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Why Public-Key Algorithms?

Traditional tool for data security: Private-key (or
symmetric) cryptography

Main applications:
e Encryption

e Message Authentication

Traditional shortcomings:

1. Key distribution, especially with large, dynamic user
population (Internet)

2. How to assure sender authenticity and non-repudiation?

Solution: Public-key schemes, e.g., Diffie-Hellman key
exchange or digital signatures.
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Practical Public-Key Algorithms

There are three families of PK algorithms of practical

relevance:

Integer Factorization Schemes
Exp: RSA, Rabin, etc.
required operand length: 1024—2048 bits
arithmetic type: Integer ring Z,,

Discrete Logarithm Schemes
Exp: Diffie-Hellman, DSA, ElGamal, etc.

required operand length: 1024—2048 bits
arithmetic type: Finite field

Elliptic Curve Schemes
Exp: EC Diffie-Hellman, ECDSA, etc.

required operand length: 160—256 bits
arithmetic type: Finite field
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Practical Aspects of PK Algorithms

Major problem in practice: All PK algorithms are rel-
atively slow.

Observation: Algorithm speed is heavily dependent on
arithmetic performance in HW and SW:

fast arithmetic = fast PK algorithm

= Interdisciplinary Research area (Computer Science,
Electrical Engineering, Mathematics):

Efficient finite field arithmetic for discrete logarithm (DL )
and elliptic curve cryptosystems (ECC)
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Finite Fields Proposed for Use in PK Schemes

finite fields

prime fields extension fields

GF(p) GF(p™)

general specia form primes

primes

GF(p) generalized _
Mersenne binary composite OEF

char =2 char > 2

GF2'-¢) GF"25.-1)  GFEM) GF(2™M™) R 0™



Platform Options

finite field arithmetic

hardware software
classical reconfig. general constrained
proc. environm.
ASIC FPGA Intel, RISC embedded uP

(DSP, smart card,...)

Arithmetic performance and area/cost greatly depends
on:

1. Platform
2. Finite field type
with strong interaction:

platform choice < finite field type
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Prime Fields GF(p)

General remarks:
e preferred for DL systems

also popular for ECC

e addition is cheap

e inversion is much slower than multiplication
= use of projective coord. for ECC

“Remaining” problem: Efficient multiplication al-
gorithms

Problem definition: Multiplication with long numbers
(160—2048 bits) on processors with short word length
(8—64 bits).
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General Prime Fields GF(p): Software
Exp: A, B c GF(p), p < 21024 word size w = 16 bit
element representation:

A a632°3° 4+ ... 4+ a12% 4+ ao , a; €{0,1,...,2° -1}
B = bg32°% + ...+ 2%+ by , b, €{0,1,...,2° -1}

1. Step: Multi-precision Multiplication
C'=A-B =12 4 ... + 2% 4+ ¢
where

co = aobo
aob1 + a1bg + carry

o
=
||

Complexity: (n/w)? inner products (integer mult), where
n = [logz p].

Rem: Quadratic complexity can be reduced to (n/w)!-%®
using Karatsuba algorithm.

Further reading: [Menezes/van Oorschot/Vanstone 97]
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General Prime Fields GF(p): Software

2. Step: Modular reduction
C=A-Bmodp=C'modp

1. (naive) approach: long division of C’ by p

2. (better) approach: fast modulo reduction techniques
which avoid division:
2.1. Montgomery
2.2. Barrett
2.3. Sedlack
2.4. ... (see, e.g., [Naccache/M’'Raihi 96])

Complexity: ~ (n/w)? inner products 4+ precomputa-
tions

Rem: Multi-precision mult (Step 1) and modular reduc-
tion (Step 2) can be interleaved.

further reading for Montgomery in SW: [Koc et al. 96]
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General Prime Fields GF(p): Hardware
recall: n = [log, p]

Idea: Compute n inner products in parallel

Best studied architecture: Montgomery multiplication

Input: A, B, where A = 222'02 a;2', B = Z?’iol b;2"
Output: A-B mod N

1. Ro=0

2. fore=0ton—+2 do

3. ¢i = R;(0)

4. Riy1=(Ri+a;-B+gqi-N)/2 (%)
time complexity (radix 2): ~n clock cycles

time complexity (radix r): ~ n/r clock cycles
area complexity: k£-n gates, k constant

Rem: (%) is performance critical operation
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General Prime Fields GF(p): Hardware

Remarks
1. is O(n) times faster than software

2. modular reduction is reduced to addition of long
numbers:

Rity1=(Ri+a;-B+gq -N)/2

3. = use systolic array or redundant representation to
avoid long carry chains

4. further reading:
[Eldridge/Walter 93] for general HW,
[Blum 99] for FPGA
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Mersenne Prime Fields GF (2" — 1)

Idea: Reduce modular reduction to addition.

