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Abstract—Last year we were able to break KeeLoq, which
is a 64 bit block cipher that is popular for remote keyless
entry (RKE) systems. KeeLoq RKEs are widely used for access
control purposes such as garage openers or car door systems.
Even though the attack seems almost straightforward in
hindsight, there where many practical and theoretical problems
to overcome. In this talk I want to describe the evolution of
the attack over about two years. Also, some possible future
improvements using fault-injection will be mentioned.

During the first phase of breaking KeeLoq, a surprisingly
long time was spent on analyzing the target hardware, taking
measurements and wondering why we did not succeed. In the
second phase, we were able to use differential power analy-
sis attacks successfully on numerous commercially available
products employing KeeLoq code hopping. Our techniques
allow for efficiently revealing both the secret key of a remote
transmitter and the manufacturer key stored in a receiver.
As a result, a remote control can be cloned from only ten
power traces, allowing for a practical key recovery in a few
minutes. With similar techniques but with considerably more
measurements (typically on the order of 10,000) we can extract
the manufacturer key which is stored in every receiver device,
e.g., a garage door opener unit. In the third phase, and
most recent phase, we were able to come up with several
improvements. Most notably, we found that an SPA (simple
power analysis) attack allows to recover the manufacturer key
with one measurement. In the talk, we will also speculate about
extensions to fault-injection and timing attacks.

It is important to note that most of our findings are not
specific to KeeLoq but are — in principle — applicable to
any symmetric cipher with an implementation that is not side-
channel resistant.

I. BACKGROUND

KEELOQ is a block cipher with a 64 bit key and a block
size of 32 bits. As illustrated in Fig. 1, it can be viewed
as a non-linear feedback shift register (NLFSR) where the
feedback depends linearly on two register bits, one key bit,
and a non-linear function (NLF). The NLF maps five other
register bits to a single bit [1], [4], [6]. Prior to an encryption,
the secret key and plaintext are loaded in the key register
and the state register, respectively. In each clock cycle, the
key register is rotated to the right and the state register is
shifted to the right so that the fresh bit prepared by the XOR
function becomes part of the state. After 528 clock cycles,
the state register contains the ciphertext. The decryption
process is similar to the encryption, except for the direction
of the shifts and the taps for the NLF and the XOR function.
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Figure 1. Block diagram of the KEELOQ encryption

In addition to KEELOQ IFF systems which provide au-
thentication of a transmitter to the main system using a
simple challenge-response protocol, KEELOQ is used in
code hopping (or rolling code) applications [8]. In this
mechanism, which is widely used, e.g., in car anti-theft
systems and garage door openers, the transmitter is equipped
with an encoder and the receiver with a decoder. Both share a
secret key and a fixed discrimination value, disc, with 10 or
12 bits. In addition, they are synchronized with a 16 bit or
18 bit synchronization counter, cnt, which is incremented
in the encoder each time a hopping code is transmitted.
The transmitter constructs a hopping code by encrypting a
32 bit message formed of disc, cnt and a 4 bit function
information. The latter determines the task desired by a
remote control, for instance, it enables to open or close more
than one door in a garage opener system.

One message sent via the radio frequency (RF) interface
consists of a hopping code followed by the serial number
of the transmitter. The receiver decrypts the hopping code
using the shared secret key to obtain disc and the current
cnt. The transmitter is authenticated if disc is identical to
the shared one and cnt fits in a window of valid values.
Three windows are defined for the counter. If the difference
between a received cnt and the last stored value is within
the first window, i.e., 16 codes, the intended function will be
executed after a single button press. Otherwise, the second



window containing up to 215 codes1 is examined. In this
so-called resynchronization window, the desired function is
carried out only if two consecutive counter values are within
it, i.e., after pressing the button twice. The third window
contains the rest of the counter space. Any transmission with
a cnt value within this window will be ignored, to exclude
the repetition of a previous code and thus prevent replay
attacks.

II. DPA ATTACK

We summarize in the following our attack which is
described in more details in [5]. When we started to an-
alyze the targets using KEELOQ, we were exposed to a
“classical” situation for physical attacks: even though the
algorithm was known, hardly anything was known about the
implementation. We found that the transmitters usually em-
ploy HCSXXX modules of Microchip, featuring a hardware
implementation of the cipher. The receivers we looked at are
typically equipped with a read-protected PIC microcontroller
on which a KEELOQ decryption routine is implemented in
software. This section explains the details of DPA-attacking
transmitters and receivers, starting with a general approach
that is appropriate for both types of realizations.

