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ABSTRACT
To ensure the validity of software engineering and IT security stud-
ies with professional programmers, it is essential to identify partic-
ipants without programming skills. Existing screening questions
are efficient, cheating robust, and effectively differentiate program-
mers from non-programmers. However, the release of ChatGPT
raises concerns about their continued effectiveness in identifying
non-programmers. In a simulated attack, we showed that Chat-
GPT can easily solve existing screening questions. Therefore, we
designed new ChatGPT-resistant screening questions using visual
concepts and code comprehension tasks. We evaluated 28 screen-
ing questions in an online study with 121 participants involving
programmers and non-programmers. Our results showed that ques-
tions using visualizations of well-known programming concepts
performed best in differentiating between programmers and non-
programmers. Participants prompted to use ChatGPT struggled to
solve the tasks. They considered ChatGPT ineffective and changed
their strategy after a few screening questions. In total, we present
six ChatGPT-resistant screening questions that effectively identify
non-programmers. We provide recommendations on setting up a
ChatGPT-resistant screening instrument that takes less than three
minutes to complete by excluding 99.47% of non-programmers
while including 94.83% of programmers.
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1 INTRODUCTION
Conducting empirical research with professional programmers is
essential to provide insights into software development issues such
as security vulnerabilities, privacy violations, or poor usability.
However, recruiting professional programmers for user studies is
challenging, especially if a high number of participants is needed
for quantitative analysis [1, 5, 8, 18, 25]. Therefore, past research
explored different crowdsourcing platforms for participant recruit-
ment such as Clickworker [15], Qualtrics [42], or MTurk [3] [24, 48].
However, compared to end-user studies, higher compensation rates
introduce the risk of participants without programming skills par-
ticipating in studies with programmers [18]. While some platforms
(e.g., Qualtrics [42], Prolific [41]) offer filtering options for software
development experience, relying on self-reported data can threaten
the validity of studies with programmers [18]. Therefore, screeners
were recommended to use in line with the different recruitment
strategies [17, 24, 48]. Danilova et al. [17] proposed several screen-
ing questions to assess whether participants have programming
skills. In this work, we refer to the “programmer” and “program-
ming skill” definitions used in [17]. In a follow-up study, Danilova
et al. [16] extended the question set and added time limits to provide
an efficient and googling-robust instrument.

With the introduction of AI-based applications such as Chat-
GPT [35], non-programmers are equipped with powerful tools to
circumvent the proposed screening questions. ChatGPT is based on
a language model developed by OpenAI [37] and enables human-
like conversations in a dialogue format while allowing users to solve
complex tasks without any background knowledge [11]. It can pro-
vide programming assistance with code generation, debugging,
testing, and code reviews. While AI-based assistant applications
were already introduced in the past [2, 4, 28], ChatGPT received
high media attention [23]. This motivated even less tech-savvy
users to familiarize themselves with the tool and test it for com-
plex tasks [30, 39]. Within the first two months after its release in
November 2022, it was already used by over 100 million users [39].
Therefore, we focused on ChatGPT in this work. In a simulated
attack scenario, we demonstrate that the existing screening ques-
tions [16, 17] can be solved using ChatGPT despite the suggested
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time limits. To address this issue, we investigated the following
research question:

Which questions can be used to screen out participants without
any programming skills while meeting effectiveness, efficiency, and
robustness against ChatGPT-based cheating requirements?

We improved and extended existing screening questions ful-
filling the same requirements as in [17] (effectiveness, efficiency,
robustness against cheating, and language independence) and addi-
tionally addressing ChatGPT-resistance. To evaluate our screening
questions, we conducted a study with 121 participants involving
programmers recruited on Upwork.com and non-programmers re-
cruited on Clickworker.com. Half of the participants were prompted
to use ChatGPT to solve the tasks, while the other half received in-
structions without mentioning ChatGPT at all. Based on our results,
we recommend six ChatGPT-resistant screening questions that can
be used in software engineering and IT security studies to identify
non-programmers. We also provide recommendations on setting up
the screening instrument for different inclusion/exclusion criteria
based on researchers’ requirements.

2 RELATEDWORK
This section summarizes past research on screening questions used
for participant recruitment and ChatGPT demonstrating to be a
powerful tool for solving complex tasks.

2.1 Screening Questions
Past research showed that recruiting professional programmers
for studies is a challenging task [24, 48]. Researchers often were
required to test for programming skills to ensure data quality. For
example, Balebako et al. [7] used technical questions to check the
participants’ knowledge in a screening survey before inviting them
for an interview study and a follow-up online survey. Acar et al. [1]
asked participants to solve a short programming task before inviting
them to a lab study. Assal and Chiasson [5] recruited professional
programmers on Qualtrics for an online survey and required partici-
pants to show a baseline understanding by selecting correct security
descriptions. Danilova et al. [18] added a code comprehension task
to an online survey to filter out potential non-programmers. They
noticed that 33 out of 129 participants failed to solve the task, al-
though participants were recruited through a professional service
with programming skills as a requirement to participate in their
study.

The most related work to this study was conducted by Danilova
et al. [16, 17]. In a user study with 17 computer science students and
33 professional programmers, Danilova et al. [17] explored screen-
ing questions that could be used to identify non-programmers. The
best-performing tasks were tested with 52 programmers recruited
on Clickworker.com. They found differences in performance com-
pared to the ground truth of programmers, highlighting the need for
effective screening questions even when using professional recruit-
ment services. Finally, they tested the tasks in an attack scenario
with 47 non-programmers, offering a €2 reward for each correctly
solved task. Participants were explicitly allowed to use any source.
The authors noticed that Google might be often used to solve the
tasks. In a follow-up study, Danilova et al. [16] tested time limits
for screening questions to address the googling issue. They first

tested them with 74 computer science students by assigning three
different time constraints to the groups: (1) "Base" group without
any time constraints, (2) "No Limit" group encouraged to solve the
tasks as quickly as possible, and (3) "Countdown" group with a strict
timer. They found several tasks with time limits performed well.
Similar to the previous study, an attack scenario was performed
with 24 non-programmers using a "countdown" setup. The results
showed that non-programmers failed to use sources like Google to
solve the tasks. Finally, they recommended six screening questions
with time limits to be used in surveys.

While the previous studies identified non-programmers using
Google to solve the tasks to be the strongest attackers, the intro-
duction of prominent AI-based solutions such as ChatGPT opened
the field for new attack scenarios. In Section 3, we demonstrate
that ChatGPT can solve all the recommended screening tasks from
previous research despite using the recommended time limits.

2.2 ChatGPT
ChatGPT uses the advanced language model GPT-3.5, which is
built upon the generative pre-trained transformer (GPT) architec-
ture, involving a three-phase training approach [32]. While no vast
specifications are published about GPT-3.5, the training concepts
mentioned in the blog post of the official website [32] can be found
in the literature (e.g., [44, 54]). ChatGPT is trained similarly to
the previously released InstructGPT [38]. A pre-trained language
model, such as GPT-3.0, is used as a starting point. In the initial
phase, sample prompts are collected for which a labeler specifies
the desired output behavior for this prompt. The data is used to
fine-tune a supervised policy (SFT). In the second phase, several
outputs are generated by the model for the same prompt. A labeler
ranks the outputs from best to worst. This ranking is used to train
the reward model (RM). In the final phase, the SFT is further fine-
tuned using proximal policy optimization (PPO). PPO [44] is an
optimization algorithm used in reinforcement learning, which up-
dates the model’s policy to maximize the reward obtained from the
reward model. Phases two and three can be iterated by collecting
more comparison data to update the reward model and fine-tune
the policy.

