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Why Public-Key Algorithms?

Traditional tool for data security: Private-key (or

symmetric) cryptography

Main applications:

• Encryption

• Message Authentication

Traditional shortcomings:

1. Key distribution, especially with large, dynamic user

population (Internet)

2. How to assure sender authenticity and non-repudiation?

Solution: Public-key schemes, e.g., Di�e-Hellman key

exchange or digital signatures.
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Practical Public-Key Algorithms

There are three families of PK algorithms of practical

relevance:

Integer Factorization Schemes

Exp: RSA, Rabin, etc.

required operand length: 1024{2048 bits

arithmetic type: Integer ring Zm

Discrete Logarithm Schemes

Exp: Di�e-Hellman, DSA, ElGamal, etc.

required operand length: 1024{2048 bits

arithmetic type: Finite �eld

Elliptic Curve Schemes

Exp: EC Di�e-Hellman, ECDSA, etc.

required operand length: 160{256 bits

arithmetic type: Finite �eld
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Practical Aspects of PK Algorithms

Major problem in practice: All PK algorithms are rel-

atively slow.

Observation: Algorithm speed is heavily dependent on

arithmetic performance in HW and SW:

fast arithmetic ⇒ fast PK algorithm

⇒ Interdisciplinary Research area (Computer Science,

Electrical Engineering, Mathematics):

E�cient �nite �eld arithmetic for discrete logarithm (DL)

and elliptic curve cryptosystems (ECC)
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Platform Options

ASIC Intel, RISC embedded uP

hardware software

classical constrainedgeneral
proc. environm.

finite field arithmetic

FPGA

reconfig.

(DSP, smart card,...)

Arithmetic performance and area/cost greatly depends

on:

1. Platform

2. Finite �eld type

with strong interaction:

platform choice ⇔ �nite �eld type
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Prime Fields GF (p)

General remarks:

• preferred for DL systems

• also popular for ECC

• addition is cheap

• inversion is much slower than multiplication

⇒ use of projective coord. for ECC

• \Remaining" problem: E�cient multiplication al-

gorithms

Problem de�nition: Multiplication with long numbers

(160{2048 bits) on processors with short word length

(8{64 bits).
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General Prime Fields GF (p): Software

Exp: A,B ∈ GF(p), p < 21024, word size w = 16 bit

element representation:

A = a632
63·16+ · · ·+ a12

16+ a0 , ai ∈ {0,1, . . . ,216 − 1}
B = b632

63·16+ · · ·+ b12
16+ b0 , bi ∈ {0,1, . . . ,216 − 1}

1. Step: Multi-precision Multiplication

C ′ = A · B = c′1262
126·16+ · · ·+ c′12

16+ c′0

where

c′0 = a0b0

c′1 = a0b1+ a1b0+ carry
...

Complexity: (n/w)2 inner products (integer mult), where

n = dlog2 pe.

Rem: Quadratic complexity can be reduced to (n/w)1.58

using Karatsuba algorithm.

Further reading: [Menezes/van Oorschot/Vanstone 97]
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General Prime Fields GF (p): Software

2. Step: Modular reduction

C ≡ A · B mod p ≡ C ′ mod p

1. (na��ve) approach: long division of C ′ by p

2. (better) approach: fast modulo reduction techniques

which avoid division:

2.1. Montgomery

2.2. Barrett

2.3. Sedlack

2.4. . . . (see, e.g., [Naccache/M'Ra��hi 96])

Complexity: ≈ (n/w)2 inner products + precomputa-

tions

Rem: Multi-precision mult (Step 1) and modular reduc-

tion (Step 2) can be interleaved.

further reading for Montgomery in SW: [Ko�c et al. 96]
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General Prime Fields GF (p): Hardware

recall: n = dlog2 pe

Idea: Compute n inner products in parallel

Best studied architecture: Montgomery multiplication

Input: A, B, where A=
∑n+2

i=0 ai2
i, B =

∑n+1
i=0 bi2

i

Output: A ·B mod N

1. R0 = 0

2. for i= 0 to n+ 2 do

3. qi = Ri(0)

4. Ri+1 = (Ri+ ai · B+ qi ·N)/2 (?)

time complexity (radix 2): ≈ n clock cycles

time complexity (radix r): ≈ n/r clock cycles

area complexity: k · n gates, k constant

Rem: (?) is performance critical operation

ECC '99 WPI



General Prime Fields GF (p): Hardware

Remarks

1. is O(n) times faster than software

2. modular reduction is reduced to addition of long

numbers:

Ri+1 = (Ri+ ai ·B+ qi ·N)/2

3. ⇒ use systolic array or redundant representation to

avoid long carry chains

4. further reading:

[Eldridge/Walter 93] for general HW,

[Blum 99] for FPGA
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Mersenne Prime Fields GF (2n − 1)
Idea: Reduce modular reduction to addition.

