenates RNDEpass with more random bits
RNDReader and encrypts the result with kENC to obtain
EReader ¼ ENCkENC ðRNDEpasskRNDReaderÞ. In addition, a
MAC MReader ¼MACkMAC

ðEReaderÞ is appended before
EReaderkMReader is returned to the passport.4 After decrypting
the data, the MRTD verifies the received RNDEpass against
the original value and so assures that the reader possesses the
correct secret key kENC . Finally, the e-passport proves its
knowledge of kENC to the reader in a similar fashion.
RNDEpass is again concatenated with a part of RNDReader

plus some more random bits before being encrypted to
EEpass ¼ ENCkENC ðRNDEpassk . . .Þ. After generation of the
MAC MEpass ¼MACkMAC

ðEEpassÞ, the concatenation of the
ciphertext with the MAC, i.e., EEpasskMEpass, is again broad-
casted via the RF link. The random bits generated addition-
ally by the reader and the passport are used for the derivation
of a session key that is used only once for the encryption of the
subsequent communication. For a fully detailed description
of the BAC and further security mechanisms integrated in the
MRTD, refer to [21], [23], [22], and [12].

For our attack scenario, adapted from [6], we assume that
a device for eavesdropping of the RF field can be mounted
near an e-passport inspection system such that all bits
transmitted via the air channel can be captured and stored
in a database. An attacker thus has two options for gaining
the couple of plaintext and ciphertext needed for the key
search on the MRZ.

The first option targets kENC . The plaintext for this case
is the 64-bit number RNDEpass transmitted by the passport
at the beginning of the BAC. The corresponding
ciphertext ENCkENC ðRNDEpassÞ is part of the last message
EEpasskMEpass that is sent during the BAC. The encryption
function ENCkENC ð�Þ is Triple DES in CBC mode, with the
initialization vector being publicly known [21]. Hence, the
most significant 8 bytes msb8ðEEpasskMEpassÞ can be de-

crypted with varying keys for comparison with RNDEpass,
without knowledge of the remainder of the datagram. In case
of a match, kENC and, thereby, the related MRZ are found.

In practice, the bitstream transmitted by the e-passport is
much more difficult to eavesdrop than the request of the
reader [14]. If monitoring of the data transmitted by the
reader is the only option, an attacker can still gain the MRZ
and, hence, the secret keys of an e-passport following our
second approach. This time, the MAC key kMAC is targeted,
and intercepting only one message of the reader, i.e.,
EReaderkMReader, is sufficient for identifying a particular e-
passport. Obviously, here, EReader is the plaintext, and its
MAC MReader will match with MACkMAC

ðEReaderÞ in case of a
correct key guess for kMAC .

The keys kMAC and kENC are derived from the MRZ
information according to

k ¼ msb16 SHA-1 msb16 SHA-1ðMRZÞð ÞkCð Þð Þ:

After the first execution of SHA-1 [37], the result is
concatenated with a constant C, which is either C ¼
0x00000001 for kENC or C ¼ 0x00000002 for kMAC . Thus,
to obtain one key from the MRZ information, two
subsequent rounds of SHA-1 have to be executed for both
of the above approaches.

As the COPACOBANA does not provide enough
memory for storing precomputations, SHA-1 is the most
time consuming part of our implementation. Its critical path
sets the upper limit for the clock frequency, and 80 clock
cycles are needed for obtaining one hashed output. As two
subsequent SHA-1 need to be executed for one key, we
provide each FPGA with two pipelined SHA-1 units.

It turns out that when implementing the residual parts of
the proposed attacks, the additional area occupied by the
second SHA-1 does not restrict the performance. The first
option for the attack involving ENCkENC ð�Þ demands for a
Triple DES to be executed after hashing the key, as depicted
in Fig. 4b. This is achieved by letting run only one DES
round for 48 times (16 times for each single DES), instead of
a fully parallel DES consuming much more logical gates.
Still, the FPGA is idle for 80� 48 ¼ 32 clock cycles until the
next output of the SHA-1 is determined so that the most
efficient time-area trade-off for our design is found.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

4. MACkMAC
ð�Þ denotes the cryptographic checksum according to ISO/

IEC 9797-1 MAC Algorithm 3, as detailed in the annex of [21].

Fig. 4. (a) Content of one FPGA. (b) Details about the engines for

attacking kENC . (c) Details about the engines for attacking kMAC .

For the second proposed attack targeting the MAC, four
more DES rounds have to be executed in addition to the
Triple DES, as illustrated in Fig. 4c. Hence, 7� 16 ¼ 112
clock cycles would be needed after each SHA-1 computa-
tion if only one round of DES was implemented. This would
have a bad impact on the overall performance, as 112�
80 ¼ 32 clock cycles of idle time would occur each time a
new hash value is delivered. Instead, our solution imple-
ments a second round of DES on each FPGA for which
sufficient area is available after some optimizations of the
control logic. Now, the postprocessing after the SHA-1 takes
56 clock cycles and is thus 80� 56 ¼ 24 clock cycles faster
than the SHA-1. Indeed, targeting kMAC is as costly, with
respect to execution time, as aiming at kENC , so that the
following discussion concerning the first approach is
equally valid for the second attack option.

The attack implementation on an FPGA is shown in
Fig. 4a. Each FPGA stores the same pair of plaintext and
ciphertext in the corresponding registers. Since 120 FPGAs
are available on COPACOBANA, the key space is split into
appropriate subspaces. These subspaces are allocated to the
FPGAs by means of the Part_of_MRZ register, which
contains a portion of the MRZ that is fixed for each
particular FPGA. An MRZ generator produces all remain-
ing combinations of the MRZ and supplies them to four
engines that process the plaintext in parallel, as detailed
above. The delivered ciphertexts are compared to the
correct one stored in the ciphertext register. In case of a
match, the sought-after MRZ is returned to the data bus.

The MRZ generator is a very important part of our
design, as it minimizes the communication via the data
buses, which is a well-known bottleneck of the architecture
of the COPACOBANA. After initialization of the registers
each FPGA runs independently, and no more information
interchange is needed until a key is found. Furthermore, the
MRZ generator allows for a flexible distribution of the key
space and adapting the key search depending on the
knowledge about the passport holder and the issuing
system of the e-passport.

The latter property is extremely important for breaking
BAC keys, as the entropy of the MRZ can be considerably
reduced [31], [42] with an increasing knowledge of the
adversary. For example, the date of birth of the passport
holder, which can be known or guessed, is part of the MRZ.
The passport expiry date is another portion of the MRZ
whose entropy is limited due to the passport issuing
schemes of the respective countries. Furthermore, the
expiry date is correlated with the serially increased passport
number, being the third and last component that the MRZ
consists of. Eventually, the entropy can be reduced to as low
as � 233 for realistic scenarios based on the BAC realizations
of The Netherlands and Germany, which are the focus of
our implementation.

As stated earlier, the time critical component is SHA-1,

determining the maximum clock frequency of fclk ¼ 40

MHz and requiring 80 clock cycles for one key candidate.

The processing of one key thus requires 80� 25 ns ¼ 2 �s.