Stack Overflow conducted a large user survey exploring develop-
ers’ usage and perceptions of AI tools for software development [47].
The findings showed that developers have a generally positive view
of AI tools and have used or plan to use them for software devel-
opment in the future. Sobania et al. [45] showed that a bug-fixing
rate of over 75% could be achieved in studies using ChatGPT. Fur-
ther, past research found that students use ChatGPT for doing their
homework tasks [9]. Therefore, researchers from non-engineering
fields explored ChatGPT as an assisting tool to answer knowledge
questions [13, 26, 49]. Choi et al. [13] tested ChatGPT on four law
exams and found it could achieve a passing grade. Kung et al. [26]
tested ChatGPT with the "United States Medical Licensing Exam"
and found it performed almost well enough to pass the exam. Ter-
wiesch [49] showed that ChatGPT could pass a "Wharton Master
of Business Administration" exam. The fact that ChatGPT seems
to be used for school and university homework indicates that the
use of ChatGPT might increase in the near future. Due to its large
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popularity and easy access via a web GUI [36], less tech-savvy users
are equipped with a powerful tool.

3 THREAT OF CHATGPT
In this section, we present a Threat Model for the six screening
questions suggested by Danilova et al. (see Table 2) and demonstrate
their limitation in a simulated attack scenario.

3.1 Threat Model
As an attacker, we define a participant motivated to solve exist-
ing screening questions [16] by using ChatGPT despite lacking
programming skills. In this case, the screening questions might be
copied and pasted into the ChatGPT environment to produce an
output that might be used to solve the tasks. First, we passed the
six recommended screening questions to ChatGPT without provid-
ing the potential answer options. This procedure was repeated ten
times per question. We analyzed each produced ChatGPT output
and found ChatGPT provided correct answers to all the screening
questions without requiring answer options or additional back-
ground knowledge.

Second, we estimated an attacker’s typing speed to typewrite
screening questions. Dhakal et al. [19] reported an average typing
speed of 51.56 words per minute (𝜎 = 20.20). As a word is standard-
ized as five characters or keystrokes when calculating words per
minute, typing speed is translated to 257.8 characters per minute
(cpm) on average. Thus, we conducted our calculation assuming
a typing speed of 257.8 cpm. As ChatGPT is resistant to typos in
the prompts [40, 51], we do not factor in the accuracy of the typing
speed. Since ChatGPT did not require multiple-choice options to
answer the screening tasks correctly, we assume an attacker passes
the questions without the possible answer options to the AI tool.
Note that this is a low estimate, as an attacker could still reduce the
number of characters to increase efficiency. For example, typing
"boolean" will result in ChatGPT providing a definition of a boolean,
usually offering the attacker enough information within the first
two sentences to solve the screening task correctly.

Third, we estimated the time ChatGPT required to reply to a
screening question correctly. For this, we passed each screening
question to ChatGPT ten times and measured the time ChatGPT
needed to provide an answer. We based our calculation on the
average time it took ChatGPT to print the reply. For our calcula-
tion, we had to repeat six out of 60 measurements where ChatGPT
experienced a timeout and did not provide any answers.

Finally, we included buffer time. The attacker requires time to
read the screening question, the ChatGPT output, and to select one
answer option provided. We assumed the time spent reading the
question was within the time allotted to typewrite the question to
ChatGPT. Further, participants could read responses while Chat-
GPT produces them, requiring little additional time. Ojanpää et
al. [31] conducted experiments on the time needed to find a word in
a list of words. Their results showed that human visual search time
increases linearly with word and list length. The question "Recur-
sive Function" has the longest answer options compared to the time
limit, making it the most challenging question to find the answer
in the answer options. The answer options contain 210 characters
(equivalent to 42 words). The worst performing participant in [31]

Table 1: Simulated attack on the six recommended screening
questions [16] with time in seconds.
Typing = time for typing all characters, Reply = time ChatGPT needed to

provide an answer, Buffer = time to select an answer
Task # Characters Typing Reply Buffer Total Limit [16]
Boolean 62 14.43 3.3 5 22.73 30
Recursive Function 73 16.99 4.4 5 26.39 30
Websites 75 17.46 4.9 5 27.36 30
IDEs known 52 12.10 5.5 5 22.6 60
Array - read index 94 21.88 3.1 5 30.04 60
Prime check - purpose 227 52.84 2.2 5 60.12 180

would have needed 3.15 seconds to find the answer. Participants
would likely perform better since all five answer options tested
here begin with the same 13 characters. In addition, time pressure
improves visual search [53]. Thus, we added five additional seconds
as an upper limit for each screening question.

3.2 Simulated Attack on Existing Screening
Questions

Using the threat model described above, we calculated the time an
attacker using ChatGPT would need to solve the six multiple-choice
tasks recommended by Danilova et al. [16]. We calculated the time
an attacker would need to type the question into ChatGPT based
on the number of characters in the question and the typing speed -
without the screening question-answer options. We added the time
that ChatGPT needs to answer the question and a buffer of five
seconds. Table 1 displays the results of our analysis. The calculated
times demonstrated that the existing screening questions could be
solved with ChatGPT within the time limits suggested in [16] with
a minimum difference of 2.64 and a maximum difference of 119.88
seconds. The results show that the existing screening questions
might not withstand an attacker lacking programming knowledge
using ChatGPT.

4 METHODOLOGY
We designed and evaluated ChatGPT-resistant screening questions
to identify participants without programming skills. To test our
screening questions, we compared the correctness rates of program-
mers to non-programmers. To test screeners’ ChatGPT-resistance,
we prompted half of the participants to use ChatGPT and compared
their correctness rates to those not prompted for ChatGPT. Thus,
we tested four groups: (1) Programmers not prompted to use Chat-
GPT (P-NC), (2) Programmers prompted to use ChatGPT (P-C), (3)
Non-Programmers not prompted to use ChatGPT (NP-NC), and (4)
Non-Programmers prompted to use ChatGPT (NP-C). While we
defined P-NC as the control group, the NP-NC and NP-C groups
simulated an attack scenario similar to Danilova et al. [16]. Par-
ticipants were asked to use a laptop or PC to participate in our
study. If prompted for ChatGPT usage, they were required to have
a ChatGPT account.

At the beginning of the survey, participants were informed about
the need to answer a series of programming screening questions
within time limits. A total of 28 screening questions were asked,
randomized in order and response options. The next question was
only displayed when participants pressed "Next," allowing breaks
between each question. Requiring participants to answer all 28
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questions without breaks would likely have resulted in increased
pressure and worse performance. After participants completed the
screening questions, a follow-up survey asked for tool usage, specif-
ically if participants used Google, ChatGPT, or other tools.We asked
if they were already familiar with and had used ChatGPT before
this study. If participants indicated to have used ChatGPT for the
screening questions, we asked for their strategy, if they felt it was
helpful, the number of questions it was used for, and their reasons
for any strategy changes. Finally, we collected programmer-specific,
non-programmer-specific, and general demographic information.

4.1 Instrument Requirements
We adapted the requirements for screening questions of Danilova
et al. [16] by ChatGPT-resistance:

1. Effectiveness: The screening instrument should differentiate
programmers from non-programmers by addressing the risk of
retaining non-programmers (guessing correctly) and excluding non-
programmers (one-time inattention).