Central relation: 2n ≡ 1 mod p

Algorithm: let A,B ∈ GF(2n − 1)

A · B = ch2
n+ cl where ch, cl ≤ 2n − 1

A · B ≡ ch+ cl mod p

Complexity: Modular reduction requires 1 add (as op-

posed to (n/w)2 mult in the case of general primes).

Remarks:

• Modular mult complexity is ≈ (n/w)2 inner products

• Roughly twice as fast as mult with general prime.

• GF(2n − c), c small, was proposed for ECC in

[Crandall 92]
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Generalized Mersenne Prime Fields

see [NIST 99]

Idea: Generalize modulo reduction \trick" from 2n − 1

to primes

p= 2nlw ± 2nl−1w ± · · · ± 2n1w ± 1

where nl > nl−1 > · · · > n1 > 0

and w = 2i, often i= 16,32,64.

Let A,B ∈ GF(p), and write A ·B as:

A ·B = c2nl−12
(2nl−1)w + c2nl−22

(2nl−2)w + · · ·+ c12
w + c0

Coe�cients ci2iw, i > nl, can be reduced recursively:

2nlw ≡ ∓2nl−1w ∓ · · · ∓ 2n1w ∓ 1 mod p

For instance:

2(2nl−1)w ≡ ∓2(nl+nl−1−1)w ∓ · · · ∓ 2(nl+n1−1)w ∓ 1 mod p
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Gener. Mersenne Primes: Example

p = 2192 − 264 − 1 = 23·64 − 264 − 1 , w = 64

A ·B = c52
320+ c42

256+ c32
192+ c22

128+ c12
64+ c0

Reduction equations:

2320 ≡ 2192 + 2128 modp
2256 ≡ 2128 + 264 modp
2192 ≡ 264 + 1 modp

A ·B ≡ c42
256+ [c5+ c3]2

192+ [c5+ c2]2
128+ c12

64

+c0 mod p

A ·B ≡ [c5+ c3]2
192+ [c5+ c4+ c2]2

128+ [c4+ c1]2
64

+c0 mod p

A ·B ≡ [c5+ c4+ c2]2
128+ [c5+ c4+ c3+ c1]2

64

+[c5+ c3+ c0] mod p

• Reduction requires no multiplication

• Modular mult complexity is ≈ (n/w)2 inner products

• Roughly twice as fast as mult with general primes

• Speci�c primes are recommended by NIST for ECC
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Extension Fields GF (2m)

• applicable to DL and ECC

• extremely well studied (compared to other charac-

teristics) since 1960s due to applications in coding

• choice of char = 2 was traditionally driven by hard-

ware implementations

• arithmetic is greatly in
uenced by choice of basis

• bases proposed for applications:

1. standard (or polynomial) basis

2. normal basis

3. other (dual basis, triangular basis, . . .)

here: focus on polynomial basis.
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GF (2m) Multiplication in Hardware

• active research area, many proposed architectures

• classi�cation according to time-area trade-o�

arch. type m #clocks #gates Remarks
(time) (area)

bit parallel any 1 O(m2) often \too big"
digit serial any m/D O(mD) D < m
hybrid D|m m/D O(mD) D < m
bit serial any m O(m) classical arch.
super serial any ms O(m/s) new, mainly

for FPGA [O/P 99]

main relevance for cryptography: bit serial, digit serial,

and hybrid multipliers
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Bit Serial Multiplication

Standard basis GF multiplication:

A ·B = (am−1x
m−1+ · · · a1x+ a0)

(bm−1x
m−1+ · · · b1x+ b0) mod P(x)

where ai, bi ∈ GF(2).

Often: P(x) is trinomial or pentanomial

Two traditional architectures

• least signi�cant bit-�rst (LSB) multiplier

• most signi�cant bit-�rst (MSB) multiplier

(see, e.g., [Beth/Gollmann 89])
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Least Signi�cant Bit-First Architecture

A · B = a0B(x)

+ a1[xB(x) mod P(x)]

+ · · ·
+ am−1[x(x

m−2B(x)) mod P(x)]

Architecture if P(x) is trinomial:

c m-10c 1c ct m-2c

0b b1 bt m-2b m-1b

2a0a a1, ,

In every clock cycle compute:

1. mult by x and mod red.: x× (xi−1B(x)) mod P(x)

2. scalar mult by ai and add: + ai × [xiB(x)]

time complexity: m clock cycles

area complexity: cm gates, c small
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Hybrid Multipliers

• work for composite �elds GF((2n)m) (see [P/S 97])

• ⇒ total extension degree (nm) can't be prime

• trades space for speed (faster but larger than LSB)

• least signi�cant and most signi�cant architectures

are possible

• architectures analogous to bit serial mult (LSB,

MSB)

• fundamental idea: process n sub�eld bits in parallel

Recall: Element representation in binary �elds A ∈ GF(2nm)

