Implementation Options for Finite Field
Arithmetic for Elliptic Curve Cryptosystems

ECC '99

Christof Paar

Electrical & Computer Engineering Dept.
and
Computer Science Dept.
Worcester Polytechnic Institute
Worcester, MA, USA

http://www.ece.wpi.edu/Research/crypt

Contents

1. Motivation

2. Overview on Finite Field Arithmetic
3. Arithmetic in GF(p)

4. Arithmetic in GF(2™)

5. Arithmetic in GF(p™)

6. Open Problems

ECC '99 WPI

Why Public-Key Algorithms?

Traditional tool for data security: Private-key (or
symmetric) cryptography

Main applications:
e Encryption

e Message Authentication

Traditional shortcomings:

1. Key distribution, especially with large, dynamic user
population (Internet)

2. How to assure sender authenticity and non-repudiation?

Solution: Public-key schemes, e.g., Diffie-Hellman key
exchange or digital signatures.

ECC '99 WPI

Practical Public-Key Algorithms

There are three families of PK algorithms of practical

relevance:

Integer Factorization Schemes
Exp: RSA, Rabin, etc.
required operand length: 1024—2048 bits
arithmetic type: Integer ring Z,,

Discrete Logarithm Schemes
Exp: Diffie-Hellman, DSA, ElGamal, etc.

required operand length: 1024—2048 bits
arithmetic type: Finite field

Elliptic Curve Schemes
Exp: EC Diffie-Hellman, ECDSA, etc.

required operand length: 160—256 bits
arithmetic type: Finite field

ECC '99 WPI

Practical Aspects of PK Algorithms

Major problem in practice: All PK algorithms are rel-
atively slow.

Observation: Algorithm speed is heavily dependent on
arithmetic performance in HW and SW:

fast arithmetic = fast PK algorithm

= Interdisciplinary Research area (Computer Science,
Electrical Engineering, Mathematics):

Efficient finite field arithmetic for discrete logarithm (DL)
and elliptic curve cryptosystems (ECC)

ECC '99 WPI

Finite Fields Proposed for Use in PK Schemes

finite fields

prime fields extension fields

GF(p) GF(p™)

general specia form primes

primes

GF(p) generalized _
Mersenne binary composite OEF

char =2 char > 2

GF2'-¢) GF"25.-1) GFEM) GF(2™M™) R 0™

Platform Options

finite field arithmetic

hardware software
classical reconfig. general constrained
proc. environm.
ASIC FPGA Intel, RISC embedded uP

(DSP, smart card,...)

Arithmetic performance and area/cost greatly depends
on:

1. Platform
2. Finite field type
with strong interaction:

platform choice < finite field type

ECC '99 WPI

Prime Fields GF(p)

General remarks:
e preferred for DL systems

also popular for ECC

e addition is cheap

e inversion is much slower than multiplication
= use of projective coord. for ECC

“Remaining” problem: Efficient multiplication al-
gorithms

Problem definition: Multiplication with long numbers
(160—2048 bits) on processors with short word length
(8—64 bits).

ECC '99 WPI

General Prime Fields GF(p): Software
Exp: A, B c GF(p), p < 21024 word size w = 16 bit
element representation:

A a632°3° 4+ ... 4+ a12% 4+ ao , a; €{0,1,...,2° -1}
B = bg32°% + ...+ 2%+ by , b, €{0,1,...,2° -1}

1. Step: Multi-precision Multiplication
C'=A-B =12 4 ... + 2% 4+ ¢
where

co = aobo
aob1 + a1bg + carry

o
=
||

Complexity: (n/w)? inner products (integer mult), where
n = [logz p].

Rem: Quadratic complexity can be reduced to (n/w)!-%®
using Karatsuba algorithm.