Central relation: 2"=1 mod p

Algorithm: let A, Bec GF(2" - 1)

A-B = ch2”—|—cl where Ch, C] §2n—1
A-B

cp, + ¢ mod p
Complexity: Modular reduction requires 1 add (as op-

posed to (n/w)? mult in the case of general primes).

Remarks:

e Modular mult complexity is ~ (n/w)? inner products
e Roughly twice as fast as mult with general prime.

e GF(2" —¢), ¢ small, was proposed for ECC in
[Crandall 92]
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Generalized Mersenne Prime Fields
see [NIST 99]

Idea: Generalize modulo reduction “trick” from 2™ — 1
to primes

p=2MY £ oMW L OMY 4 ]

where ny >n;_ 1 >--->n1 >0
and w = 2¢, often i = 16,32, 64.

Let A,B € GF(p), and write A- B as:

A-B=cop 12" D oy 522w 4y e 2W g

Coefficients ¢;2'%, ¢ > n;, can be reduced recursively:

MW = "W ... 2MY 1 mod p

For instance:

2(2n,—1)w — :F2(774+’nl—1—1)w P 2(nl—|—n1—1)’w F 1 mod D
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Gener. Mersenne Primes: Example
p:2192_264_1:23-64_264_1 ’ w = 64

A.B = C52320 _I_ C42256 _I_ C32192 _I_ 622128 _I_ C1264 _I_ o

Reduction equations:

2320 — 9192 + ~128 modp
2256 — 2128 _I_ 264 modp
2192 = 2%4 4+ 1 modp

A-B = c12®° 4 [cs + ¢3]2'%% + [c5 + 2]2%°° + 12
~+co mod p

A-B = [cs+ c3]2'9?% 4 [c5 4 ca + ¢2]2%28 + [ca + ¢1]2°4
~+co mod p

A-B = [es+ ca+ ]2 + [es5 + ca + c3 + c1]2%

+[c5 4+ ¢3 + cp] mod p
e Reduction requires no multiplication
e Modular mult complexity is ~ (n/w)? inner products

Roughly twice as fast as mult with general primes

e Specific primes are recommended by NIST for ECC
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Extension Fields GF(2™)
e applicable to DL and ECC

e extremely well studied (compared to other charac-
teristics) since 1960s due to applications in coding

e choice of char = 2 was traditionally driven by hard-
ware implementations

e arithmetic is greatly influenced by choice of basis

e bases proposed for applications:
1. standard (or polynomial) basis
2. normal basis

3. other (dual basis, triangular basis, ...)

here: focus on polynomial basis.
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GF(2™) Multiplication in Hardware

e active research area, many proposed architectures

e classification according to time-area trade-off

arch. type m #tclocks | #gates | Remarks

(time) (area)
bit parallel | any | 1 O(m?) often “too big”
digit serial | any | m/D O(mD) | D<m
hybrid D|lm | m/D O(mD) | D<m
bit serial any | m O(m) classical arch.
super serial | any | ms O(m/s) | new, mainly

for FPGA [O/P 99]

main relevance for cryptography: bit serial, digit serial,
and hybrid multipliers
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Bit Serial Multiplication

Standard basis GF multiplication:

A-B = (am_12™ '+ -a1z+ ao)
(bpp—12™ L4+ -+ b1z 4 bp) mod P(z)

where a;, b; € GF(2).

Often: P(x) is trinomial or pentanomial

Two traditional architectures
e least significant bit-first (LSB) multiplier
e most significant bit-first (MSB) multiplier

(see, e.g., [Beth/Gollmann 89])
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_east Significant Bit-First Architecture
A-B = aoB(x)
+ ai[zB(x) mod P(x)]
+ am-1[z(z™*B(z)) mod P(x)]

Architecture if P(x) is trinomial:

In every clock cycle compute:
1. mult by x and mod red.: z x (z""tB(z)) mod P(z)
2. scalar mult by a; and add: + a; x [*B(z)]

time complexity: m clock cycles
area complexity: ¢m gates, ¢ small
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Hybrid Multipliers
e work for composite fields GF((2")™) (see [P/S 97])
e — total extension degree (nm) can’t be prime
e trades space for speed (faster but larger than LSB)

e |east significant and most significant architectures
are possible

e architectures analogous to bit serial mult (LSB,
MSB)

e fundamental idea: process n subfield bits in parallel

Recall: Element representation in binary fields A €¢ GF(2™"™)