It is known that for successfully performing a DPA attack,
some intermediate value of the cipher has to be identified
that (i) depends on known data (like the plaintext or the
ciphertext), (ii) depends on the key bits, and (iii) is easy to
predict. Furthermore, it is advisable to choose a value that
has a high degree of nonlinearity with respect to the key,
to avoid so-called “ghost peaks” for “similar” keys [2]. For
every DPA, a model for estimating the power consumption
is needed. Compared to the two shift registers, the power
consumption of the combinational part, i.e., a few XORs and
the 5×1 non-linear function, is small and can be neglected.
Note that the Hamming distance of the key register does
not change, since the key is simply rotated. This leads to a
theoretically constant power consumption of the key register
in each clock cycle. Hence, we focus on the state register
~y. We execute a correlation DPA attack (CPA) [2] based on
the following hypothetical power model

P(i)
Hyp = HD

(
~y(i), ~y(i−1)

)
= HW

(
~y(i) ⊕ ~y(i−1)

)
(1)

where P(i)
Hyp denotes the hypothetical power consumption

in the ith round, HD and HW are Hamming distance and
Hamming weight, respectively, ~y(i) indicates the content of
the state register in the ith round, and ⊕ is a 32 bit XOR
function. As mentioned before, the known ciphertext attack
on the encryption is identical to the known plaintext attack
on the decryption2. We describe the known ciphertext attack

1These window sizes are recommended by Microchip, but they can be
altered to fit the needs of a particular system.

2Both attacks target state ~y(l) of the decryption, which is the same as
state ~y(528−l) of the encryption.

on the encryption. Starting from the 528th round, 32 bits
of the final state ~y(528) =

(
y
(528)
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31

)
, are known.

Furthermore, 31 bits of ~y(527), i.e.,
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)
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known because they are identical to
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(528)
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)
.

Therefore, just y
(527)
0 is unknown. According to Fig. 1, we

can write

y
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31 = k

(i)
0 ⊕ y
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where k
(i)
0 is the rightmost bit of the key register in the ith

round. Knowing that k
(i)
j = k(i+j) mod 64, we can rewrite

Eq. (2) as

y
(527)
0 = k15 ⊕ y

(527)
16 ⊕ y

(528)
31 ⊕ (3)

NLF
(
y
(527)
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1

)

Thus, recovering y
(527)
0 directly reveals one bit of the key

register. This process is the same for recovering the LSB
of the state register of the previous rounds, i.e., y

(i)
0 , i =

(526, 525, . . .). However, Eq. (3), depends linearly on the
key bit k15. Above we stated that nonlinearity helps distin-
guishing correct key hypotheses from wrong ones. Hence,
recovering the key bit-by-bit might not be the best choice3.
Fortunately, according to Fig. 1, the LSB of the round
state, y

(i)
0 , enters the NLF leading to a nonlinear relation

between the key bit k15 and the state ~y(526). Accordingly,
the nonlinearity for one key bit kj increases in each round
after it was clocked into the state.

Algorithm 1 A Scalable DPA for KEELOQ

Require: m : length of key guess, n: number of surviving
key guesses, k: known previous key bits

Ensure: SurvivingKeys
1: KeyHyp ← all {0, 1}m

2: for all KeyHypi; 0 ≤ i < 2m do
3: Perform CPA on round (528−m) using PHyp and k
4: end for
5: SurvivingKeys ← n most probable partial keys of

KeyHyp

Taking the increased nonlinearity in the successive rounds
into account, we developed a scalable DPA, as described in
Alg. 1, that allows for finding a subset n of surviving key
candidates by guessing m bits of the key in an instant. Note
that in step 3 of the algorithm the CPA is performed on round
(528−m), hence taking advantage of a key bit passing the
NLF m times. The significance of the known previous bits

3Simulations show that an attack recovering the key bit by bit is much
weaker than an attack that recovers several key bits at a time. Still, the key
can also be recovered for single bit key guesses – in other words even a
classical DPA on the LSB of the state register is feasible.



k will become clear below in the extended attack (Alg. 2),
where Alg. 1 is executed repeatedly.

