How to Meet Ternary LWE Keys

Alexander May

Ruhr-University Bochum, Germany

Скурто 2021

What are Ternary Keys?

Definition: Ternary LWE problem

 $\begin{array}{ll} \mbox{Given:} & A \in \mathbb{Z}_q^{n \times n}, \, \mathbf{b} \in \mathbb{Z}_q^n \, \mbox{such that} \, A\mathbf{s} = \mathbf{b} + \mathbf{e} \mbox{ for } \mathbf{s}, \mathbf{e} \in \{0, \pm 1\}^n \\ \mbox{Find:} & \mathbf{s} \in \{0, \pm 1\}^n \end{array}$

- Many efficient cryptosystems use secrets with bounded range.
- In this talk: NTRU versions, more in the paper: BLISS, GLP.
- For the moment, assume that \mathbf{s}, \mathbf{e} are random in $\{0, \pm 1\}^n$.
- Results apply also to larger (fixed) range like $\{0, \pm 1, \pm 2\}^n$.
- Variants as Ring-LWE, Module-LWE only make results better.

Elementary question

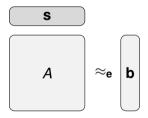
What is the combinatorial complexity of finding s? (Meet-in-the-Middle)

Brute-Force Algorithm

Equation: $As = b + e \mod q$.

Algorithm Brute-Force

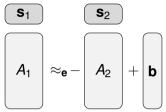
INPUT: $A \in \mathbb{Z}_q^{n \times n}$, $\mathbf{b} \in \mathbb{Z}_q^n$



- Let $S = 3^n$ denote the search space size for ternary keys.
- Running time is T = S with polynomial memory.

Meet-in-the-Middle Algorithm (Odlyzko '97)

Equation: A_1 **s**₁ = $-A_2$ **s**₂ + **b** + **e** mod q, where $A = (A_1|A_2)$.



Algorithm Meet-in-the-Middle

$$\mathsf{INPUT:} \ \boldsymbol{A} = (\boldsymbol{A}_1 | \boldsymbol{A}_2) \in \mathbb{Z}_q^{n \times n}, \ \mathbf{b} \in \mathbb{Z}_q^n$$

• For all $\mathbf{s}_1 \in \{0, \pm 1\}^{n/2}$: Construct L_1 with entries $(\mathbf{s}_1, h(A_1\mathbf{s}_1))$.

2 For all
$$\mathbf{s}_2 \in \{0, \pm 1\}^{n/2}$$
: Construct L_2 with $(\mathbf{s}_2, h(-A_2\mathbf{s}_2 + \mathbf{b}))$.

3 Output $(\mathbf{s}_1 || \mathbf{s}_2)$ with $h(A_1 \mathbf{s}_1) = h(-A_2 \mathbf{s}_2 + \mathbf{b})$.

 \triangleright *h* is an LSH.

• Running time is $T = 3^{n/2} = S^{1/2}$ with same memory.

Representations (Howgrave-Graham, Joux 2010) Idea: Write $\mathbf{s} = \mathbf{s}_1 + \mathbf{s}_2$ with $\mathbf{s}_1, \mathbf{s}_2 \in \{0, \pm 1\}^n$.

$$(1, 0, -1, 1, -1) = (1, 0, -1, 0, 0) + (0, 0, 0, 1, -1)$$
$$= (1, 0, 0, 0, -1) + (0, 0, -1, 1, 0)$$
$$= (0, 0, 0, 1, -1) + (1, 0, -1, 0, 0)$$
$$= (0, 0, -1, 1, 0) + (1, 0, 0, 0, -1)$$

- REP-0: Represent 1 = 1 + 0 = 0 + 1, -1 = (-1) + 0 = 0 + (-1).
- REP-1: Additionally represent 0 = 1 + (-1) = (-1) + 1. Example

$$(1, 0, -1, 1, -1) = (1, 1, -1, 0, 0) + (0, -1, 0, 1, -1)$$

• REP-2: Also using 2's. Example

$$(1, 0, -1, 1, -1) = (2, 1, -1, 0, 0) + (-1, -1, 0, 1, -1)$$

Benefit of Representations

For *R* representations, compute only 1/R-fraction of *S*.