As there are 120 FPGAs running in parallel, each possessing

four encryption engines, 4� 120 ¼ 480 keys are tested

every 2 �s, resulting in a throughput of 227:84 � 240 million

keys per second. On the average, testing of 233 keys reveals

the correct candidate in 232

227:84 � 18 seconds, which can be

regarded as real time, compared to the duration of one

inspection at the border control.
Our implementation for breaking BAC keys on the

COPACOBANA shows that the practical realization of the
BAC in The Netherlands and in Germany should be
regarded critically, as an adversary can gather private
information about passport holders, including biometrics,
from a distance. This is possible due to the low entropy of
the MRZ. Our results also show that if the full entropy had
been used, an attack would be practically infeasible even
with the special-purpose hardware currently at hand. Still,
the key search performance could be significantly in-
creased if fast onboard RAM for precomputations could be
made available in future realizations of cryptographic key
search machines.

4 TIME-MEMORY TRADEOFF ATTACKS

The inversion of (one-way) functions is a common problem
frequently appearing in cryptanalysis: Let g : X ! Y be a
(one-way) function with a domain X of size jXj ¼ N . Given
an image y 2 Y , the challenge is to find a preimage of y, i.e.,
some element x 2 X such that gðxÞ ¼ y. Instances of this
problem appear in the cryptanalysis of block and stream
ciphers. In the case of a block cipher E, one is typically
given a fixed known plaintext P and tries to invert the
bijective function:

gP : X ! Y ;

x 7!ExðP Þ;

mapping keys x to ciphertexts y of P , for a given ciphertext
gP ðx0Þ. In the case of a stream cipher, the domain X of the
function g that one tries to invert is the set of all possible
internal states of the cipher. The function g maps an internal
state to the first log2ðjXjÞ output bits of the cipher produced
from this state. Typically, one is given several of these
output strings y1; . . . ; yD, and it is already sufficient to find a
preimage for one of them.

By using a cryptanalytic TMTO method, one tries to find
a compromise between the two well-known extreme
approaches, i.e., performing exhaustive searches and pre-
computing exhaustive tables, to solve this general problem.
A TMTO offers a way to reasonably reduce the actual
search complexity (by doing some kind of precomputation)
while keeping the amount of precomputed data reasonably
low, whereas “reasonably” has to be defined more pre-
cisely. It depends on the concrete attack scenario (e.g., real-
time attack), the function g, and the available resources for
the precomputation and online (search) phase.

Existing TMTO methods [8], [19], [36] share the natural
property that in order to achieve a significant success rate,
much precomputation effort is required. Since performing
this task on PCs is usually way too costly or time
consuming, cheap special-purpose hardware with massive
computational power, like COPACOBANA, is demanded.
In [45], an FPGA design for an attack on a 40-bit DES
variant using Rivest’s TMTO method [8] was proposed. In
[33], a hardware architecture for Unix password cracking

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 7

based on Oechslin’s method [36] was presented. However,
to the best of our knowledge, nobody has done a complete
TMTO precomputation for full 56-bit DES so far, let alone
ciphers of greater relevance like A5/1.

In Section 4.1, we give a brief overview of cryptanalytic
TMTO methods, which is followed by the design and
implementation of a TMTO attack on DES presented in
Section 4.2. Then, we shortly describe the idea of TMDTOs
in Section 4.3 and present a TMDTO attack implementation
targeting A5/1 in Section 4.4.

4.1 Time-Memory Tradeoff Methods in
Cryptanalysis

In this section, we sketch Hellman’s original TMTO method,
as well as the variants proposed by Rivest and Oechslin. For
concreteness, the methods are considered in the case of a
block cipher E given a fixed known plaintext P , i.e., we
want to invert the one-way function gP ðxÞ ¼ ExðP Þ.

4.1.1 Hellman’s Original Approach

In Hellman’s TMTO attack, published in 1980 [19], one tries
to precompute all possible key-ciphertext pairs in advance
by encrypting P with all N possible keys. However, to
reduce memory requirements, these pairs are organized in
several chains of fixed length. The chains are generated
deterministically and are uniquely identified by their
respective start and end points. In this way, it suffices to
save its start and end point to restore a chain later on. In the
online phase of the attack, one then simply needs to identify
and reconstruct the right chain containing the given
ciphertext to get the wanted key. The details of the two
phases are described in the following.

Precomputation phase. In this phase, first, m different
keys are chosen to serve as start points SP of the chains. To
generate a chain, one first computes ESP ðP Þ, resulting in
some ciphertextC (see Fig. 5). In order to continue the chain,C
is used to generate a new key. To this end, a so-called reduction
and rerandomization function R is applied reducing the bit
length of C to the bit length of a key for the cipher E
(if necessary) and performing a rerandomization of the
output. By means of R, we can continue the chain by
computing RðESP ðP ÞÞ ¼ x2, using the resulting key x2 to
computeRðEx2

ðP ÞÞ ¼ x3 and so on. The composition ofE and
R is called step function f . After t applications of f , the chain
computation stops, and we take the last output as the end
point EP of the chain. The pair ðSP;EP Þ is stored in a table
sorted by the end points. The number of distinct keys
contained in a table divided by N is called the coverage of a
table. Unfortunately, the occurrence of a key in a table is not
necessarily unique because there is a chance that two chains
collide and merge or that a chain runs in a loop. This is due to
the noninjective functionRmapping the space of ciphertexts
to the space of keys (which is often smaller, e.g., in the case of

DES). Each merge or loop reduces the fraction of distinct keys
contained in a table and, thus, the coverage (if m is fixed).
Since the probability of merges increases with the size of a
table, at a certain point, we cannot significantly improve the
coverage by simply adding more and more chains. Hellman
calculated that this point is somewhere near N

2
3 for a single

table. To cope with this problem, he suggested to generate
multiple tables, each associated with a different reduction
function. In this way, even if two chains from different tables
collide, they will not merge because different functions are
applied to the shared value in the next step.

Online phase. In the online phase, a ciphertext C0 is
given, which is assumed to be the result of the encryption of
P using some key k. We try to retrieve k from the
precomputed tables in the following way: to find out if k
is covered by a specific table, we compute a chain up to a
length of t starting withRðC0Þ and compare the intermediate
points with the end points in the table. More precisely, we
first check if RðC0Þ is contained. If not, we compute fðRðC0ÞÞ
and look for a match; then, we do this for fðfðRðC0ÞÞÞ and so
on. If a match occurs after the ith application of f for a pair
ðSP;EP Þ, then ft�i�1ðSP Þ ¼ xt�i is a key candidate. This
candidate needs to be checked, by verifying Ext�iðP Þ ¼ C0,
and if it is valid, the online phase ends. If it is not valid, a
false alarm has occurred, and the procedure continues while
the chain has a length smaller than tþ 1. If no valid key is
found in this table, we repeat the same procedure for
another table (and, thus, another R and f).