2. Efficiency: The time required to complete the screening in-
strument should be as short as possible. Long screening processes
were refused by participants [1]. Time limits should be set high
enough to prevent non-programmers from finding the correct an-
swer while avoiding pressure on programmers.

3. Cheating Robustness: The instrument should be designed
so that it becomes difficult for participants without programming
skills to come by the answers, for instance, by using online search
engines or ChatGPT.

4. Language Independence: The screening instrument should
be based on well-known programming concepts and code syntax
rather than focusing on a specific programming language. Similar
to Danilova et al. [16], we focused on imperative programming
languages, such as C, C++, Java, or Python.

4.2 Screening Questions
We tested 18 knowledge and 10 code comprehension screening
questions (see Table 2). While knowledge questions required par-
ticipants to demonstrate their programming knowledge (e.g., of
popular IDEs), comprehension questions required them to under-
stand programming output. We adopted the recommended ques-
tions from Danilova et al. [16, 17]. We also included some questions
that were not recommended but might be promising according to
our applied ChatGPT-resistance strategies. Additionally, we devel-
oped new knowledge questions inspired by data structures and
algorithms frequently asked in programming interviews [12]. We
also created further comprehension questions inspired by challeng-
ing mathematical problems, such as [22], that might be promising
in being ChatGPT resistant.

To prevent participants from copying and pasting screening
questions into ChatGPT, the tasks could be displayed as images, re-
quiringmanual typewriting. Therefore, we shifted from a text-based
to a visual format for knowledge questions. Instead of a lengthy
text question part, we showed a visually illustrated programming-
related concept. In particular, we replaced the description of a con-
cept with the most basic visual representation (e.g., data structures)
or a concrete example (e.g., IDE interface). Further, we obfuscated

Figure 1: Preview and Response Phases for Q9

or removed any text not required to answer the questions cor-
rectly and utilized images to represent static concepts and graphics
interchange format (GIF) for dynamic concepts. We avoided ex-
tended answer options. Instead, we used multiple-choice answer
options with a maximum length of one or two words. Thus, non-
programmers could not create meaningful ChatGPT prompts from
images or simply copy&paste question text. Further, visual ques-
tions and one-word answer parts could be more accessible and
quicker for participants with programming skills to process.

We divided the knowledge questions into two phases, as shown
in Figure 1. In the Preview Phase, the visualization of a program-
ming concept and a countdownwere displayedwithout showing the
according question and answer options. Thus, non-programmers
were challenged to extract useful information, while programmers
benefited from this extra time to think of possible answers. We set
the time limits for the Preview Phase at 7-15 seconds, depending
on the complexity of the image. Participants were forwarded to
the next page after the expiration of the Preview Phase. In the
follow-up Response Phase, a question about the visualization and
the answer options were displayed. For the answer options, we
included programming-related concepts (if possible). After a time
limit of 12-15 seconds, depending on the number of answer options,
participants were automatically forwarded to the next page regard-
less of whether an answer was chosen. Danilova et al. [16] showed
that most participants solved their knowledge questions after ten
seconds. These questions had a time limit of 30 seconds. Since we
expected our visualizations to be easier to solve, we set lower time
limits and tested them in a pilot study. Similar to [16], we chose
five answer options for knowledge questions except in cases where
more than one answer had to be selected (e.g., Q7 Languages).

Additionally, we developed short code comprehension questions.
In contrast to Danilova et al. [16], we did not use a C-like pseu-
docode for our questions but a more simplified version similar to
Python. Thus, the code syntax required fewer parentheses, mak-
ing it more readable. We also used “while loops” instead of “for
loops,” since the syntax and semantics of while loops are more
standardized across different programming languages (e.g., C in
contrast to Python). This is because while loops are a more basic
control flow construct than for loops. In addition, we omitted vari-
able types in most code snippets since they were not needed to
answer the questions. To achieve ChatGPT-resistance, we applied
two strategies to comprehension questions (see Table 2). First, we
wanted to mislead ChatGPT into producing wrong answers. For
example, Q22 Backwards shows a function with a reversed string
output. While ChatGPT recognizes the purpose of this function, it
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Table 2: Overview of the screening questions (Q1-Q28)
ID Recommended Questions from [16] Abbreviation Answer Options Category Chat-GPT Resistance Strategy
Q1 Which programming-related Webpage do you see? Websites Multiple Choice (5) Knowledge (Information Source) Visualization
Q2 What concept about functions is implemented here? Recursive Multiple Choice (5) Knowledge (Basic Knowledge) Visualization
Q3 What type of tool do you see? IDE Multiple Choice (5) Knowledge (IDE Recognition) Visualization
Q4 Select the boolean value Detect - Bool Multiple Choice (12) Knowledge (Programming Elements) Visualization
Q5 What does this code print? (0-indexed) Array Index Multiple Choice (8) Comprehension (Array Output) Code Bloating (Unreachable Code)
Q6 This code tests if a number ... Prime Multiple Choice (8) Comprehension (Prime Check) Code Bloating (If-Else Nestings)

ID Additional Questions Abbreviation Answer Options Category Chat-GPT Resistance Strategy
Q7 Select 2 programming languages (logos) [16] Languages Multiple Choice (15) Knowledge (Language Recognition) Visualization
Q8 What does the black box represent? [17] Compiler Multiple Choice (5) Knowledge (Basic Knowledge) Visualization
Q9 Which data structure do you see? Array Multiple Choice (5) Knowledge (Data Structure) Visualization
Q10 Which data structure do you see? Stack Multiple Choice (5) Knowledge (Data Structure) Visualization
Q11 Which data structure do you see? Queue Multiple Choice (5) Knowledge (Data Structure) Visualization
Q12 Which data structure do you see? Linked List Multiple Choice (5) Knowledge (Data Structure) Visualization
Q13 Which data structure do you see? Tree Multiple Choice (5) Knowledge (Data Structure) Visualization
Q14 What algorithm do you see? DFS Multiple Choice (5) Knowledge (Algorithm) Visualization
Q15 What algorithm do you see? BFS Multiple Choice (5) Knowledge (Algorithm) Visualization
Q16 What is the run time? [17] Run Time Multiple Choice (5) Knowledge (Algorithm) Visualization
Q17 Select the string Detect - String Multiple Choice (12) Knowledge (Programming Elements) Visualization
Q18 Select the parameter [16] Detect - Parameter Multiple Choice (12) Knowledge (Programming Elements) Visualization
Q19 Select the function name Detect - FunctionName Multiple Choice (12) Knowledge (Programming Elements) Visualization
Q20 Select the loop Detect - Loop Multiple Choice (12) Knowledge (Programming Elements) Visualization
Q21 What does this code print? (0-indexed) [16] Conditions Multiple Choice (8) Comprehension (If-Else Nestings) Code Bloating (If-Else Nestings)
Q22 What does this code print? (0-indexed) [17] Backwards Multiple Choice (8) Comprehension (Reverse String) Misleading ChatGPT
Q23 What does this code print? (0-indexed) [16] Palindrome Multiple Choice (8) Comprehension (Palindrome Check) Misleading ChatGPT
Q24 What does this code print? [16] StringCount Multiple Choice (8) Comprehension (Compare two Strings) Code Bloating (Unreachable Code)
Q25 What problem for the function does the code in the red box create? [16] EndlessLoop Multiple Choice (8) Comprehension (Fix Endless Loop) Code Bloating (Unreachable Code)
Q26 What does this code print? [22] Euler Or Multiple Choice (8) Comprehension (Complex Formula) Misleading ChatGPT
Q27 What does this code print? CrazyCalc Multiple Choice (8) Comprehension (Complex Formula) Misleading ChatGPT
Q28 Reorder the code snippets to calculate the frequency of „a“ in the string. Reordering Reordering (7) Comprehension (Reordering Code Lines) Drag&Drop Reordering