Further reading: [Menezes/van Oorschot/Vanstone 97]

ECC '99 WPI

General Prime Fields GF(p): Software

2. Step: Modular reduction
C=A-Bmodp=C'modp

1. (naive) approach: long division of C’ by p

2. (better) approach: fast modulo reduction techniques
which avoid division:
2.1. Montgomery
2.2. Barrett
2.3. Sedlack
2.4. ... (see, e.g., [Naccache/M’'Raihi 96])

Complexity: ~ (n/w)? inner products 4+ precomputa-
tions

Rem: Multi-precision mult (Step 1) and modular reduc-
tion (Step 2) can be interleaved.

further reading for Montgomery in SW: [Koc et al. 96]

ECC '99 WPI

General Prime Fields GF(p): Hardware
recall: n = [log, p]

Idea: Compute n inner products in parallel

Best studied architecture: Montgomery multiplication

Input: A, B, where A = 222'02 a;2', B = Z?’iol b;2"
Output: A-B mod N

1. Ro=0

2. fore=0ton—+2 do

3. ¢i = R;(0)

4. Riy1=(Ri+a;-B+gqi-N)/2 (%)
time complexity (radix 2): ~n clock cycles

time complexity (radix r): ~ n/r clock cycles
area complexity: k£-n gates, k constant

Rem: (%) is performance critical operation

ECC '99 WPI

General Prime Fields GF(p): Hardware

Remarks
1. is O(n) times faster than software

2. modular reduction is reduced to addition of long
numbers:

Rity1=(Ri+a;-B+gq -N)/2

3. = use systolic array or redundant representation to
avoid long carry chains

4. further reading:
[Eldridge/Walter 93] for general HW,
[Blum 99] for FPGA

ECC '99 WPI

Mersenne Prime Fields GF (2" — 1)

Idea: Reduce modular reduction to addition.

Central relation: 2"=1 mod p

Algorithm: let A, Bec GF(2" - 1)

A-B = ch2”—|—cl where Ch, C] §2n—1
A-B

cp, + ¢ mod p
Complexity: Modular reduction requires 1 add (as op-

posed to (n/w)? mult in the case of general primes).

Remarks:

e Modular mult complexity is ~ (n/w)? inner products
e Roughly twice as fast as mult with general prime.

e GF(2" —¢), ¢ small, was proposed for ECC in
[Crandall 92]

ECC '99 WPI

Generalized Mersenne Prime Fields
see [NIST 99]

Idea: Generalize modulo reduction “trick” from 2™ — 1
to primes

p=2MY £ oMW L OMY 4]

where ny >n;_ 1 >--->n1 >0
and w = 2¢, often i = 16,32, 64.

Let A,B € GF(p), and write A- B as:

A-B=cop 12" D oy 522w 4y e 2W g

Coefficients ¢;2'%, ¢ > n;, can be reduced recursively:

MW = "W ... 2MY 1 mod p

For instance:

2(2n,—1)w — :F2(774+’nl—1—1)w P 2(nl—|—n1—1)’w F 1 mod D

ECC '99 WPI

Gener. Mersenne Primes: Example
p:2192_264_1:23-64_264_1 ’ w = 64

A.B = C52320 _I_ C42256 _I_ C32192 _I_ 622128 _I_ C1264 _I_ o

Reduction equations:

2320 — 9192 + ~128 modp
2256 — 2128 _I_ 264 modp
2192 = 2%4 4+ 1 modp

A-B = c12®° 4 [cs + ¢3]2'%% + [c5 + 2]2%°° + 12
~+co mod p

A-B = [cs+ c3]2'9?% 4 [c5 4 ca + ¢2]2%28 + [ca + ¢1]2°4
~+co mod p

A-B = [es+ ca+]2 + [es5 + ca + c3 + c1]2%

+[c5 4+ ¢3 + cp] mod p
e Reduction requires no multiplication
e Modular mult complexity is ~ (n/w)? inner products

Roughly twice as fast as mult with general primes

e Specific primes are recommended by NIST for ECC

ECC '99 WPI

Extension Fields GF(2™)
e applicable to DL and ECC

e extremely well studied (compared to other charac-
teristics) since 1960s due to applications in coding

e choice of char = 2 was traditionally driven by hard-
ware implementations

e arithmetic is greatly influenced by choice of basis

e bases proposed for applications:
1. standard (or polynomial) basis
2. normal basis

3. other (dual basis, triangular basis, ...)

here: focus on polynomial basis.