Al(z) = apm_12" Y+ -+ aiz+ao , ai € GF(2)

Element representation in composite fields A € GF((2™)™)

Alz) = am_12™ 4+ -+ arz+ao , a; € GF(2")
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A-B = aoB(z)
+ ai[zB(x) mod P(x)]

+  am_1[z(z™ 2B(z)) mod P(z)]

Architecture if P(x) is trinomial:

(X} Po Pt n

Co G G Cm-1

- gate costs occur in GF(2") bit parallel multipliers
- area compl.: ~mn?2 AND + ~mn? XOR
- time compl.: m = n times faster than LSB
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Digit Multipliers

e relatively new [Song/Parhi 96]
e trades space for speed (faster but larger than LSB)

e time and area complexity similar to hybrid multipli-
ers

e works for any m
e LSD and MSD are possible

e fundamental idea: Process D > 1 bit at a time.
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east Significant Digit Architecture

1. Step: Break A(z) down into s digit polynomials,
where s = [m/D].

Alz) = amo1z™ '+ ---Fa1+ao , ai€ GF(2)

A(z) = a5 1(z) VP 4o+ G1(x) 2P + do(x)
where

ai(z) = aip—1z” 7+ Fainz+aip , aij € GF(2)

2. Step: Digit wise multiplication
ao(z)B(z) mod P(x)
d1(2)[(zPB(z)) mod P(z)] mod P(z)

a2(2)[zP (P B(z)) mod P(z)] mod P(z) + - --
ds—1(2)[z" (&P~ B(z)) mod P(z)] mod P(z)

AB

+ + +

Operations per clock cycle:
1. multiplication by z” and modular reduction:
2P - [z DP B(z) mod P(z)]
2. bit parallel multiplication of D x m bit polynomials:

a;(z) - [z B(z) mod P(z)]
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2. Step:

AB ao(z)B(z) mod P(x)

d1(2)[(zP B(z)) mod P(z)] mod P(z)

+ + +

ds—1(2)[z° (2”2 B(z)) mod P] mod P
B
J(m

i
e« XPmod P
m

a; dg D Dr);uTtblt

N
N
Y

Accu AB
|

mult by zP is mainly a bit permutation

gate costs occur in D x m bit parallel mult
area compl.: ~mD AND + ~m D XOR

time compl.: m/D = D times faster than LSB
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Optimal Extension Fields GF(p™)

e relatively new (see [B/P 98])
e main applications in ECC
e small extension degrees of m~ 3...8 are common

e very fast arithmetic on 64 bit processors
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Optimal Extension Fields GF(p™)

Idea: Fully exploit the fast integer arithmetic available
in modern microprocessors

Design Principles

1. Choose subfield GF(p) to be close to the proces-
sor’'s word size
— fast subfield multiplication

2. Choose subfield GF(p) to be a pseudo-Mersenne
prime, that is, p = 2" £ ¢, for “small” ¢
— fast subfield modular reduction

3. Choose m so that an irreducible binomial
P(x) = ™ — w exists
— fast extension field modular reduction
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Subfield Multiplication: a;-b; mod p
Note: Subfield mult is time critical operation

Important: p = 2" — ¢, where ¢ < 2"/2,
= 2"=c¢ (mod (2" — ¢))

~— nbits ———

9
b;
C
S TH T e
2n-1 n n-1 0
hil < 2"—1
aibj — 2nh+l
aibj = Ch—|—lm0dp
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Subfield Multiplication: a;-b; mod p

~= /2 bits

nbits ——

+ c* h

aibj =ch+Imodp=2"""+1'=ch/+ 1 modp

n+1 0

Subfield mult complexity: 3 mults by ¢ 4+ adds, shifts
OEF mult complexity: 3(m? + m — 1) int mult (very
low for small m)

Rem: Major speed-up if c =1, i.e., p is Mersenne prime
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Some Research Problems

e Fast Galois field arithmetic in software for general
field polynomials?

e Hardware arithmetic architectures for some ‘“new
field types, such as generalized Mersenne prime fields
and OEFs?

e Other GF(2™) bases which lead to faster arith-
metic?

e Thorough comparison of standard basis vs. normal
basis vs. ..., especially in software?

e Faster inversion in GF(p)~?
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