frequently produces the wrong output if a complex term is used
as an input, e.g., for the input "scissors," ChatGPT produces the
correct answer in only 10% of all prompts. Second, to avoid type-
writing in a reasonable time, screening questions’ programming
code was extended by statements that did not affect the purpose
or output of the code, i.e., code bloating by adding unreachable
code or if-else nesting. We used this approach when we could not
modify the comprehension questions so that they mislead ChatGPT.
Since we expected comprehension questions to be more challeng-
ing than knowledge questions for programmers, we increased the
number of answer options from five to eight, reducing the chance
of non-programmers guessing correctly. Based on our pilot study
results, we set the time limit to 60 seconds. The detailed screening
questions and a description of how code comprehension questions
were designed to be unlikely solved by ChatGPT can be found in
the supplementary material. In the following, we summarize the
tested screening questions:

Recommended questions (Q1-Q6). We visualized Danilova
et al.’s recommended know-how screening questions [16] instead
of using text. In addition, we redesigned both recommended com-
prehension questions to explore code bloating and if-else nesting.
The screening questions required identifying recursion, prominent
developer websites, IDEs, a compiler, and a boolean. In addition,
participants were asked to determine the purpose of a prime check
function and the output of an array at a specified index.

Promising questions (Q7-Q8). We additionally tested two
knowledge questions of Danilova et al. [16, 17] beyond the six
recommended since we expected them to perform better when
visualized.

Data structures (Q9-Q13). Data structures are fundamental
programming concepts that are often asked during coding inter-
views [12]. We asked participants to identify commonly used rep-
resentations of data structures. These data structures involved an
Array, a Stack, a Queue, a Linked List, and a Tree. If necessary, we

modified the visual representation to ensure that they could not
be found using a Google search. For example, we used a vertical
instead of a horizontal representation for a Queue.

Algorithms (Q14-Q16). Algorithms are another important pro-
gramming concept, which is frequently asked during coding inter-
views [12]. We asked participants to identify a visual representation
of depth-first-search (DFS) and breadth-first-search (BFS). In addi-
tion, we asked participants to indicate the runtime of iterating a
predefined array since participants seemed familiar with arrays in
the study by Danilova et al. [16]. We chose GIFs for these visual-
izations to clearly illustrate the step-by-step process of algorithms.
In addition, we aligned them with standard visualizations for easy
recognition by developers, essential for identifying the algorithm
from the image alone during the preview phase.

Programming elements (Q17-Q20). Another recommended
question [16] required identifying a boolean type from a list of
values. Similarly, we asked participants to identify a boolean, a
string, the function parameter, the function name, and a loop in a
provided code snippet.

Comprehension Questions (Q21-Q28). For the comprehen-
sion questions, participants were tasked to determine the return
value of a function presented as a code snippet, such as the value
of an array at a given index, the return value of a block of nested
if-else statements, a reversed string, or a palindrome check. The
questions also asked to spot the mistake in a bubble sort function.
Most of the chosen comprehension questions were modified ver-
sions of screening questions investigated in [16]. We reduced the
complexity of the code snippets by using a python-style pseudo
code and utilized our approaches in providing ChatGPT-resistance.
In addition, we wanted to test comprehension questions which
included more complex logical or arithmetic formula with which
ChatGPT was known to struggle. Further, to test a different type of
comprehension questions, we tasked participants to reorder code
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lines by dragging and dropping them in the correct order for con-
structing a function that counts the occurrence of "a" in an input
string.

4.3 Pilot Study
To test our study design, we conducted a pilot study with 12 partic-
ipants recruited from personal contacts. Four non-programmers,
including students from non-programming disciplines, solved only
a few screening questions but did not report any comprehension is-
sues. The programming groups consisted of four computer science
students and four professional developers. We found that the time
limits for some knowledge questions were too tight for both the
preview and response phases. Thus, we increased the preview time
from 7 seconds to 15 seconds for images containing a lot of infor-
mation (e.g., Q7 Languages) and the response time from 12 seconds
to 15 seconds for questions with more than five answer choices
(e.g., Q3 IDE). In addition, we observed that the time limits for code
comprehension questions were initially set too tight at 40 seconds,
resulting in some unanswered questions. However, participants in-
dicated that they missed only a few seconds. Thus, we increased the
time limits to at least 60 seconds for all comprehension questions.

4.4 Participants
Based on previous research recommendations [24, 43], we recruited
professional programmers for both programmer groups (P-C, P-NC)
on Upwork.com. Upwork tracks records and allowed us to filter
participants based on programmer characteristics. We ensured that
all participants recruited on Upwork were likely to have program-
ming skills without relying on a screening procedure as follows.
We selected freelancers who listed popular imperative program-
ming languages in their profiles and set Talent Quality to at least
Top Rated [52]. Top Rated freelancers have a customer satisfaction
score of at least 90%, a completed first project on Upwork over three
months ago, an earning of at least $1000 in the last 12 months, an
active status during the previous three months, and at least 100
billed hours. We invited randomly selected developers to our online
survey. Of the recruited 63 professional programmers, we excluded
seven participants from the P-C group because they did not try
to use ChatGPT and additional five participants from the P-NC
group due to failing attention checks and incomplete responses,
leaving us with 26 participants for the P-NC group and 25 partici-
pants for the P-C group. The attention check question was included
after the first 14 screening questions and followed the design of
our knowledge questions, showing a visual representation of a
neural net. Participants were asked to select the answer “machine
learning.” Participants’ countries of residence and programming
experience varied in both programmer groups (see Table 3). Partic-
ipants recruited on Upwork received $20 for participating in our
study.

Like Danilova et al. [16], we recruited participants without pro-
gramming skills (NP-C, NP-NC) from Clickworker.com. We ex-
cluded participants who indicated having any programming skills
at the beginning of the survey. In addition, we also asked for their
programming self-assessment at the end of the study, implement-
ing a double verification process. This helped us identify potential
bots and inattentive or fraudulent participants. For the unprompted

group (NP-NC), 194 participants started the survey. We excluded
126 participants due to not meeting the inclusion criteria, failing
the attention check, or indicating using ChatGPT (20/126). From
the remaining 68 participants, we removed 31 bots, leaving us with
37 participants. For the ChatGPT-prompted group (NP-C), 269 par-
ticipants started the survey. We excluded 198 participants due to
not meeting the inclusion criteria or failing the attention check.
From the remaining 71 participants, we removed 34 bots and four
participants indicating not having used ChatGPT, leaving us with
33 participants. Most Clickworker participants were from Germany,
likely due to Clickworker being a German company (see Table 3).
We followed the payout scheme of Danilova et al. [16] to incentives
non-programmers to solve the questions. However, we increased
the base pay because we expected participants to answer very few
questions correctly, and we wanted to ensure that the payout re-
flected the minimum wage. In addition, we reduced the reward for
each correct screening question because we tested more questions
with lower time limits compared to Danilova et al. Participants
received €5 as compensation for completing the survey and an ad-
ditional €0.5 for each question answered correctly, resulting in a
maximum payment of €19.