ECC '99 WPI

GF(2™) Multiplication in Hardware

e active research area, many proposed architectures

e classification according to time-area trade-off

arch. type m #tclocks | #gates | Remarks

(time) (area)
bit parallel | any | 1 O(m?) often “too big”
digit serial | any | m/D O(mD) | D<m
hybrid D|lm | m/D O(mD) | D<m
bit serial any | m O(m) classical arch.
super serial | any | ms O(m/s) | new, mainly

for FPGA [O/P 99]

main relevance for cryptography: bit serial, digit serial,
and hybrid multipliers

ECC '99 WPI

Bit Serial Multiplication

Standard basis GF multiplication:

A-B = (am_12™ '+ -a1z+ ao)
(bpp—12™ L4+ -+ b1z 4 bp) mod P(z)

where a;, b; € GF(2).

Often: P(x) is trinomial or pentanomial

Two traditional architectures
e least significant bit-first (LSB) multiplier
e most significant bit-first (MSB) multiplier

(see, e.g., [Beth/Gollmann 89])

ECC '99 WPI

_east Significant Bit-First Architecture
A-B = aoB(x)
+ ai[zB(x) mod P(x)]
+ am-1[z(z™*B(z)) mod P(x)]

Architecture if P(x) is trinomial:

In every clock cycle compute:
1. mult by x and mod red.: z x (z""tB(z)) mod P(z)
2. scalar mult by a; and add: + a; x [*B(z)]

time complexity: m clock cycles
area complexity: ¢m gates, ¢ small

ECC '99 WPI

Hybrid Multipliers
e work for composite fields GF((2")™) (see [P/S 97])
e — total extension degree (nm) can’t be prime
e trades space for speed (faster but larger than LSB)

e |east significant and most significant architectures
are possible

e architectures analogous to bit serial mult (LSB,
MSB)

e fundamental idea: process n subfield bits in parallel

Recall: Element representation in binary fields A €¢ GF(2™"™)

Al(z) = apm_12" Y+ -+ aiz+ao , ai € GF(2)

Element representation in composite fields A € GF((2™)™)

Alz) = am_12™ 4+ -+ arz+ao , a; € GF(2")

ECC '99 WPI

A-B = aoB(z)
+ ai[zB(x) mod P(x)]

+ am_1[z(z™ 2B(z)) mod P(z)]

Architecture if P(x) is trinomial:

(X} Po Pt n

Co G G Cm-1

- gate costs occur in GF(2") bit parallel multipliers
- area compl.: ~mn?2 AND + ~mn? XOR
- time compl.: m = n times faster than LSB

ECC '99 WPI

Digit Multipliers

e relatively new [Song/Parhi 96]
e trades space for speed (faster but larger than LSB)

e time and area complexity similar to hybrid multipli-
ers

e works for any m
e LSD and MSD are possible

e fundamental idea: Process D > 1 bit at a time.

ECC '99 WPI

east Significant Digit Architecture

1. Step: Break A(z) down into s digit polynomials,
where s = [m/D].

Alz) = amo1z™ '+ ---Fa1+ao , ai€ GF(2)

A(z) = a5 1(z) VP 4o+ G1(x) 2P + do(x)
where

ai(z) = aip—1z” 7+ Fainz+aip , aij € GF(2)

2. Step: Digit wise multiplication
ao(z)B(z) mod P(x)
d1(2)[(zPB(z)) mod P(z)] mod P(z)

a2(2)[zP (P B(z)) mod P(z)] mod P(z) + - --
ds—1(2)[z" (&P~ B(z)) mod P(z)] mod P(z)

AB

+ + +

Operations per clock cycle:
1. multiplication by z” and modular reduction:
2P - [z DP B(z) mod P(z)]
2. bit parallel multiplication of D x m bit polynomials:

a;(z) - [z B(z) mod P(z)]

ECC '99 WPI

2. Step:

AB ao(z)B(z) mod P(x)

d1(2)[(zP B(z)) mod P(z)] mod P(z)

+ + +

ds—1(2)[z° (2”2 B(z)) mod P] mod P
B
J(m

i
e« XPmod P
m

a; dg D Dr);uTtblt

N
N
Y

Accu AB
|

mult by zP is mainly a bit permutation

gate costs occur in D x m bit parallel mult
area compl.: ~mD AND + ~m D XOR

time compl.: m/D = D times faster than LSB

ECC '99 WPI

Optimal Extension Fields GF(p™)

e relatively new (see [B/P 98])
e main applications in ECC
e small extension degrees of m~ 3...8 are common

e very fast arithmetic on 64 bit processors

ECC '99 WPI

Optimal Extension Fields GF(p™)