4.1.2 Variants of Hellman’s Approach

Distinguished points (DPs). In practice, the time required
to complete the online phase of Hellman’s TMTO is
dominated by the high number of table accesses. Random
accesses to the disk can be many orders of magnitude
slower than the evaluation of f . The DP method, introduced
by Rivest [8] in 1982, addresses this problem. A DP is a key
that fulfills a certain simple criterion (e.g., the first 20 bits
are 0), which is usually given as a mask of length d. Rivest’s
idea was to admit only DPs as end points of a chain. For the
precomputation phase, this means that a chain is computed
until a DP or a maximal chain length tmax þ 1 is reached.
Only chains of length at most tmax þ 1 ending in a DP are
stored. Using DPs, merging and looping chains can also be
detected and are discarded. In the online phase, the table
does not need to be accessed after every application of f but
only for the first occurring DP. If we have no match for this
DP, we can proceed with the next table.

Rainbow tables. Rainbow tables were introduced by
Oechslin [36] in 2003. He suggested not to use the same R
when generating a chain for a single table but a (fixed)
sequence R1; . . . ; Rt of different reduction functions. More
precisely, due to the different reduction functions, we get t
different step functions f1; . . . ; ft that are applied one after
another in order to create a chain of length tþ 1. The
advantage of this approach is that the effect of chain
collisions is reduced: while in a Hellman table, the collision
of two chains inevitably leads to a merge of these chains, in
a rainbow table, a merge only happens if the shared value
appears at the same position in both chains. Otherwise, they
share only this single value. Thus, a merge of two chains in
a rainbow table is not likely to occur. Furthermore, loops are

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

Fig. 5. Chain generation according to Hellman’s TMTO.

completely prevented. Hence, regarding a space-efficient
coverage, these characteristics allow us to put much more
chains into a rainbow table than into a Hellman table. This
in turn significantly reduces the total number of tables
needed in order to achieve a certain coverage. Since fewer
rainbow tables must be searched in the online phase (which
is, however, a bit more complex), a lower number of
calculations and table accesses are required compared to
Hellman’s method. To look up a key in a rainbow table, we
first compute RtðC0Þ and compare it to the end points; then,
we do this for ftðRt�1ðC0ÞÞ, ftðft�1ðRt�2ðC0ÞÞÞ, etc. More-
over, compared to the DP method, the number of false
alarms and the induced extra work are reduced.

4.2 A TMTO Attack on DES

In this section, we will employ COPACOBANA for
accelerating the precomputation and online phase of a
TMTO attack on DES. In such a scenario, primarily, the
hardware limitations of COPACOBANA with respect to
communication demands need to taken into account. Since
COPACOBANA does not allow the installation of directly
attached storage, all TMTO tables must be managed by the
connected host PC. The current USB interface between
COPACOBANA and the host PC provides a communica-
tion bit rate of 24 � 106 � 224:5 bits per second.5 Compared to
the number of possible DES encryptions per second, the
bottleneck of the COPACOBANA is the data throughput
for transferring ðSP;EP Þ tuples from the FPGAs to the
host. To address the constraint of limited bandwidth, we
have determined a minimum rate of 211:4 � b computations
to be run in sequence until a data transfer can be initiated,
where b denotes the aggregate bitlength of a tuple
ðSP;EP Þ. For practical reasons, we have limited the disk
space for the TMTO tables to a maximum of 2 Tbytes and
the required success rate to 80 percent. Based on experi-
ments, we determined the parameters for the chain length,
the number of tables, and the start points satisfying the
given constraints. These parameters are shown in Table 2.

To reduce data transfers to a bare minimum, we use the
first m integers as start points SP and assign fixed
subintervals of ½0;m� to each FPGA. In this way, each SP

can be stored with only log2ðmÞ bits. Optionally, the host PC
can even track the sequence of start points for each
individual FPGA so that data transfers of SPs can be
omitted completely. Then, only the end points EP must be
transmitted to the host PC and matched with the corre-
sponding SP software counter.

For the DP method, we introduce a minimum chain
length tmin to ensure that the generated data traffic from
tuples ðSP;EP Þ always complies with the available
bandwidth on the COPACOBANA. More precisely, each
DP chain leading to a total chain length of less than tmin þ 1
is discarded and not transferred to the host.6 The storage of
end points for the DP method can be limited to the
remaining 56� d bits not covered by the DP criterion.

Table 3 presents our worst case expectations concerning
the success rate (SR), the disk usage (DU), the duration of
the precomputation phase (PT) on COPACOBANA, and the
number of table accesses (TA) and calculations (C) during the
online phase (OT). Note that these figures for use with
COPACOBANA are based on estimations given in [19], [36],
and [45] (false alarms are neglected) and the given con-
straints mentioned above. Note further that for this initial
extrapolation, we have used the implementation of our
exhaustive key search unit presented in Section 3.1. Accord-
ing to our findings, precomputations for the DP method on a
single COPACOBANA take roughly four times longer
compared to Hellman’s and Oechslin’s method based on
the given constraints. In contrast, the subsequent online
attack has the lowest complexity for the DP method.
Considering a TMTO scenario involving COPACOBANA
for precomputation only (implying that the online attack is
performed by a PC), the rainbow table method can be
assumed to provide the best performance. When using
COPACOBANA as well for precomputation and online
phase, there is a strong indicator to select DPs as the method
of choice: for the DP method, we can assume the frequency of
table accesses to follow a uniform distribution; hence, we
expect balanced bandwidth requirements over time. With
respect to the online phase using rainbow tables, the
computation trails are short in the beginning but increment
in length over time. This results in significant congestion on
COPACOBANA’s communication interface since a large
number of table lookups are required in the beginning of the
online phase. Therefore, a scenario running both the
precomputation and the online phase on COPACOBANA
should be based on the DP method since this method is most
promising with respect to the restrictions of the machine.

We have implemented the precomputation phase for
generating DES rainbow tables on COPACOBANA. For this
implementation, we have developed another DES core that
operates with 16 pipeline stages only.7 Using four parallel
DES units with 16 stages each, we can run 64 chain
computations in parallel per FPGA. Fig. 6 graphically

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 9

5. Please note that we are currently working on a Gigabit Ethernet
solution so that subsequent calculations based on the limited bandwidth
may be subject to change.

TABLE 2
Empirical TMTO Parameters for Optimal Performance

6. Note that with tracking of start points in the host software, this must
be indicated to the host PC to increment the SP counter accordingly.

TABLE 3
Expected Runtimes and Memory Requirements

7. Recall that the DES implementation in Section 3.1 uses 21 instead of
16 pipeline stages. A 16-stage implementation obviously allows for simpler
addressing schemes when selecting a result from a specific pipeline
position.

presents our architectures for generating rainbow tables in
further detail. On the given Spartan-3 devices, our entire
implementation, including I/O and control logic, consumes
7,571 out of 7,680 (98 percent) available slices of each FPGA
and runs at a maximum clock frequency of 96 MHz. A
single COPACOBANA is then able to compute more than
46 billion iterations of the step function f per second. We
are currently optimizing the I/O logic to support con-
current trail computations and data transfers to eliminate
idle times of the DES cores during data transmission. With
this improvement of our design, we can estimate the actual
duration of the precomputation phase for generating the
rainbow tables to last slightly less than 32 days.