We performed simulations of the attack described in
Alg. 1, assuming a Hamming distance leakage model. The
simulated traces allow for testing our attacks and also to
evaluate how well an attack would work under “perfect”
conditions. We generated a set of encryption traces with
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Figure 2. Simulated correlation of key hypotheses as a function of
KEELOQ rounds. Correct key guess (black solid line) vs. wrong key guesses
(thin gray lines).

random plaintext input and computed the Hamming distance
of all registers for each round. We performed a correlation
DPA where we predicted the Hamming distance of the state
register of round 522, PHyp = HD

(
~y(522)

)
. Fig. 2 shows

the correlation for the 26 = 64 key hypotheses over the
first few rounds. Of course, the correlation is 1 for the right
key (thick solid line) in round 522. Unfortunately, some of
the wrong key guesses (thin gray lines) also yield a high
correlation. This is due to the high linearity between both the
state and the key guesses, and between the different states.
Furthermore we get a high correlation in the rounds before
and after the predicted round. This is because most of the bits
of the shift register remain unchanged in the nearby rounds.
The most probable wrong key guess is always the one that
differs only in the LSB. This underlines our expectation that
the linearity increases the error probability of guessing the
less significant key bits.

Algorithm 2 Pruning for the Best Key Hypothesis
Require: m : length of key guess, n: number of surviving

key guesses
Ensure: K: recovered key

1: K ← Algorithm 1(m,n, ∅)
2: for round = 1 to d 64

m e do
3: K ′ ← ∅
4: for all ki ∈ K, 0 ≤ i < n do
5: K ′ ← K ′∪ Algorithm 1(m,n, ki)
6: end for
7: K ← n most probable keys of K ′

8: end for
9: return K

To improve the strength of our attack and to take care of
the misleading high correlations, we added another attack
step. Alg. 1 can be repeated to guess all partial keys, one

after the other. These iterations of the attack need to be done
one after another, because we require the previous key bits
and thus the state ~y as a known input for each execution of
the algorithm. Since some of the bits of the previous key
guess might be faulty, we keep a number n of the most
probable partial key guesses as survivors. Wrong surviving
candidates of the previous round will result in a misleading
initial state ~y for the following attack round and hence
strongly decrease the correlation of subsequent key guesses.
This does not only allow for an assertion of the correct
previous key guesses, but also for detecting faulty previous
keys. Hence, the attack has an error-correcting property. If
all key guesses of one round show a low correlation, we can
go one step back and broaden the number of surviving key
guesses n. Alg. 2 describes this procedure, which is similar
to the “pruning process” described by Chari et al. in [3].
In the last round (i = d 64

m e) the program verifies whether
an error occurred and the key with the highest correlation
coefficient is selected out of the n surviving keys. It will be
shown in the following subsections that Alg. 2 results in a
quite strong attack.

A. Details of the Hardware Attack

For attacking commercial KEELOQ code hopping en-
coders we first had to find the points in time in the power
traces (Fig. 3). that correspond to the encryption function.
We found that the encryption happens after writing to the
EEPROM4, i.e., in the time interval between 20.5 ms and
24 ms The power traces reveal that the frequency of the
internal oscillators of the ICs is approximately 1.25 MHz.

Figure 3. Power consumption traces of a HCS module

We modified the attack described above to correlate all
known and predicted rounds to the corresponding power
peaks. This is possible since we are able to locate the leakage
of each round. The modified attack was performed on
HCS200, HCS201, HCS300, HCS301, HCS361, HCS362,
and HCS410 [9], [10] in both DIP and SOIC packages. In
the best case we were able to recover the secret key of DIP

4The high amplitude periods of the power trace correspond to writing to
the internal EEPROM.
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Figure 4. Correlation coefficients of key hypotheses of HCS201 ICs as a
function of the number of measured traces.

package ICs from only six power traces when sampling at a
rate of 200 MS/s. At most 30 power traces are sufficient
to reveal the secret key of an HCS module in an SOIC
package, which has a lower power consumption, resulting
in a worse signal-to-noise ratio (SNR) of the measurements.
Fig. 4 shows the correlation coefficients of the correct key
of HCS201 chips in a DIP packages as a function of the
number of traces. The sudden increase of the correlation is
due to the error-correcting property of our attack, and also
due to the fact that we repeated the attack for all 528 rounds
of the algorithm in order to verify the revealed key.

To estimate the minimum technical requirements for the
SCA, we performed experiments with varying sampling
rates and evaluated the number of power traces required
for recovering the correct key. Fig. 5 shows the results for
attacking a HCS201 chip in a DIP package in the case
of current measurements via a resistor. We conclude that
our attack can be carried out effectively even with low-cost
equipment, e.g., an oscilloscope with a maximum sample
rate as low as 50 MS/s enables finding the secret key from
only 60 power traces.
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Figure 5. Number of measurements required for revealing the secret key
of a HCS201 IC in a DIP package as a function of the sampling rate. The
numbers in parentheses give the exact coordinates of the points.

B. Details of the Software Attack

The next target of our attack is the code hopping decoder
implemented in the receiver. We recall that the receiver
contains the manufacturer key, which is an attractive target
for a complete break of the system. A PIC microcontroller

handles the key management, controls for instance the motor
of the garage door or the locking system of the car, and
performs the KEELOQ decryption in software.