4.5 ChatGPT Experience
To avoid ChatGPT priming of non-prompted participants, we asked
for ChatGPT experience in the follow-up survey. Almost all partici-
pants have already heard of ChatGPT (96% in P-NC, 100% in P-C,
89% in NP-NC, and 97% in NP-C). Before participating in our study,
ChatGPT was reported to be used by 84.6% in the P-NC group, 92%
in the P-C group, 29.7% in the NP-NC group, and 84.8% in the NP-C
group. Programmers reported sending over 50 ChatGPT prompts,
while non-programmers fewer than 19 prompts. Interestingly, 28%
of the programmers (P-C) and 9.1% of the non-programmers (NP-C)
reported having a "ChatGPT Plus" subscription.

4.6 Evaluation
We followed the approach of Danilova et al. [16, 17] to compare
the success rates of correctly answering the screening questions
between two groups using the Fisher’s exact test [21, p. 816]. We
considered questions with at least a 90% correctness rate for pro-
grammers and, at most, 40% correctness rate for non-programmers.
Since we designed our screening questions with shorter time lim-
its than [16], we chose thresholds that enabled us to ask more
questions in the same time frame by allowing developers to make
some mistakes while keeping the screening procedure short and
straightforward. Thus, we set the proportions p1 and p2 for the
Fisher’s exact test at 0.9 and 0.4, respectively. We conducted a power
analysis using G*Power [20], which indicated a sample size of 24
participants for each group using the two-sided Fisher’s exact test.
Using Bonferroni-Holm [21, p. 428], we corrected the significance
level by a factor of two since we tested group P-NC twice for each
screening question.

We used inductive coding for the qualitative analysis [50] of
the open-ended questions in our follow-up survey. After two re-
searchers independently coded answers, they merged their sets of
codes. Due to the short and straightforward answers, all the discrep-
ancies could be resolved by discussion. While the primary purpose
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Table 3: Demographics of the Participants (n = 121)
Programmers (Upwork) Non-Programmers (Clickworker)

Programmers Non-ChatGPT (P-NC)
(n=26)

Programmers ChatGPT (P-C)
(n=25)

Non-Programmers Non-ChatGPT
(NP-NC) (n=37)

Non-Programmers ChatGPT (NP-C)
(n=33)

Prompt "Please solve the tasks!" "Please use ChatGPT for solving these
tasks if possible."

"Please solve the tasks!" "Please use ChatGPT for solving these
tasks if possible."

Gender male: 24, female: 2, other: 0 male: 25, female: 0, other: 0 male: 24, female: 12, other: 1 male: 21, female: 11, other: 1

Age min: 22, max: 51, mean: 34.04, md: 32.0,
sd: 8.64

min: 18, max: 47, mean: 28.44, md: 27,
sd: 6.98

min: 22, max: 72, mean: 41.7, md: 41, sd:
11.73

min: 23, max: 52, mean: 35.88, md: 36,
sd: 8.87

Country of Residence Pakistan: 4, Serbia: 4, India: 3, Vietnam:
3, Others: 12

Pakistan: 6, Bangladesh: 3, Nigeria: 2,
Turkey: 2, India: 2, Others: 10

Germany: 20, Italy: 2, USA: 4, India: 2,
Others: 9

Germany: 15, USA: 4, India: 2, Brazil: 2,
Kenya: 2, Others: 8

Highest Education Bachelor: 13, Master: 9, Others: 4 Bachelor: 17, Master: 2, Others: 6 Bachelor: 9, Master: 13, Others: 15 Bachelor: 12, Master: 4, Others: 17

ChatGPT Experience Yes: 22, No: 4 Yes: 23, No: 2 Yes: 11, No: 26 Yes: 28, No: 5

Self-rated Programming
Experience

Beginner: 0, Advanced Beginner: 0,
Intermediate: 5, Advanced: 15, Expert: 6

Beginner: 1, Advanced Beginner: 0,
Intermediate: 9, Advanced: 11, Expert: 4

No experience at all: 37 No experience at all: 33

General Programming
Experience [years]

min: 3, max: 35, mean: 13.19, md: 10.0,
sd: 8.69

min: 1, max: 25, mean: 7.72, md: 7, sd:
5.58

- -

Programming Experience in
the Job [years]

min: 2, max: 20, mean: 8.19, md: 6.0, sd:
4.78

min: 0, max: 13, mean: 4.16, md: 3, sd:
3.56

- -

of qualitative analysis is to explore a phenomenon in depth, we
additionally report how many participants mentioned approaches,
concepts, and themes to indicate their frequency and distribution.

5 ETHICS
Our project was examined and approved by the university’s institu-
tional review board (IRB). Participants received a consent form at
the beginning of the study describing the scope of the study, data
use, and retention policies. We complied with the General Data Pro-
tection Regulation (GDPR). Participants were informed that they
could withdraw their data during or after the study without facing
any negative consequences. In addition, participants were asked to
save the consent form for their use.

6 LIMITATIONS
The following study limitations need to be considered when in-
terpreting the results. First, the recruitment of non-programmers
from Clickworker lacks effective filtering mechanisms, which raises
the possibility of fraudulent participants, including programmers
posing as non-programmers. Although efforts (e.g., double verifica-
tion) have been made to detect such participants, some individuals
may still have been undetected. The correctness rates of six NP-
C participants were above 50%, indicating they might have some
programming skills, although stating otherwise. Second, for the
first seven participants in the P-NC group, the Qualtrics servers
experienced some latency issues. This resulted in participants expe-
riencing delays in displaying the images while the timer was already
running. After we noticed this issue, we stopped the study until the
latency issues were resolved by Qualtrics (fixed within 24 hours).
Luckily for us, this issue only affected P-NC participants leading
even to the underreported effectiveness of our screening questions.
Third, differences in compensation between programmers and non-
programmers could result in inequalities in motivation, potentially
influencing the study’s outcome. Fourth, since prompted groups
used ChatGPT only for a few questions and non-prompted partici-
pants did not use ChatGPT at all, we could not determine the impact
on each question. Finally, while we provide first insights into how
to challenge AI-based tools such as ChatGPT, other existing tools

Table 4: Percentages of correct answers in each group.
ID Question Name P-NC P-C NP-NC NP-C
Q9 Array 100.0% 88.0% 24.3% 42.4%
Q7 Languages 100.0% 88.0% 35.1% 39.4%
Q3 IDE 96.2% 88.0% 27.0% 39.4%
Q2 Recursive 96.2% 92.0% 16.2% 33.3%
Q8 Compiler 96.2% 100.0% 13.5% 27.3%
Q13 Tree 92.3% 84.0% 29.7% 63.6%
Q10 Stack 92.3% 92.0% 37.8% 51.5%
Q20 Detect - Loop 92.3% 96.0% 13.5% 30.3%
Q19 Detect - FunctionName 92.3% 76.0% 24.3% 18.2%
Q1 Websites 92.3% 96.0% 18.9% 24.2%
Q11 Queue 92.3% 88.0% 16.2% 21.2%
Q14 DFS 84.6% 64.0% 27.0% 39.4%
Q18 Detect - Parameter 84.6% 80.0% 2.7% 15.2%
Q5 Array Index 84.6% 64.0% 2.7% 9.1%
Q22 Backwards 84.6% 52.0% 5.4% 6.1%
Q12 Linked List 80.8% 88.0% 24.3% 24.2%
Q25 EndlessLoop 76.9% 60.0% 24.3% 24.2%
Q17 Detect - String 73.1% 64.0% 5.4% 30.3%
Q24 StringCount 73.1% 56.0% 18.9% 21.2%
Q16 Run Time 69.2% 64.0% 8.1% 12.1%
Q15 BFS 65.4% 68.0% 21.6% 12.1%
Q28 Reordering 65.4% 44.0% 2.7% 9.1%
Q23 Palindrome 57.7% 32.0% 21.6% 21.2%
Q21 Conditions 46.2% 20.0% 0.0% 12.1%
Q4 Detect - Bool 42.3% 48.0% 8.1% 24.2%
Q6 Prime 42.3% 52.0% 2.7% 12.1%
Q27 CrazyCalc 38.5% 12.0% 8.1% 9.1%
Q26 Euler Or 15.4% 12.0% 32.4% 18.2%

and screening questions not considered in this work have to be
explored by future research.