Idea: Fully exploit the fast integer arithmetic available
in modern microprocessors

Design Principles

1. Choose subfield GF(p) to be close to the proces-
sor’'s word size
— fast subfield multiplication

2. Choose subfield GF(p) to be a pseudo-Mersenne
prime, that is, p = 2" £ ¢, for “small” ¢
— fast subfield modular reduction

3. Choose m so that an irreducible binomial
P(x) = ™ — w exists
— fast extension field modular reduction

ECC '99 WPI

Subfield Multiplication: a;-b; mod p
Note: Subfield mult is time critical operation

Important: p = 2" — ¢, where ¢ < 2"/2,
= 2"=c¢ (mod (2" — ¢))

~— nbits ———

9
b;
C
S TH T e
2n-1 n n-1 0
hil < 2"—1
aibj — 2nh+l
aibj = Ch—|—lm0dp

ECC '99 WPI

Subfield Multiplication: a;-b; mod p

~= /2 bits

nbits ——

+ c* h

aibj =ch+Imodp=2"""+1'=ch/+ 1 modp

n+1 0

Subfield mult complexity: 3 mults by ¢ 4+ adds, shifts
OEF mult complexity: 3(m? + m — 1) int mult (very
low for small m)

Rem: Major speed-up if c =1, i.e., p is Mersenne prime

ECC '99 WPI

Some Research Problems

e Fast Galois field arithmetic in software for general
field polynomials?

e Hardware arithmetic architectures for some ‘“new
field types, such as generalized Mersenne prime fields
and OEFs?

e Other GF(2™) bases which lead to faster arith-
metic?

e Thorough comparison of standard basis vs. normal
basis vs. ..., especially in software?

e Faster inversion in GF(p)~?

ECC '99 WPI

References

[1] D. Bailey and C. Paar. Optimal extension fields for
fast arithmetic in public-key algorithms. In H. Krawczyk,
editor, Advances in Cryptography — CRYPTQO 98, vol-
ume LNCS 1462, pages 472—485. Springer-Verlag, 1998.

[2] T. Beth and D. Gollmann. Algorithm engineering for
public key algorithms. IEEE Journal on Selected Areas
in Communications, 7(4):458—466, 1989.

[3] T. Blum. Modular exponentiation on reconfigurable
hardware. Master’s thesis, ECE Dept., Worcester Poly-
technic Institute, Worcester, USA, May 1999.

[4] R. Crandall. Method and apparatus for public key ex-
change in a cryptographic system. United States Patent,
Patent Number 5159632, October 27 1992.

[5] S. E. Eldridge and C. D. Walter. Hardware imple-
mentation of Montgomery’'s modular multiplication al-
gorithm. IEEE Transactions on Computers, 42(6):693—
699, July 1993.

[6] C. Kog, T. Acar, and B. Kaliski. Analyzing and
comparing Montgomery multiplication algorithms. IEEE
Micro, 16:26—33, 1996.

[7] A. J. Menezes, P. C. van OQOorschot, and S. A. Van-
stone. Handbook of Applied Cryptography. CRC Press,
1997.

[8] D. Naccache and D. M’'Rarhi. Cryptographic smart
cards. IEEE Micro, 16:14—23, 1996.

[9] National Institute of Standard and Technology. Rec-
ommended elliptic curves for federal government use.
available at http://csrc.nist.gov/encryption, May 1999.

[10] G. Orlando and C. Paar. A super-serial Galois
fields multiplier for FPGAs and its application to public-
key algorithms. In Seventh Annual IEEE Symposium
on Field-Programmable Custom Computing Machines,
FCCM ’'99, Napa Valley, USA, April 12—23 1997.

[11] C. Paar and P. Soria Rodriguez. Fast arithmetic
architectures for public-key algorithms over Galois fields
GF((2™")™). In W. Fumy, editor, Advances in Cryptog-
raphy — EUROCRYPT '97, volume LNCS 1233, pages
363—378. Springer-Verlag, 1997.

[12] L. Song and K. K. Parhi. Low energy digit-serial/
parallel finite field multipliers. Journal of VLSI Signal
Processing, 19(2):149—-166, June 1998.

ECC '99 WPI