4.3 Time-Memory-Data Tradeoff Methods

The idea of cryptanalytic TMDTOs is due to [2] and [4].
TMDTOs are variants of TMTOs exploiting a scenario where
multiple data points y1; . . . ; yD of the function g are given and
one has just to be successful in finding a preimage of one of
them. Such a scenario typically arises in the cryptanalysis of
stream ciphers, where we like to invert the function mapping
the internal state (consisting of log2ðNÞ bits) to the first
log2ðNÞ output bits of the cipher produced from this state.
For an attack on a stream cipher, there are sometimes w >
log2ðNÞ bits of the output stream available. In this situation, it
is possible to derive D ¼ w� log2ðNÞ þ 1 data points from
the stream bits ðb1; . . . ; bwÞ, namely, y1 ¼ ðb1; b2; . . . ; blog2ðNÞÞ,
y2 ¼ ðb2; b3; . . . ; blog2ðNÞþ1Þ, and so on. Thus, one has D
chances to invert the function and “break” the cipher.

The common approach to exploit the existence of
multiple data is to use an existing TMTO method and
reduce the coverage of the tables by a factor of D, i.e., from
the outset, one only aims to cover N=D points. Clearly, this
has also effects on the precomputation and online
complexity. The resulting scheme exhibiting the additional
parameter D is then called a TMDTO. The adoption of
Hellman’s method for a TMDTO on stream ciphers was
first proposed and analyzed in [4]. Here, one can gain from
reducing the number of tables.

Thin-rainbow DP method. As opposed to that, the plain
rainbow scheme does not significantly gain from multiple
data (by reducing the length of the chains), as recently
shown in [3]. In the same paper, a new variant of the
rainbow method, called thin-rainbow method, was sketched,
providing a better TMDTO. In this variant, one does not use
a different reduction function in each step of the chain
computation but applies a sequence of S different reduction
functions ‘-times periodically in order to generate a chain of
length ‘S þ 1. More precisely, the corresponding step
functions f1; . . . ; fS are applied in the following order:

f1f2 . . . fSf1f2 . . . fS . . . f1f2 . . . fS:

To reduce the number of disk accesses in the online phase,
one can combine the thin-rainbow scheme with the DP
method. This is done by looking for a DP after each
application of the fS function. During precomputation, we
only save a chain if both this chain exhibits its first DP after
‘min � ‘ � ‘max applications of fS , for certain parameters
‘min and ‘max, and this DP is different from the end points of
the chains already stored. (To get a better coverage, one
usually stores the longer one of two chains with the same
end point.) In the online phase, for each of the D given data
points yi one computes S chains. More precisely, from yi,
we derive the points R1ðyiÞ; . . . ; RSðyiÞ and compute a chain
for each of them until a DP is found (or ‘ > tmax). An
analysis of the characteristics of this method can be found in
the Appendix.

4.4 A TMDTO Attack on A5/1

A5/1 is a synchronous stream cipher that is used for
protecting GSM communication. In the GSM protocol,
communication is organized in 114-bit frames that are
encrypted by XORing them with 114-bit blocks of the
keystream produced by the cipher as follows: A5/1 is based
on three LFSRs, which are irregularly clocked. The three
registers are 23, 22, and 19 bits long, representing the
internal 64-bit state of the cipher. During initialization, a
64-bit key k is clocked in, followed by a 22-bit initialization
vector that is derived from the publicly known frame
number. After that, a warm-up phase is performed, where
the cipher is clocked 100 times, and the output is discarded.
Then, 228 bits of keystream are produced, which are
partitioned into two blocks of 114 bits. One of them is used
to encrypt the next frame carrying uplink traffic, while the
other is used to decrypt the next incoming frame containing
downlink traffic. For the following pair of uplink and
downlink frames, the cipher is initialized with the same
key and a new frame number. For a detailed description of
A5/1, please refer to [5].

To make our attack realistic, we assume that a relatively
small amount of only 114 consecutive bits of keystream is
known. Hence, we have D ¼ 114� 64þ 1 ¼ 51 data points
available to break the cipher.

4.4.1 Chosen Method

Both Hellman’s original trade-off and rainbow tables are
well suited for parallelization in hardware. Since the
chains have a fixed length, the control of the calculation in
the precomputation phase is simple. However, Hellman’s

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

Fig. 6. Implementation for generating DES rainbow tables.

method requires a large number of disk accesses during
the online phase, while the rainbow table trade-off curve is
inferior to Hellman’s one whenever we have multiple
data D [3]. The DP method significantly reduces the
number of disk accesses, but the fact that the chain can
reach its end point after any application of the step
function hampers an efficient hardware implementation.

Hence, for our implementation, we have selected the
thin-rainbow DP method described in the previous section.
In the case of multiple data, this approach allows simple
and efficient hardware implementation, while exhibiting a
low number of disk accesses during the online phase and an
efficient trade-off curve.

4.4.2 Design Approach

Most designs realized on FPGAs usually do not fully use
the flip-flops available on the chip. Typically, the designs
are limited by the number of combinational resources
(LUTs) available. In the case of A5/1, it is different: a
demand for flip-flops prevails over a demand for combina-
tional logic. Fortunately, some LUTs in the Spartan-3 chips
[48] can be configured to work as a shift register with a
maximum length of 16 bits (denoted as SRL16). This
property enables us to implement much bigger shift-
register-based circuits8 under the condition that some
limitations to circuit design are satisfied. To allow the
synthesis tool to utilize this property, we have to avoid any
parallel input to the register, using only serial inputs and
outputs. Hence, we decided to implement an array of small
independent processing units (we call them TMTO elements)
with serial inputs and outputs rather than to create the
pipeline like in the case of DES engines. To gain the
maximum frequency, we rejected the idea of parallel access
to the TMTO elements, since the number of them is
relatively large. Instead of that, we connected all TMTO
elements into one large chain (see Fig. 7).

4.4.3 How It Works

Each TMTO element is calculating one chain of points, i.e.,
one row in the TMTO table. Each element consists of two
coupled A5/1 cores. In odd steps of rainbow sequences,
Core 1 produces a 64-bit block s of keystream that is
rerandomized and loaded to Core 2 as the new internal
state. In even steps, the functionalities of the cores are
swapped. As a source of rerandomization, we use the long-
period LFSR, whose output is XORed with s.

First, all TMTO elements are initialized with start
points. Then, the rainbow sequences are performed. After
each rainbow sequence f1; f2; . . . ; fS , the result in each
element is checked for the DP criterion. If a DP has been
reached, the chain information is stored in FIFO, and the
computation of the new chain is started in the element. If
no DP has been reached yet, another rainbow sequence of
the chain is performed. If the chain becomes too long or if
it is too short, the result is discarded, and the calculation
of the new chain is started too. Information from FIFO is

periodically read by the host computer and is stored on
the disk.

4.4.4 Implementation Results

An A5/1 TMTO engine can currently run at a maximum
frequency of 156 MHz. Computing a step function fi takes
64 clock cycles. One FPGA contains 234 TMTO elements
(each consisting of two A5/1 cores); hence, the whole
COPACOBANA can perform approximately 236 step
functions per second.