A(x) = anm−1x
nm−1+ · · ·+ a1x+ a0 , ai ∈ GF(2)

Element representation in composite �elds A ∈ GF((2n)m)

A(x) = am−1x
m−1+ · · ·+ a1x+ a0 , ai ∈ GF(2n)
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A · B = a0B(x)

+ a1[xB(x) mod P(x)]

+ · · ·
+ am−1[x(x

m−2B(x)) mod P(x)]

Architecture if P(x) is trinomial:

a1a0

0c

0p

n

0 1 tb b b

c1 ct

m-1b

cm-1

,

tp

n
n

n

n

n

n

- gate costs occur in GF(2n) bit parallel multipliers

- area compl.: ≈ mn2 AND + ≈ mn2 XOR

- time compl.: m ⇒ n times faster than LSB
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Digit Multipliers

• relatively new [Song/Parhi 96]

• trades space for speed (faster but larger than LSB)

• time and area complexity similar to hybrid multipli-

ers

• works for any m

• LSD and MSD are possible

• fundamental idea: Process D > 1 bit at a time.
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Least Signi�cant Digit Architecture

1. Step: Break A(x) down into s digit polynomials,

where s= dm/De.

A(x) = am−1x
m−1+ · · ·+ a1+ a0 , ai ∈ GF(2)

A(x) = ~as−1(x) x
(s−1)D + · · ·+~a1(x) x

D+~a0(x)

where

~ai(x) = ai,D−1x
D−1 + · · ·+ ai,1x+ ai,0 , ai,j ∈ GF(2)

2. Step: Digit wise multiplication

AB = ~a0(x)B(x) mod P(x)

+ ~a1(x)[(x
DB(x)) mod P(x)] mod P(x)

+ ~a2(x)[x
D(xDB(x)) mod P(x)] mod P(x) + · · ·

+ ~as−1(x)[x
D(xD(s−2)B(x)) mod P(x)] mod P(x)

Operations per clock cycle:

1. multiplication by xD and modular reduction:

xD · [x(i−1)DB(x) mod P(x)]

2. bit parallel multiplication of D ×m bit polynomials:

~ai(x) · [xiDB(x) mod P(x)]
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2. Step:

AB = ~a0(x)B(x) mod P(x)

+ ~a1(x)[(x
DB(x)) mod P(x)] mod P(x)

+ · · ·
+ ~as−1(x)[x

D(xD(s−2)B(x)) mod P ] mod P

m

m

D x m bit
    mult

m

Accu  A B

B

X   mod  PD

~ ~aa1 0 D

- mult by xD is mainly a bit permutation

- gate costs occur in D ×m bit parallel mult

- area compl.: ≈ mD AND + ≈ mD XOR

- time compl.: m/D ⇒ D times faster than LSB
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Optimal Extension Fields GF (pm)

• relatively new (see [B/P 98])

• main applications in ECC

• small extension degrees of m ≈ 3 . . .8 are common

• very fast arithmetic on 64 bit processors
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Optimal Extension Fields GF (pm)

Idea: Fully exploit the fast integer arithmetic available

in modern microprocessors

Design Principles

1. Choose sub�eld GF(p) to be close to the proces-

sor's word size

→ fast sub�eld multiplication

2. Choose sub�eld GF(p) to be a pseudo-Mersenne

prime, that is, p = 2n ± c, for \small" c

→ fast sub�eld modular reduction

3. Choose m so that an irreducible binomial

P(x) = xm − ω exists

→ fast extension �eld modular reduction
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Sub�eld Multiplication: ai · bj mod p
Note: Sub�eld mult is time critical operation

Important: p= 2n − c, where c ≤ 2n/2.

⇒ 2n ≡ c (mod (2n − c))

c

n bits

b

2n-1

a

 j

i

a i b
  j h l

0n  n-1

h, l ≤ 2n − 1
ai bj = 2nh+ l

ai bj ≡ ch+ l mod p
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Sub�eld Multiplication: ai · bj mod p

c * h

l

n bits

h’ l’

n/2 bits

aibj ≡ ch+ l mod p= 2nh′+ l′ ≡ ch′+ l′ mod p

c * h’+ l’

l’

0

c * h’

n+1

Sub�eld mult complexity: 3 mults by c + adds, shifts

OEF mult complexity: 3(m2 +m − 1) int mult (very

low for small m)

Rem: Major speed-up if c = 1, i.e., p is Mersenne prime
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Some Research Problems

• Fast Galois �eld arithmetic in software for general

�eld polynomials?

• Hardware arithmetic architectures for some \new"

�eld types, such as generalized Mersenne prime �elds

and OEFs?

• Other GF(2m) bases which lead to faster arith-

metic?

• Thorough comparison of standard basis vs. normal

basis vs. . . ., especially in software?

• Faster inversion in GF(p)?
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