7 RESULTS
In this section, we present the evaluation of our screening questions
and participants’ strategies to solve the tasks.
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Table 5: Percentages of correct answers in eachnon-prompted
group. Pre = Preview Phase, Res = Response Phase
Topic P-NC NP-NC Time Limit
Array 100.0% 24.3% [Pre]: 7 s, [Res] 12 s
Languages 100.0% 35.1% [Pre]: 15 s, [Res] 12 s
Compiler 96.2% 13.5% [Pre]: 7 s, [Res] 12 s
Recursive 96.2% 16.2% [Pre]: 7 s, [Res] 12 s
IDE 96.2% 27.0% [Pre]: 7 s, [Res] 15 s
Detect - Loop 92.3% 13.5% [Pre]: 15 s, [Res] 12 s
Queue 92.3% 16.2% [Pre]: 7 s, [Res] 12 s
Websites 92.3% 18.9% [Pre]: 7 s, [Res] 12 s
Detect - FunctionName 92.3% 24.3% [Pre]: 15 s, [Res] 12 s
Tree 92.3% 29.7% [Pre]: 7 s, [Res] 12 s

7.1 Effectiveness of screening questions
Table 4 shows the correctness rates of every group for each of the
28 screening questions. We consider questions to be effective if
non-prompted programmers (P-NC) achieved a correctness rate
of at least 92.3% and non-programmers (NP-NC) a rate of at most
35.1%. This range included all questions that fall within the scope of
our power analysis. We chose to use stricter thresholds compared
to our power analysis to keep the number of questions required
to screen participants effectively small. Ten knowledge questions
fulfilled our requirements (see Table 5). Notably, this includes three
of the questions recommended by Danilova et al. [16] (Q1 Web-
sites, Q2 Recursive, and Q3 IDE). Our results suggested that using
ChatGPT was more difficult with visual concept questions than
with existing screening questions. Except for question Q26 (Eu-
ler Or), the programmers without ChatGPT (P-NC) were always
more successful than both groups of non-programmers with and
without ChatGPT (NP-C, NP-NC). Concerning the comprehension
questions, the probability of guessing the answer correctly is 12.5%
due to eight answer options. Most non-programmer correctness
rates varied around this value. The highest success rate of 84.6% for
comprehension questions was achieved by Array Index (Q5) and
Backwards (Q22).

To evaluate the effectiveness of our screening questions, we used
Fisher’s exact test to investigate the differences in correctness rates
between the programmer group without ChatGPT (P-NC) and both
non-programmer groups (NP-NC, NP-C). We only considered ques-
tions with correctness rates falling within the scope of our power
analysis. All p-values (<0.001) were below the significance level. We
refer to the supplementary material for additional statistics, such
as odds ratios.

7.2 Participants’ time pressure perceptions
Participants were asked if they felt time pressure. Table 6 shows how
many participants in each group felt a certain level of time pressure.
The majority of all groups felt some degree of time pressure. Non-
programmers using ChatGPT (NP-C) had the highest percentage
(63.6%) of feeling pressured. In contrast, programmers without
ChatGPT had the smallest percentage (7.7%) of high pressure, and
42.3% felt no pressure. Overall, more programmers felt no pressure
compared to non-programmers. ChatGPT’s usage increased the
time pressure for programmers and non-programmers. Except for
NP-C, about half of the participants felt less pressured. We also
asked participants how they felt about the knowledge questions

Table 6: Perceived time pressure
P-NC P-C NP-NC NP-C

Time Pressure - General
I did not feel pressured at all 42.3% 16% 21.6% 3%
I felt a little pressured 50% 52% 54.1% 33.3%
I felt very pressured 7.7% 32% 24.3% 63.6%

Time Pressure - Knowledge Questions
I did not feel pressured at all 65.4% 60% 16.2% 9.1
I felt a little pressured 19.2% 16% 51.4% 18.2
I felt somewhat pressured 15.4% 20% 18.9% 21.2
I felt very pressured - 4% 13.5% 24.2
I felt extremely pressured - - - 27.3

Time Pressure - Comprehension Questions
I did not feel pressured at all 23.1% 16% 18.9% 6.1%
I felt a little pressured 30.8% 12% 24.3% 9.1%
I felt somewhat pressured 26.9% 16% 24.3% 15.2%
I felt very pressured 15.4% 40% 29.7% 33.3%
I felt extremely pressured 3.8% 16% 2.7% 36.4%

Table 7: Participants using programming skills to solve the
questions

Number of solved questions P-NC P-C
28 (all) 96.2% 48%
21-27 0% 0%
11-20 3.8% 4%
6-10 0% 16%
1-5 0% 24%
0 0% 8%

under time pressure. The majority of programmers (65.4%) who did
not use ChatGPT stated that they did not feel pressure at all. About
one-third felt little pressure, and none of these participants felt very
high or extreme time pressure. From the other three groups, some
participants felt very high or even extreme time pressure. Thus, a
trend towards more pressure for non-programmers or when using
ChatGPT was observed. We also asked participants how they felt
about comprehension questions under time pressure. Time pressure
increased significantly for all groups. Most ChatGPT-prompted
participants felt great or extreme pressure.

7.3 Screening with Programming Skills
Table 7 shows how many participants of both programmer groups
indicated using their programming skills to solve the questions.
While almost all participants (96.2%) from the P-NC group indicated
to have used their programming skills, 48% of the programmers
prompted for ChatGPT (P-C) reported using their programming
skills to solve less than ten questions.

7.4 Screening with ChatGPT
Table 8 shows that most of the prompted programmers and non-
programmers indicated to have used ChatGPT for only 1-5 ques-
tions. 72% of participants in group P-C and 60.6% of participants
in group NP-C made fewer than five attempts to solve the screen-
ing questions using ChatGPT. The number of participants who
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Table 8: Participants using ChatGPT to solve the questions
Number of solved questions P-C NP-C
28 (all) 16% 24.2%
21-27 0% 0%
11-20 4% 3%
6-10 8% 12.1%
1-5 72% 60.6%
0 0% 0%

Table 9: Strategies used with ChatGPT
Primary Strategy P-C NP-C
General lack of time 16% 45.5%
Typewriting 20% 21.1%
Using keywords 16% 18.2%
Attempts to copy code 12% 9.1%
Information extraction 20% 3%
Answer verification 8% 0%
Advanced prompting 4% 0%
No strategy mentioned 4% 3%

attempted to answer 6-10 questions with ChatGPT decreased; simi-
larly, for 11-20 and 21-27 questions, only 16% prompted program-
mers and 24.2% prompted non-programmers attempted to solve all
questions using ChatGPT.