To select the TMDTO parameters (like the length S of the
rainbow sequence, the number d of bits defining the DP
criterion, the interval I‘ ¼ ½‘min; ‘max� defining the minimum
and maximum number of rainbow sequence applications,
and the number m of start points) requires special attention,
since this highly influences the precomputation time
(PT), the disk usage (DU), the time needed in the online
phase for the chain computations (OT), the number of table
accesses (TA), and the success rate (SR). Table 4 summarizes
the results for different sets of parameter choices. The
estimations are based on the analysis presented in the
Appendix under the assumption that D ¼ 64. Furthermore,
we assumed that COPACOBANA is used not only for the
precomputation but also for the online phase. Due to this, it
is worth trading higher online complexity, e.g., for lower
demand for disk space (compare rows 4 and 5). For our
implementation, we have selected the set of parameters
presented in the third row, since it produces a reasonable
precomputation time and a reasonable size of the tables, as
well as a relatively small number of table accesses. The
success rate of 63 percent may seem to be small, but it
increases significantly if more data samples are available.
For instance, if four frames of known keystream are

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 11

8. For example, Xilinx Spartan 3-1000 contains 15,360 flip-flops that can
be used to implement less then 15; 360=64 ¼ 240 A5/1 cores, since some
flips-flops will also be used for other necessary units. Using SRL16s, we can
implement up to 480 A5/1 cores, still leaving enough LUTs and flip-flops
for controller and other circuits.

Fig. 7. Overview of an FPGA with an A5/1 TMTO engine.

available, then D ¼ 4 � 51 ¼ 204, and thus, the success rate is
increased to 96 percent.

5 INTEGER FACTORIZATION

The factorization of a large composite integer n is a well-
known mathematical problem that has attracted special
attention since the invention of public-key cryptography.
RSA is known as the most popular asymmetric cryptosys-
tem and was originally developed by Ronald Rivest, Adi
Shamir, and Leonard Adleman in 1977 [41]. Since the
security of RSA relies on the attacker’s inability to factor
large numbers, the development of a fast factorization
method could allow for cryptanalysis of RSA messages and
signatures. Recently, the best known method for factoring
large integers is the General Number-Field Sieve (GNFS).
An important step in the GNFS algorithm is the factoriza-
tion of mid-sized numbers for smoothness testing. For this
purpose, the ECM has been proposed by Lenstra [30],
which has been proved to be suitable for parallel hardware
architectures in [9], [15], and [44], particularly on FPGAs.

The ECM algorithm performs a very high number of
operations on a very small set of input data and is not
demanding in terms of high communication bandwidth.
Furthermore, it requires only little memory. The operands
required for supporting GNFS are well beyond the width
of current computer buses, arithmetic units, and registers,
so that special-purpose hardware can provide a much
better solution.

In [9], it has been shown that the utilization of DSP slices
in Virtex-4 and -5 FPGAs for implementing a Montgomery
multiplication can significantly improve the ECM perfor-
mance. In this contribution, the authors used a fully parallel
multiplier implementation that provides the best known
performance figures so far but still does not exploit the full
potential of the Virtex-4 FPGAs.

Based on this approach, we designed a new slot-in
module for use with a second release of COPACOBANA,
hosting eight Xilinx Virtex-4 XC4VSX35 FPGAs, each
providing 192 DSP slices. Due to the larger size of the
FPGAs (FF668 package with dimension of 27 � 27 mm), we
enlarged the modules, which includes also modifications of
the corresponding connectors on the backplane. For more
efficient heat dissipation at high clock frequencies up to
400 MHz, an actively ventilated heat sink is attached to each
FPGA. With a more powerful power supply providing
1.5 kW at 12 V, we are able to run a total of 128 Virtex-4
SX35 FPGAs distributed over 16 plug-in modules. In
contrast to [9], we used a multicore ECM design per FPGA.

A single ECM engine comprises of an arithmetic unit
computing modular multiplication and additions, a point
multiplication unit for phase 1, and ROM tables for phase 2.
At this point of development, we can provide figures,
shown in Table 5, for the most relevant units and compare
our results to the implementation presented in [15].

6 COMPUTING ELLIPTIC CURVE DISCRETE

LOGARITHMS

Another popular problem used for building public-key
cryptosystems is known as the Discrete Logarithm Problem
(DLP), where the exponent ‘ should be determined for a given
a‘ mod n. A popular derivative is the ECDLP for ECCs [18].

An attack on ECC relies on the same algorithmic
primitives as the cryptosystem itself, namely, point addition
and point doubling. Up to now, the best known algorithm
for this purpose is the PR algorithm for parallel implemen-
tation described in [47]. This variant of the original PR
method [40] allows for a linear gain in performance with the
number of available processors. This can be efficiently
implemented in hardware, as presented in [16].

The PR algorithm essentially determines DPs on the
elliptic curve. These points are reported to a central host
computer, which awaits a collision of two points. Like with
TMTOs (cf. Section 4.1), a DP is defined to be a point with a
specific characteristic, e.g., its x-coordinate has a fixed
number of leading zero bits. To reach such a DP, PR follows
a so-called pseudorandom walk on the elliptic curve by
subsequently adding points from a finite set of random
previously defined points. Hence, with careful parameter-
ization of the DP criterion, the duration of a computation
until a DP is found can be adapted to the bandwidth
constraints of the system. Furthermore, the PR does not
need a large memory for computation so that the
COPACOBANA system seems to be a suitable platform
for running the algorithm. As with the ECM unit, a single
PR unit is comprised of an arithmetic unit, a few kilobytes
of RAM, and control logic. The arithmetic unit supports
modular inversion as an additional function required for
uniquely determining DPs.

For a parallelized PR on COPACOBANA according to
the method presented in [47], all instances of the algorithm
can run completely independent of each other. For solving
the DLP over curves defined over prime fields IFp, we have
to compute approximately

ffiffiffi
q
p

points, where q is the largest
prime power of the order of the curve. Note that the transfer
of data between the host computer and point processing

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

TABLE 4
A5/1 TMDTO: Expected Runtimes and Memory Requirements

TABLE 5
Clock Cycles and Frequency for Point Multiplication of

151-Bit Numbers Required in Phase 1 of ECM

9 The presented cycle count for 151-bit modular addition was estimated
based on the results given in [15] for 198-bit parameters.

units on the FPGA can be performed independently from
the computations.

Implementing the PR on Spartan-3 FPGAs for solving the
ECDLP over curves with a length of 160 bits, we achieve a
maximum clock frequency of approximately 40 MHz and an
area usage of 6,067 slices (79 percent) for two parallel
instances. The corresponding point addition requires
846 cycles so that slightly less than 50,000 point operations
can be performed per second by one unit. Consequently, a
single COPACOBANA can compute about 11.3 million
points per second. Table 6 compares our results for
COPACOBANA with challenges and corresponding esti-
mates from Certicom based on the computing time of an
Intel Pentium 100. Obviously, elliptic curves as proposed by
SECG [1] with bit lengths of less than 100 bits do not offer
more protection than a few days against an attack using a
single COPACOBANA.

