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What are Ternary Keys?

Definition: Ternary LWE problem
Given: A ∈ Zn×n

q , b ∈ Zn
q such that As = b + e for s,e ∈ {0,±1}n

Find : s ∈ {0,±1}n

Many efficient cryptosystems use secrets with bounded range.
In this talk: NTRU versions, more in the paper: BLISS, GLP.
For the moment, assume that s,e are random in {0,±1}n.
Results apply also to larger (fixed) range like {0,±1,±2}n.
Variants as Ring-LWE, Module-LWE only make results better.

Elementary question
What is the combinatorial complexity of finding s? (Meet-in-the-Middle)
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Brute-Force Algorithm
Equation: As = b + e mod q.

Algorithm Brute-Force

INPUT: A ∈ Zn×n
q , b ∈ Zn

q

1 For all s ∈ {0,±1}n:
1 If As− b ∈ {0,±1}n then output s.

s

A ≈e b

Let S = 3n denote the search space size for ternary keys.
Running time is T = S with polynomial memory.
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Meet-in-the-Middle Algorithm (Odlyzko ’97)
Equation: A1s1 = −A2s2 + b + e mod q, where A = (A1|A2).

s1 s2

A1 A2 b≈e− +

Algorithm Meet-in-the-Middle

INPUT: A = (A1|A2) ∈ Zn×n
q , b ∈ Zn

q

1 For all s1 ∈ {0,±1}n/2: Construct L1 with entries (s1,h(A1s1)).
2 For all s2 ∈ {0,±1}n/2: Construct L2 with (s2,h(−A2s2 + b)).
3 Output (s1||s2) with h(A1s1) = h(−A2s2 + b). . h is an LSH.

Running time is T = 3n/2 = S1/2 with same memory.
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Representations (Howgrave-Graham, Joux 2010)
Idea: Write s = s1 + s2 with s1,s2 ∈ {0,±1}n.

(1,0,−1,1,−1) = (1,0,−1,0,0) + (0,0,0,1,−1)
= (1,0,0,0,−1) + (0,0,−1,1,0)
= (0,0,0,1,−1) + (1,0,−1,0,0)
= (0,0,−1,1,0) + (1,0,0,0,−1)

REP-0: Represent 1 = 1 + 0 = 0 + 1, −1 = (−1) + 0 = 0 + (−1).
REP-1: Additionally represent 0 = 1 + (−1) = (−1) + 1. Example

(1,0,−1,1,−1) = (1,1,−1,0,0) + (0,−1,0,1,−1)

REP-2: Also using 2’s. Example

(1,0,−1,1,−1) = (2,1,−1,0,0) + (−1,−1,0,1,−1)

Benefit of Representations
For R representations, compute only 1/R-fraction of S.
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Related Problems – Subset Sum

Subset Sum Problem: a1, . . . ,an, t ∈ Z2n

T = 2n with Brute-Force.
T = 2n/2 with Meet-in-the-Middle (Horowitz, Sahni ’74)
T = 20.337n with REP-0 (Howgrave-Graham, Joux, EC’10)
T = 20.291n with REP-1 (Becker, Coron, Joux, EC’11)
T = 20.283n with REP-2 (Bonnetain, Bricout, Schrottenloher, Shen , AC’20)
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Related Problems – Decoding

Syndrome Decoding algorithms: Subset sum over Fn
2

Prange (’62): Brute-Force
Stern, Dumer (’89, ’91), Ball Collision (Crypto ’11): Meet-in-the-Middle
May-Meurer-Thomae (Asiacrypt ’11): REP-0
Becker-Joux-May-Meurer (Eurocrypt ’12) : REP-1

Technical caveats
1 Ternary LWE is not exact, but approximate matching (error e).
2 Odlyzko’s locality sensitive hashing is not homomorphic.
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High-Level Idea of Our Algorithm
s1 s2

A A b

er

≈n−r

=r

− + +

Algorithm MEET-LWE

INPUT: A ∈ Zn×n
q , b ∈ Zn

q

1 Choose representation REP-0,1,2.
2 Guess r coordinates of e, denoted er .

1 For all s1: Construct L1 with entries (s1,As1).
2 For all s2: Construct L2 with entries (s2,−As2 + b).

3 Output s1 + s2 s.t.

{
As1 = −As2 + b + er on r coordinates
h(As1) = h(−As2 + b) on n − r coords

.
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On the Choice of r

Run Time
MEET-LWE runs in time T = 3r · T (List construction).

Representation technique: Have to construct 1/R-fraction.
1 Right choice: qr = R.
2 For REP-0,1,2 we have R = 2O(n).
3 In LWE we choose q = poly(n).

This implies

r = logq R =
log2 R
log2 q

= O
(

n
log n

)
.

Asymptotics
MEET-LWE asymptotically runs in time T = T (List construction).
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Asymptotical results

Definition weight
A key s ∈ {0,±1}n has weight ω if s has ωn non-zero coefficients.

ω 0.12 0.38 0.50 0.62 0.67

T S0.30 S0.24 S0.23 S0.23 S0.23

Theorem
For ω ∈ [3

8 ,
2
3 ], MEET-LWE achieves asymptotic complexity

T = S
1
4 .

But: Also memory requirement M = S
1
4 .

Odlyzkos Meet-in-the-Middle: T = M = S
1
2 .
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Asymptotics go practice.
NTRU (n,q,w) ω S [bit] Our [bit] Lattice [bit]

IEEE-2008 (659,2048,76) 0.12 408 146 151
(761,2048,84) 0.11 457 166 176

(1087,2048,126) 0.12 680 243 260
(1499,2048,158) 0.11 877 315 358

NIST-2021 (677,2048,254) 0.38 891 273 167
(509,2048,254) 0.50 754 227 124
(821,4096,510) 0.62 1286 378 197
(701,8192,468) 0.67 1101 327 155

Practical complexity: S0.35 for IEEE-2008, S0.30 for NIST-2021.

Observation
Hardness comes from: dimension for lattices, weight for enumeration.
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Conclusions and Questions

Conclusion:
We improve Ternary LWE Meet-in-the-Middle from S

1
2 to S

1
4 .

Quantum version: S
1
5 (van Hoof, Kirshanova, May, PQC ’21)

Improves upon lattice estimates in the small weight regime.
Potential application: Side-channel attacks.
More generalizations in the paper:

I Time-memory tradeoffs using Parallel Collision Search,
I BLISS example s ∈ {0,±1,±2}n with S 1

5 .

Open problems:
Generalize to s of arbitrary max-norm.
Close gap between asymptotics and practical parameters?
Hybrid of our combinatorial algorithm and lattice reduction?
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