ChatGPT - Strategy: Participants were asked to briefly describe
their approach when using ChatGPT. We received 58 responses
from 25 prompted programmers and 33 non-programmers. An
overview of the responses can be found in Table 9. Nineteen par-
ticipants did not specify a strategy but mentioned a lack of time,
such as the inability to formulate a reasonable prompt in time.
Twelve participants reported trying to type the questions into the
ChatGPT environment for questions displayed as images. Six of
them acknowledged that there was not enough time to typewrite
the whole question. Ten participants described trying to simplify
the content of the question instead of typewriting every character.
Programmers reported describing the visuals or the concept they
recognized and asked follow-up questions. They also described
trying to understand the input and context and then transferring it
to ChatGPT. Many non-programmers noted they passed keywords
or main phrases to ChatGPT. Participants also mentioned trying
to keep the input as short as possible to save time. Six participants
indicated they planned to copy the questions, but it did not work.
Some of them noted that they either changed their strategy to type-
writing or didn’t try typewriting at all. Another six participants
attempted to use a tool to extract some information from the image.
Five of which were programmers. One participant tried to enter an
image link as input to ChatGPT. Another used a text extractor and
wanted to let ChatGPT evaluate the generated text. Participants also
mentioned using the tool Capture2Text [14] and Optical Character
Recognition (OCR) for text extraction to copy it to ChatGPT. The
non-programmers utilized OCR in combination with ChatGPT to
answer the screening questions. Two programmers stated that they
only used ChatGPT to verify their answers. One of them claimed
they trusted their programming skills instead of ChatGPT if there
was insufficient time. Another programmer also explicitly stated
that they instructed ChatGPT to give short answers (advanced

Table 10: Participants’ perceived support of ChatGPT
ChatGPT supported me P-C NP-C
Strongly disagree 56% 39.4%
Somewhat disagree - 9.1%
Neither agree nor disagree 8% 24.2%
Somewhat agree 36% 21.2%
Strongly agree - 6.1%

Table 11: Tools used to answer questions except ChatGPT
Other tools used P-NC P-C NP-NC NP-C
No Tool / ChatGPT 100% 56% 94.6% 69.7%
Google - 28% 5.4% 27.3%
Others - 16% - 3%

prompting) to speed up the process. Most non-programmers did
not know about advanced prompting (84.8%), while 44% of the
programmers used it.

ChatGPT - Strategy Switch: If participants indicated to have
switched their strategy from using ChatGPT to other options, we
asked them why they had changed it. We received 43 responses.
Most participants (32) switched due to a lack of time. Twelve par-
ticipants said they could not transfer the questions to ChatGPT in
time. One participant noted that it took too long to wait for the
answer from ChatGPT. Two programmers pointed out that OCR
tools could not properly extract the information from images and
that there was not enough time for syntax correction, which led
to ChatGPT being unable to answer. Eleven participants switched
strategies because they could not copy-paste the question text since
it was displayed as an image. Two non-programmers changed their
approach because the ChatGPT answers confused them, and two
programmers stated that some of the questions were easy enough
to solve with their programming skills.

ChatGPT - Support: The level of perceived support ChatGPT
provided in answering the screening questions is shown in Table 10.
More than half of the programmers indicated that ChatGPT did not
assist well, while 36% considered ChatGPT somewhat useful. 27.3%
of the non-programmers considered ChatGPT at least somewhat
helpful in answering the screening questions, while 48.5% did not
perceive ChatGPT as useful.

7.5 Screening with other tools
Table 11 shows which tools other than ChatGPT were used to solve
the tasks. Groups not prompted to use ChatGPT often indicated
not using tools to solve the screeners. Over half of the participants
who used ChatGPT did not use other tools. Still, almost a third of
them also used Google as the most popular alternative besides Bing
AI [29], PowerToys [27], an IDE, and other OCR tools or plugins.
Eighteen participants using Google indicated to have searched for
key concepts related to the questions or contextual information.
Some participants mentioned time constraints or lack of speed as
reasons for relying more on Google than ChatGPT. Only a few non-
programmers (5.4%) reported to have used Google. However, these
participants had a high rate of incorrect responses (on average, 25
of 28 questions were answered incorrectly), suggesting that Google
was not an effective tool. One of the two participants using Bing
AI said that Bing AI was faster than ChatGPT.
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8 DISCUSSION AND RECOMMENDATIONS
Our results suggested that many prompted programmers and non-
programmers gave up using ChatGPT after five screening ques-
tions. A possible explanation for the limited use of ChatGPT is
that most participants did not perceive it as valuable support. A
large proportion of both programmers (56%) and non-programmers
(39.4%) strongly disagreed with the statement that ChatGPT was
helpful. Only a small percentage of programmers (36%) and non-
programmers (27.3%) found ChatGPT to be at least somewhat help-
ful. Of the 27.3% non-programmers who attempted to answer all
questions with ChatGPT, only five of the 28 tested questions were
answered correctly on average. Many participants mentioned try-
ing to copy and paste the questions as a strategy to find the correct
answer. However, this was not possible since our questions con-
sisted of code screenshots or visual images. Participants tried to
typewrite the questions or transfer keywords to ChatGPT. However,
a lack of time was mentioned, especially while transferring infor-
mation. Comparing the overall time pressure of programmers with
and without ChatGPT for our knowledge questions, the groups
that (at least partially) used ChatGPT felt more pressured. Using
ChatGPT resulted in an even more considerable time pressure in-
crease for non-programmers than programmers. We assume that
considering a suitable strategy while transmitting the information
to ChatGPT caused a lot of pressure. This effect may be even more
vital for non-programmers because they were less experienced with
ChatGPT. However, both groups, P-C and NP-C, behaved very sim-
ilarly in terms of perceived support of ChatGPT, the number of
questions attempted with ChatGPT, and the usage of other tools,
suggesting that the difference in familiarity with ChatGPT did not
affect the performance when trying to solve the screening ques-
tions. Overall, most programmers switched to their programming
skills, while non-programmers resorted to guessing to solve the
screening questions.

8.1 Six ChatGPT-resistant Screening Questions
Based on our results, we recommend six screening questions (see Ta-
ble 12) fulfilling the correctness threshold of 92.3% for programmers
(P-NC) and 33.3% for non-programmers from our attack scenario.
We opted for stricter thresholds compared to our power analysis
to minimize the questions required to screen participants effec-
tively. Thus, we excluded Q3 and Q7 since they would require more
questions for screening, reduce the number of non-programmers re-
jected, or reduce the number of programmers included. Setting less
strict thresholds would come at the cost of either effectiveness or ef-
ficiency. We refer to the NP-C group since non-programmers using
ChatGPT almost always performed better than those not prompted
for ChatGPT (NP-NC). All recommended screening questions are
knowledge questions, visualizing well-known programming con-
cepts. These questions performed well even with short time limits,
and most programmers felt no time pressure while answering them.
Some of the recommended questions (e.g., Q8 Compiler) do not
contain any text, making it challenging to formulate a meaningful
prompt to send to ChatGPT. Other questions (e.g., Q19 Detect -
FunctionName) included too much code to be typed. We tested
the ChatGPT plugin ChatOCR to extract any text from the image,

Table 12: Six recommended ChatGPT-resistant screening
questions for programming skills. Pre = Preview Phase, Res
= Response Phase
Topic P-NC NP-C Time Limit
Compiler 96.2% 27.3% [Pre]: 7 s, [Res]: 12 s
Recursive 96.2% 33.3% [Pre]: 7 s, [Res]: 12 s
Detect - FunctionName 92.3% 18.2% [Pre]: 15 s, [Res]: 12 s
Queue 92.3% 21.2% [Pre]: 7 s, [Res]: 12 s
Websites 92.3% 24.2% [Pre]: 7 s, [Res]: 12 s
Detect - Loop 92.3% 30.3% [Pre]: 15 s, [Res]: 12 s

which we could use as a prompt for ChatGPT. However, the ex-
traction process took much longer than the time limit, and the text
output was syntactically incorrect. This resulted in ChatGPT be-
ing unable to provide an answer. While knowledge questions may
not necessarily require programming skills, unlike comprehension
questions, they can be used to screen participants for programming
studies effectively. We suggest extending the pool of knowledge
questions by visualizing other well-known concepts.