7 CONCLUSION

In this work, we presented novel implementations for
cryptanalytical applications on COPACOBANA. On up to
120 low-cost FPGAs, COPACOBANA is able to perform
cryptographic operations simultaneously and in parallel for
applications with high computational but low memory and
communication requirements.

We demonstrated how the DES can be broken within less
than a week at an average throughput of 65.3 billion searched
keys per second. Besides a simple brute-force scenario on
DES, we have extended the attack scheme for tackling the
complexity of ANSI X9.9 OTP tokens and Norton Diskreet
whose security assumptions rely on the DES.

Furthermore, we presented a successful attack on the
BAC scheme used for securing private data and establish-
ing a confidential wireless channel for the communication
with international e-passports. Our attack is able to reveal
BAC keys for encryption and authentication in real time for
practical scenarios, due to the low entropy of the keys.

Smarter brute-force attacks, particularly when we are
frequently faced with the encryption of a fixed plaintext
under different keys, can be achieved by TMTO and TMDTO.
We suggested two options to utilize COPACOBANA
for TMTO and TMDTO attacks on the DES and the A5/1.

Besides the symmetric cryptography, we can use
COPACOBANA to attack public-key cryptosystems. We
proposed a massively parallel implementation of the ECM
for factoring mid-sized integers typically obtained from the
GNFS for RSA factorization. Finally, we analyzed the
security of ECCs by solving the ECDLP with a COPACO-
BANA-based architecture of the parallel PR algorithm.

APPENDIX

CHARACTERISTICS OF THE THIN-RAINBOW

DP METHOD

In the following, we analyze the thin-rainbow DP method
described in Section 4.3.

Success probability. Let us first assume that we compute
m thin-rainbow chains, each of fixed length ‘S þ 1, i.e.,
without applying the DP method and without rejecting
merging chains. The resulting thin-rainbow table has the
following structure:

x1;1 �!
f1

. . . �!fS x1;Sþ1 . . . x1;‘S�Sþ1 �!
f1

. . . �!fS x1;‘Sþ1;

..

.

xm;1 �!
f1

. . . �!fS xm;Sþ1 . . . xm;‘S�Sþ1 �!
f1

. . . �!fS xm;‘Sþ1:

In the following, we estimate the coverage of such a table

(in a similar way as done in [36] for the rainbow scheme).

Thereby, we ignore the slight reduction of the coverage due

to colliding but nonmerging chains. Let mi denote the

expected number of new distinct points in column i of the

thin-rainbow table, where “new” means that these points did

not occur in the previous columns i� S; i� 2S; . . . ; i� b iScS.

Note that mi also corresponds to the expected number of

chains that did not merge until and including column i.

Clearly, we have m1 ¼ m, and we set m0 ¼ 0. To determine

mi for 1 < i � ‘S þ 1 (recursively), we make use of the

indicator variables X
ðiÞ
j for 0 � j � N � 1, where

X
ðiÞ
j ¼

1; point j occurs not in cols c � i; c 	 imod S;
0; else:

�
Then, we have Pr½XðiÞj ¼ 1� ¼ ð1� 1

N

Pb iSc
k¼1 mi�kSÞð1� 1

NÞ
mi�1 ,

and we can calculate the number of new distinct points in
column i as

mi ¼N � E
XN�1

j¼0

X
ðiÞ
j

 !
�
Xb iSc
k¼1

mi�kS

¼N �
XN�1

j¼0

Pr X
ðiÞ
j ¼ 1

h i
�
Xb iSc
k¼1

mi�kS

¼ N �
Xb iSc
k¼1

mi�kS

0@ 1A 1� 1� 1

N

� �mi�1
� �

� N �
Xb iSc
k¼1

mi�kS

0@ 1A 1� e�
mi�1
N

� �
;

ð2Þ

where Eð:Þ denotes the expectation. Hence, the probability

that a random point is contained in a table generated by the

plain thin-rainbow scheme can be approximated by

1�
Q‘Sþ1

i¼1 ð1� mi

N Þ, where m0 ¼ 0, m1 ¼ m, and mi ¼ ðN �Pb iSc
k¼1 mi�kSÞð1� e�

mi�1
N Þ for i > 1.

Next, let us consider the combination of the thin-rainbow
and DP scheme as described in Section 4.1. Here, we look
for a DP after each application of the fS function. During
precomputation we only save a chain if it is of length
‘minS þ 1 � t � ‘maxS þ 1 and it ends in a DP not occurred
before. To estimate the success probability of this modified

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 13

TABLE 6
Expected Runtime on Different Platforms

and for Different Certicom ECC Challenges

scheme we first determine the number m0 � m of chains
exhibiting their (first) DP after ‘ 2 ½‘min; ‘max� applications of
the fS function. Note that only this fraction is processed
further and all other chains are immediately discarded
during precomputation. Then we calculate the average
number of fS applications, denoted by ‘av, required for the
remaining chains.

To determine m0 and ‘av we follow the approach in [45].
Let the DP criterion be a bit mask of length d and let N ¼ 2k.
Furthermore, by PDP ð‘Þ we denote the probability that a DP
is reached after at most ‘ applications of the fS function.
Clearly, we have PDP ð‘Þ � 1� ð1� 1

2d
Þ‘.

The probability to find a DP after at least ‘min and at most
‘max iterations is given by

Pr½DP in ‘min � ‘ � ‘max iterations�
¼ PDP ð‘maxÞ � PDP ð‘min � 1Þ

� 1� 1

2d

� �‘min�1

� 1� 1

2d

� �‘max
:

This immediately yields an approximation for the expected
number of chains with a length in the desired range:

m0 ¼
Xm
i¼1

Pr½DP in ‘min � ‘ � ‘max iterations�

�m 1� 1

2d

� �‘min�1

� 1� 1

2d

� �‘max !
:

Similarly, the average number of fS applications required
for these chains can be approximated:

‘av ¼
1

m0

X‘max
‘¼‘min

m PDP ð‘Þ � PDP ð‘� 1Þð Þ‘

�

P‘max
‘¼‘min

1� 1
2d

� 	‘�1� 1� 1
2d

� 	‘� �
‘

1� 1
2d

� 	‘min�1� 1� 1
2d

� 	‘max :

Now, we assume that we have a thin-rainbow table of

dimension m0 � ð‘avS þ 1Þ. From (2), we know the numberbm of nonmerging chains of this table since this number is

equal to bm ¼ m‘avSþ1, where we start with m1 ¼ m0 points.

Note that not m0 but bm is the number of chains in our final

table since merging chains are also sorted out in the

precomputation phase. Finally, we estimate the success

probability as P 0succ � bm‘avSN , where we neglect the fact that

the average chain length slightly decreases by sorting out

merging chains [45] (since the fraction of merging chains

that are longer than the average is slightly higher).

Furthermore, as it is usually done, our estimation does not

take into account that a point occurring in column i of the

table could also occur (undetected) in columns c 6	 imod S.