Related Problems – Subset Sum

Subset Sum Problem: $a_1, \ldots, a_n, t \in \mathbb{Z}_{2^n}$

- $T = 2^n$ with Brute-Force.
- $T = 2^{n/2}$ with Meet-in-the-Middle
- $T = 2^{0.337n}$ with REP-0
- $T = 2^{0.291n}$ with REP-1
- $T = 2^{0.283n}$ with REP-2

(Horowitz, Sahni '74)

(Howgrave-Graham, Joux, EC'10)

(Becker, Coron, Joux, EC'11)

(Bonnetain, Bricout, Schrottenloher, Shen, AC'20)

Related Problems – Decoding

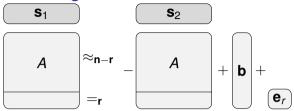
Syndrome Decoding algorithms: Subset sum over \mathbb{F}_2^n

- Prange ('62): Brute-Force
- Stern, Dumer ('89, '91), Ball Collision (Crypto '11): Meet-in-the-Middle
- May-Meurer-Thomae (Asiacrypt '11): REP-0
- Becker-Joux-May-Meurer (Eurocrypt '12) : REP-1

Technical caveats

- Ternary LWE is not exact, but approximate matching (error **e**).
- Odlyzko's locality sensitive hashing is not homomorphic.

High-Level Idea of Our Algorithm



Algorithm MEET-LWE

INPUT: $A \in \mathbb{Z}_q^{n \times n}$, $\mathbf{b} \in \mathbb{Z}_q^n$

- Choose representation REP-0,1,2.
- Guess r coordinates of e, denoted e_r.
 - For all \mathbf{s}_1 : Construct L_1 with entries $(\mathbf{s}_1, A\mathbf{s}_1)$.
 - **2** For all \mathbf{s}_2 : Construct L_2 with entries $(\mathbf{s}_2, -A\mathbf{s}_2 + \mathbf{b})$.
 - Output $\mathbf{s}_1 + \mathbf{s}_2$ s.t. $\begin{cases} A\mathbf{s}_1 = -A\mathbf{s}_2 + \mathbf{b} + \mathbf{e}_r & \text{on } r \text{ coordinates} \\ h(A\mathbf{s}_1) = h(-A\mathbf{s}_2 + \mathbf{b}) & \text{on } n r \text{ coords} \end{cases}$

On the Choice of r

Run Time

MEET-LWE runs in time $T = 3^r \cdot T$ (List construction).

Representation technique: Have to construct 1/R-fraction.

- Right choice: $q^r = R$.
- **2** For REP-0,1,2 we have $R = 2^{\mathcal{O}(n)}$.
- In LWE we choose q = poly(n).

This implies

$$r = \log_q R = \frac{\log_2 R}{\log_2 q} = \mathcal{O}\left(\frac{n}{\log n}\right).$$

Asymptotics

MEET-LWE asymptotically runs in time T = T(List construction).

Asymptotical results

Definition weight

A key $\mathbf{s} \in \{\mathbf{0}, \pm 1\}^n$ has weight ω if \mathbf{s} has ωn non-zero coefficients.

ω	0.12	0.38	0.50	0.62	0.67
Т	$\mathcal{S}^{0.30}$	$\mathcal{S}^{0.24}$	$\mathcal{S}^{0.23}$	$\mathcal{S}^{0.23}$	$\mathcal{S}^{0.23}$

Theorem

For $\omega \in [\frac{3}{8}, \frac{2}{3}]$, MEET-LWE achieves asymptotic complexity

$$T=\mathcal{S}^{\frac{1}{4}}.$$

But: Also memory requirement $M = S^{\frac{1}{4}}$.

Odlyzkos Meet-in-the-Middle: $T = M = S^{\frac{1}{2}}$.

Asymptotics go practice.

NTRU	(n, q, w)	ω	${\cal S}$ [bit]	Our [bit]	Lattice [bit]
IEEE-2008	(659, 2048, 76)	0.12	408	146	151
	(761, 2048, 84)	0.11	457	166	176
	(1087, 2048, 126)	0.12	680	243	260
	(1499, 2048, 158)	0.11	877	315	358
NIST-2021	(677, 2048, 254)	0.38	891	273	167
	(509, 2048, 254)	0.50	754	227	124
	(821, 4096, 510)	0.62	1286	378	197
	(701, 8192, 468)	0.67	1101	327	155

• Practical complexity: $S^{0.35}$ for IEEE-2008, $S^{0.30}$ for NIST-2021.

Observation

Hardness comes from: dimension for lattices, weight for enumeration.

Conclusions and Questions

Conclusion:

- We improve Ternary LWE Meet-in-the-Middle from $S^{\frac{1}{2}}$ to $S^{\frac{1}{4}}$. Quantum version: $S^{\frac{1}{5}}$ (van Hoof, Kirshanova, May, PQC '21)
- Improves upon lattice estimates in the small weight regime.
- Potential application: Side-channel attacks.
- More generalizations in the paper:
 - Time-memory tradeoffs using Parallel Collision Search,
 - BLISS example $\mathbf{s} \in \{\mathbf{0}, \pm \mathbf{1}, \pm \mathbf{2}\}^n$ with $\mathcal{S}^{\frac{1}{5}}$.

Open problems:

- Generalize to **s** of arbitrary max-norm.
- Close gap between asymptotics and practical parameters?
- Hybrid of our combinatorial algorithm and lattice reduction?