Similar to previous findings [16], comprehension questions were
ineffective in identifying non-programmers. In addition, program-
mers felt much more time pressure compared to knowledge ques-
tions. The original prime question [16] might have performed well
since computer science students were recruited as participants who
are more familiar with such concepts. Our results suggested that
this question might be less effective beyond the university context.
For future studies, we suggest testing more comprehension ques-
tions for which ChatGPT likely provides the wrong answer. This
would allow for increasing the time limit and remove any need
for code bloating, which might have put too much time pressure
on programmers. However, this might result in a longer screening
time.

8.2 Setup of the screening instrument
Based on researchers’ requirements, the six recommended questions
can be used with different levels for including programmers and
excluding non-programmers. For the following setups, we average
the correctness rates of the six recommended questions consider-
ing programmers (P-NC) and non-programmers (NP-C). Table 13
illustrates the inclusion of programmers and the exclusion of non-
programmers in the study. The first column specifies the minimum
number of questions that must be answered correctly out of the total
number of questions asked. The number of questions in a screening
instrument and the accuracy of the answers required depends on
the goal of participant recruitment. If recruiting programmers is
challenging, the screening goal may be to include as many pro-
grammers as possible while allowing more non-programmers.

If at least four out of six questions are answered correctly, it is
possible to include 99.55% of programmers while excluding 95.83%
of non-programmers. The difference between the two groups would
also be greatest in this case. The included non-programmers might
be identified by using additional measures. Another objective might
be to minimize the inclusion of non-programmers in the study,
even if it excludes a higher number of programmers. Increasing the
number of consecutive questions makes it increasingly difficult for
non-programmers to provide correct answers consistently. With
five correct questions out of six, 99.4% of the non-programmers can
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be excluded, while 94.83% of the programmers are still included.
Asking all six questions without breaks would take, at most, 130
seconds.

While Danilova et al. [17] designed their screening questions
to be used in online survey studies specifically, we recommend
deploying a screening procedure in all studies where there is a lack
of direct interaction between participants and researchers.

8.3 OCR-Protection
After this study was performed, ChatGPT-4 was released on Septem-
ber 24th 2023 [33], offering image processing by advancing beyond
the OCR features of the Link Reader plugin. This improvement
allows it to accurately and swiftly decode text and programming
code from images, a task at which the Link Reader was less profi-
cient. However, using the GPT-4 model is tied to a paid monthly
subscription and a limit of 40 messages every three hours.

In the knowledge question preview phase, the six recom-
mended screening questions remain effective for identifying non-
programmers, as they have limited time to capture and submit
screenshots. Leaving out the question-and-answer choices from
these screenshots often leads to verbose or incorrect responses
from ChatGPT. For instance, in the case of Q11 Queue, omitting the
answer options leads ChatGPT to misinterpret a queue as a stack,
thus not benefiting attackers in answering knowledge questions
correctly during the preview phase and potentially misleading them.
Ambiguity in visual concepts might plead to incorrect responses
from ChatGPT in the preview phase. Therefore, non-programmers
would require the response phase to capture all necessary infor-
mation to answer the knowledge question accurately and quickly.
However, the cumulative time for taking a screenshot, saving it,
uploading it to ChatGPT, waiting for its response, locating the an-
swer in the output, and then finding the correct response option
in the screening process is likely to exceed the time limit of the
response phase. Also for the comprehension questions, users must
submit detailed screenshots encompassing the image, question, and
answer options to get accurate responses from ChatGPT. ChatGPT
typically provides correct answers but tends to include extensive
explanations, requiring users to either sift through the text for the
correct answer or use specific prompts for succinct responses. Thus,
we also expect our recommended comprehension questions to be
effective within the suggested time frames. Since December 1st
2023, GPT-4 only analyzes the first frame of a GIF [34]. Displaying
a static image as a GIF while leaving the first frame empty results
in ChatGPT being unable to detect its content. To prevent a non-
programmer from taking a screenshot of the later frames, the GIF
could be designed in a way that each frame only includes partial
information about the displayed concept, question, or response
options, making it impossible to transfer the image to ChatGPT.
Still, more research is needed to explore the effectiveness of the
screeners for the paid version of ChatGPT.

As ChatGPT and other large language models (LLMs) evolve,
future research might focus on methods to deliberately mislead AI
into extracting incorrect information and providing wrong or no
answers to non-programmers. One promising method is perturba-
tion, a technique that subtly alters images. While humans can still
understand them, AI might misread words or characters or interpret

Table 13: No. of questions for including programmers and
excluding non-programmers for different screening setups

Correct/Total P-NC NP-C Difference
2/2: 87.61% 6.63% 80.89%
3/3: 82.00% 1.71% 80.29%
3/4: 97.75% 5.51% 92.24%
4/4: 76.75% 0.44% 76.31%
4/5: 96.40% 1.75% 94.65%
5/5: 71.84% 0.11% 71.73%
4/6: 99.55% 4.17% 95.38%
5/6: 94.83% 0.53% 94.30%
6/6: 67.24% 0.03% 67.21%

them as opposites, thus distorting the question [10, 46]. This tech-
nique might obscure programming code, question text, and answer
options. To counteract an LLM’s improved ability to interpret visual
concepts in knowledge questions, a similar approach could be used.
Instead of editing existing text in an image, additional information
could be embedded in an image invisible to humans but detectable
by an AI. This additional information could distract the AI from the
correct answer, overwhelm it with irrelevant content, or overwrite
the associated prompt, changing the AI’s behavior. While some
research exists (e.g., [6]), these approaches were not extensively
tested with GPT-4 but applied to models with similar capabilities.
Future research might also consider other LLMs.

9 CONCLUSION
In software engineering and IT security studies with professional
programmers, it is essential to filter out participants without pro-
gramming skills to improve the validity of the study results. While
online platforms provide a convenient way of recruiting program-
mers, researchers should not rely on self-reported programming
skills [24, 48]. While screening questions for developer studies exist,
they could be easily solved using ChatGPT. Thus, we developed
ChatGPT-resistant screening questions consisting of visualizations
of well-known programming concepts. These illustrations are easily
recognized by participants with programming skills, while partic-
ipants without programming skills struggled using ChatGPT to
answer the screening questions correctly. In addition, most par-
ticipants prompted to use ChatGPT felt pressured and quickly
switched to other strategies for solving the tasks. We recommended
six screening questions for identifying non-programmers while
being ChatGPT-resistant. We discussed their effective setup as a
screening instrument. For future studies on screening questions for
developer studies, we suggest further investigating visual concepts,
as these seem to perform well. While this study was conducted
only a few months after the introduction of ChatGPT, we expect
the popularity and usage of AI-based tools to increase in the future.
Therefore, we call for more research on the implications of such
tools.
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