Since we are successful if at least one of the D given points is

covered by the table, we get a total success probability of

Psucc � 1� 1� bm‘avS
N

� �D
:

Disk usage. After sorting out merging chains and chains
that do not comply to the length restrictions, we need to

store bm triples. Each triple consists of the start point, the
nondistinguished part of the end point, and the required
number 0 � ‘ � ‘max � ‘min of fS applications after reaching
‘min. Thus, we have to store

M � bm log2ðmÞd e þ k� dþ log2ð‘max � ‘min þ 1Þd eð Þ

bits on a hard disk.
Precomputation time. We continue a chain until either a

DP is reached or its length equals S‘max þ 1. Thus, the
expected number of iterations is

z ¼ ‘max 1� PDP ð‘maxÞð Þ þ
X‘max
‘¼1

‘ PDP ð‘Þ � PDP ð‘� 1Þð Þ

� ‘max 1� PDP ð‘maxÞð Þ þ ‘avPDP ð‘maxÞ:

Since we compute m chains

Tpr � mSz

steps are expected for the precomputation phase.
Online time. In the online phase, we compute at most

S chains for each of the D given points. To compute such
a chain and verify if the wanted point is included in the
table, we need about ‘avS steps. Thus, the total number of
steps can be estimated as

Ton � DS‘avS:

Finally, since for each computed chain, we need to access
the table at most once, the total number of disk accesses is
bounded by

A ¼ DS:

ACKNOWLEDGMENTS

The authors would like to thank Jean-Jacques Quisquater,
François-Xavier Standaert (UCL), Gerd Pfeiffer and Manfred
Schimmler (University Kiel), as well as Jan Pelzl, Kerstin
Lemke-Rust and Stefan Spitz, for their tremendous help on
our work with COPACOBANA and its applications.

REFERENCES

[1] Standards for Efficient Cryptography—SEC 1: Elliptic Curve Crypto-
graphy, http://www.secg.org/secg_docs.htm, Sept. 2000.

[2] S. Babbage, “A Space/Time Tradeoff in Exhaustive Search Attacks
on Stream Ciphers,” Proc. European Convention Security and
Detection, vol. 408, 1995.

[3] E. Barkan, E. Biham, and A. Shamir, “Rigorous Bounds on
Cryptanalytic Time/Memory Tradeoffs,” Proc. 26th Ann. Int’l
Cryptology Conf. (CRYPTO ’06), pp. 1-21, 2006.

[4] A. Biryukov and A. Shamir, “Cryptanalytic Time/Memory/Data
Tradeoffs for Stream Ciphers,” Proc. Sixth Int’l Conf. Theory and
Application of Cryptology and Information Security (ASIACRYPT ’00),
pp. 1-13, 2000.

[5] A. Biryukov, A. Shamir, and D. Wagner, “Real Time Cryptanalysis
of A5/1 on a PC,” Proc. Eighth Int’l Workshop Fast Software
Encryption (FSE ’00), pp. 1-18, 2001.

[6] D. Carluccio, K. Lemke-Rust, C. Paar, and A.-R. Sadeghi, “E-
Passport: The Global Traceability or How to Feel Like an UPS
Package,” Proc. Seventh Int’l Workshop Information Security Applica-
tions (WISA ’06), pp. 391-404, 2006.

[7] Certicom Corp., Certicom ECC Challenges, http://www.certi-
com. com, 2005.

[8] D. Denning, Cryptography and Data Security. Addison-Wesley,
1982.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

[9] G. de Meulenaer, F. Gosset, M.M. de Dormale, and J.-J. Quisqater,
“Integer Factorization Based on Elliptic Curve Method: Towards
Better Exploitation of Reconfigurable Hardware,” Proc. 15th Ann.
IEEE Symp. Field-Programmable Custom Computing Machines
(FCCM ’07), pp. 197-206, 2007.

[10] W. Diffie and M.E. Hellman, “Exhaustive Cryptanalysis of
the NBS Data Encryption Standard,” Computer, vol. 10, no. 6,
pp. 74-84, June 1977.

[11] Electronic Frontier Foundation, Cracking DES: Secrets of Encryption
Research, Wiretap Politics & Chip Design. O’Reilly & Associates,
July 1998.

[12] Germany Fed. Office for Information Security, Advanced
Security Mechanisms for Machine Readable Travel Documents—Ex-
tended Access Control, http://www.bsi.de/fachthem/epass/
EACTR03110_v110.pdf, 2007.

[13] T. Finke and H. Kelter, “Radio Frequency Identification—Ab-
hörmöglichkeiten der Kommunikation zwischen Lesegerät
und Transponder am Beispiel eines ISO14443-Systems,”
http://www.bsi.de/fachthem/rfid/Abh_RFID.pdf, 2007.

[14] K. Finkenzeller, RFID-Handbook. John Wiley & Sons, 2003.
[15] K. Gaj, S. Kwon, P. Baier, P. Kohlbrenner, H. Le, M. Khaleeluddin,

and R. Bachimanchi, “Implementing the Elliptic Curve Method
of Factoring in Reconfigurable Hardware,” Proc. Eighth Int’l
Workshop Cryptographic Hardware and Embedded Systems (CHES ’06),
pp. 119-133, 2006.

[16] T. Gueneysu, C. Paar, and J. Pelzl, “Attacking Elliptic Curve
Cryptosystems with Special-Purpose Hardware,” Proc. 15th ACM/
SIGDA Int’l Symp. Field Programmable Gate Arrays (FPGA ’07),
pp. 207-215, 2007.

[17] G.P. Hancke, “Practical Attacks on Proximity Identification
Systems (Short Paper),” Proc. IEEE Symp. Security and Privacy
(SP ’06), pp. 328-333, 2006.

[18] D.R. Hankerson, A.J. Menezes, and S.A. Vanstone, Guide to Elliptic
Curve Cryptography. Springer, 2004.

[19] M.E. Hellman, “A Cryptanalytic Time-Memory Trade-Off,” IEEE
Trans. Information Theory, vol. 26, pp. 401-406, 1980.

[20] J.-H. Hoepman, E. Hubbers, B. Jacobs, M. Oostdijk, and R.
Wichers Schreur, “Crossing Borders: Security and Privacy Issues
of the European E-passport,” Proc. First Int’l Workshop Security
(IWSEC ’06), pp. 152-167, 2006.

[21] ICAO, “Machine Readable Travel Documents, PKI for Machine
Readable Travel Documents Offering ICC Read-Only Access,”
technical report, http://www.mrtd.icao.int, 2004.

[22] ICAO, Machine Readable Travel Documents, Supplement to
Doc9303-Part1-Sixth Edition, 2005.

[23] ICAO, Machine Readable Travel Documents, Doc 9303, Part 1
Machine Readable Passports, fifth ed., 2003.

[24] ISO/IEC 14443, Identification Cards—Contactless Integrated
Circuit(s) Cards—Proximity Cards—Part 1-4, www.iso.ch, 2001.

[25] S. Vaudenay, J. Monnerat, and M. Vuagnoux, “About Machine-
Readable Travel Documents,” Proc. Third Conf. RFID Security
(RFIDSec ’07), pp. 15-28, 2007.