Before executing the DPA, we adapted the power model of
the attack to a PIC software implementation. Typically, PIC
microcontrollers leak the Hamming weight of the processed
data [11]. Furthermore, one can assume that the state is
stored in the 8 bit registers of the PIC microcontroller
which are regularly accessed. Hence, instead of predicting
the Hamming distance HD

(
~y(i), ~y(i−1)

)
of the whole state

– as was done for the hardware attack in Sect. II-A – we
predict the Hamming weight of the least significant byte
(LSB) of the KEELOQ state register:

P
(i)
Hyp = HW

(
~y
(i)
LSB

)
=

7∑

k=0

y
(i)
k

We performed the attack by putting the receiver into learning
mode and sending hopping code messages with random
serial numbers to the receiver5. Lacking any information in
the power consumption of the PIC that could have been used
as trigger, we triggered the scope directly after transmitting
the last bit via the RF interface. This results in our traces
not being well-aligned, leading to a high number of power
samples needed to perform a successful DPA attack.

While performing the attack we noticed that the corre-
lation coefficient of the correct key become continuously
worse with an increasing number of rounds. For the first
few key bits, 1000 traces sampled at 125 MS/s are sufficient
to find the key. Surprisingly, we need roughly ten times
as many traces for recovering the full 64 bit key. This
gradual decrease of the correlation is due to a misalignment
that occurs during the execution of the KEELOQ algorithm.
Hence, the problem is not a bad trigger condition, since the
trigger affects all time instances in the same way. We assume
that the program code is likely to have a data-dependent
execution time for each round of KEELOQ, causing the in-
creasing misalignment with an increasing number of rounds,
and hence complicating the SCA.

III. SPA ATTACK

The extraction of the manufacturer key from a software
implementation of the KEELOQ decryption during the key-
derivation mode of the receiver with DPA is much harder
than a DPA attack on a hardware implementation of the
cipher — mainly for two reasons. Firstly, the lack of a
suitable trigger point in the power consumption of the
microcontroller leads to extra steps required for a proper
alignment when preprocessing the traces. Secondly, the cor-
relation coefficient of the correct key continuously decreases
with an increasing number of rounds, such that roughly
10 000 power traces need to be evaluated in order to fully

5We emulated a remote control by connecting the RF interface of a
transmitter to the parallel port of a PC.



recover the 64-bit. Even though this is certainly doable, it
constitutes a major effort compared to the few dozens of
traces needed for extracting an individual device key from
hardware implementations.

Since the DPA attacks had been developed by us, the
source code as proposed by Microchip for a PIC 8-bit
microcontroller has become available on the Internet [12].
Most of the program code takes the same amount of clock
cycles, except for the specific implementation of the look-
up table to build the NLF. As a result, the execution time
of a decryption varies for different ciphertexts — a typical
indicator for a susceptibility towards an SPA.

Based on this observation we were recently able to
develop an SPA attack which is considerably more powerful
than the DPA attack. The SPA attack is described in [7].

For the attack, the power traces of several PIC microcon-
trollers, such as PIC16C56 and PIC16F84A, were acquired
using an Agilent Infiniium 54832D digital oscilloscope with
a sampling rate of 125 MS/s by measuring the differential
voltage of a 100Ω resistor inserted in the ground path.
Using the SPA techniques we are able to extract the secret
manufacturer key of commercial KEELOQ code hopping
receivers from only one single power trace. The efficiency
of our attack is due to a software implementation leaking
various key dependent information, and due to the nature of
the KEELOQ cipher, i.e., using the key bits more than once.

IV. THE FUTURE: FAULT INJECTION AND TIMING
ATTACKS

Even though the SPA attack is extremely powerful, it is
certainly possible to defeat it by using code with constant run
time. Similarly, there are implementations possible which
make the cipher more robust against DPA. Thus, it is worth
speculating about other physical attacks which are powerful.
One class of attacks which has not been investigated in the
context of KeeLoq are fault injection attacks. Since KeeLoq
is typically implemented on low-cost microcontrollers, it is
likely that injecting faults during code execution, e.g., via
voltage spikes, is not too difficult. Given that fault injec-
tion attacks often combine side-channel observation with
mathematical properties of the cipher, it seems interesting
to develop such attacks against KeeLoq. Especially if SPA
and DPA countermeasures are implemented, fault injection
attacks might be an attack evolution that should be exploited.
Similarly, the fact that the run time is not constants also
makes timing attacks a possibility.
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