[26] A. Juels, D. Molnar, and D. Wagner, “Security and Privacy Issues
in E-passports,” Proc. First Int’l Conf. Security and Privacy for
Emerging Areas in Comm. Networks (SecureComm ’05), pp. 74-88,
2005.

[27] T. Kasper, D. Carluccio, and C. Paar, “An Embedded System for
Practical Security Analysis of Contactless Smartcards,” Proc.
Workshop Information Theory and Practice (WISTP ’07), pp. 150-160,
2007.

[28] G.S. Kc and P.A. Karger, “Security and Privacy Issues in Machine
Readable Travel Documents (MRTDs),” RC 23575, IBM T.J.
Watson Research Labs, Apr. 2005.

[29] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler,
“Breaking Ciphers with COPACOBANA—A Cost-Optimized
Parallel Code Breaker,” Proc. Eighth Int’l Workshop Cryptographic
Hardware and Embedded Systems (CHES ’06), pp. 101-118, 2006.

[30] H. Lenstra, “Factoring Integers with Elliptic Curves,” Annals of
Math., vol. 126, pp. 649-673, 1987.

[31] Y. Liu, T. Kasper, K. Lemke-Rust, and C. Paar, “E-Passport:
Cracking Basic Access Control Keys,” Proc. On the Move to
Meaningful Internet Systems Workshops (OTM ’07) Part II,
pp. 1531-1547, 2007.

[32] Int’l Business Machines, IBM Research: BlueGene, http://
www.research.ibm.com/bluegene/, 2007.

[33] N. Mentens, L. Batina, B. Prenel, and I. Verbauwhede, “Time-
Memory Trade-Off Attack on FPGA Platforms: UNIX Password
Cracking,” Proc. Int’l Workshop Applied Reconfigurable Computing
(ARC ’06), pp. 323-334, 2006.

[34] ICAO TAG MRTD/NTWG, “Biometrics Deployment of Machine
Readable Travel Documents,” technical report, 2004.

[35] NIST FIPS PUB 46-3, Data Encryption Standard, Fed. Information
Processing Standards, Nat’l Bureau of Standards, US Dept. of
Commerce, Jan. 1977.

[36] P. Oechslin, “Making a Faster Cryptanalytic Time-Memory
Trade-Off,” Proc. 23rd Ann. Int’l Cryptology Conf. (CRYPTO ’03),
pp. 617-630, 2003.

[37] Nat’l Inst. of Standards and Technology, FIPS 180-3 Secure
Hash Standard (Draft), http://www.csrc.nist.gov/publications/
PubsFIPS.html, 2007.

[38] P. Gutmann, Norton’s InDiskreet, posting to sci.crypt newsgroup,
Nov. 1993.

[39] P. Kocher, Norton Diskreet (Security Overview), posting to sci.crypt
newsgroup, Nov. 1993.

[40] J.M. Pollard, “Monte Carlo Methods for Index Computation
mod p,” Math. Computation, vol. 32, no. 143, pp. 918-924, July
1978.

[41] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Comm. ACM,
vol. 21, no. 2, pp. 120-126, Feb. 1978.

[42] H. Robroch, “ePassport Privacy Attack,” presentation at Cards
Asia Singapore, http://www.riscure.com, Apr. 2006.

[43] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat,
“Design Strategies and Modified Descriptions to Optimize Cipher
FPGA Implementations: Fast and Compact Results for DES and
Triple-DES,” Proc. 11th ACM/SIGDA Int’l Symp. Field Programmable
Gate Arrays (FPGA ’03), p. 247, 2003.

[44] M. �Simka, J. Pelzl, T. Kleinjung, J. Franke, C. Priplata, C. Stahlke,
M. Drutarovsk�y, V. Fischer, and C. Paar, “Hardware Factoriza-
tion Based on Elliptic Curve Method,” Proc. 13th Ann. IEEE Symp.
Field-Programmable Custom Computing Machines (FCCM ’05),
pp. 107-116, 2005.

[45] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat, “A Time-
Memory Tradeoff Using Distinguished Points: New Analysis &
FPGA Results,” Proc. Fourth Int’l Workshop Cryptographic Hardware
and Embedded Systems (CHES ’02), pp. 596-611, 2002.

[46] Univ. of California, Berkeley, Seti@Home Website, http://
setiathome.berkeley.edu/, 2005.

[47] P.C. van Oorschot and M.J. Wiener, “Parallel Collision Search
with Cryptanalytic Applications,” J. Cryptology, vol. 12, no. 1,
pp. 1-28, 1999.

[48] Xilinx, Spartan-3 FPGA Family: Complete Data Sheet, DS099, http://
www.xilinx.com, Jan. 2005.

Tim Güneysu has studied international informa-
tion technology and IT security at the University
of Cooperative Education Mannheim, Ruhr-
University Bochum, Germany, and the Univer-
sity of Stafford, United Kingdom. He received
degrees in 2003 and 2006. He is currently a
research assistant for the chair for communica-
tion security at the Horst Görtz Institute for
IT-Security, Ruhr-University Bochum. His field of
research is mainly focused on the implementa-

tion of asymmetric cryptographic implementations and cryptanalysis
with special-purpose hardware.

Timo Kasper has studied electrical engineering
and information security at Ruhr-University
Bochum, Germany, and the University of
Sheffield, United Kingdom. He became a grad-
uate engineer in 2006. He is currently a
research assistant in the Communication Se-
curity Group, Horst Görtz Institute for IT-
Security, Ruhr-University Bochum. His field of
research covers the security of smart cards,
RFID, and wireless communication, as well as

side-channel cryptanalysis and the security of embedded systems.

GÜNEYSU ET AL.: CRYPTANALYSIS WITH COPACOBANA 15

Martin Novotn�y received the master’s degree in
computer science and engineering from the
Czech Technical University, Prague, in 1992.
Currently, he is a PhD student at the Czech
Technical University and at the Horst Görtz
Institute for IT-Security, Ruhr-University Bo-
chum. His research interests include embedded
systems, digital design, arithmetic units, crypta-
nalytical hardware and efficient hardware im-
plementation of cryptographic algorithms.

Christof Paar received the PhD degree in
electrical engineering from the Institute for
Experimental Mathematics, University of Essen.
He holds the chair of communication security in
the Electrical and Computer Engineering De-
partment, Horst Görtz Institute for IT-Security,
Ruhr-University Bochum. His research interests
include physical security, cryptanalytical hard-
ware, security in real-world systems, and effi-
cient software and hardware implementations of

cryptographic algorithms. He is a member of the IEEE, the ACM, and the
International Association for Cryptologic Research (IACR).

Andy Rupp received the master’s degree in
computer science from Saarland University,
Saarbrücken, Germany, in 2004. Currently, he
is a PhD student at the Horst Görtz Institute for
IT-Security, Ruhr-University Bochum, under the
supervision of Christof Paar, the chair of com-
munication security. His research interests
include theoretical aspects of cryptography like
cryptographic assumptions and models of com-
putation as well as practical aspects like special-

purpose hardware for cryptography and cryptanalysis.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 11, NOVEMBER 2008

