
Implementation Options for Finite Field

Arithmetic for Elliptic Curve Cryptosystems

ECC '99

Christof Paar

Electrical & Computer Engineering Dept.

and

Computer Science Dept.

Worcester Polytechnic Institute

Worcester, MA, USA

http://www.ece.wpi.edu/Research/crypt

Contents

1. Motivation

2. Overview on Finite Field Arithmetic

3. Arithmetic in GF(p)

4. Arithmetic in GF(2m)

5. Arithmetic in GF(pm)

6. Open Problems

ECC '99 WPI

Why Public-Key Algorithms?

Traditional tool for data security: Private-key (or

symmetric) cryptography

Main applications:

• Encryption

• Message Authentication

Traditional shortcomings:

1. Key distribution, especially with large, dynamic user

population (Internet)

2. How to assure sender authenticity and non-repudiation?

Solution: Public-key schemes, e.g., Di�e-Hellman key

exchange or digital signatures.

ECC '99 WPI

Practical Public-Key Algorithms

There are three families of PK algorithms of practical

relevance:

Integer Factorization Schemes

Exp: RSA, Rabin, etc.

required operand length: 1024{2048 bits

arithmetic type: Integer ring Zm

Discrete Logarithm Schemes

Exp: Di�e-Hellman, DSA, ElGamal, etc.

required operand length: 1024{2048 bits

arithmetic type: Finite �eld

Elliptic Curve Schemes

Exp: EC Di�e-Hellman, ECDSA, etc.

required operand length: 160{256 bits

arithmetic type: Finite �eld

ECC '99 WPI

Practical Aspects of PK Algorithms

Major problem in practice: All PK algorithms are rel-

atively slow.

Observation: Algorithm speed is heavily dependent on

arithmetic performance in HW and SW:

fast arithmetic ⇒ fast PK algorithm

⇒ Interdisciplinary Research area (Computer Science,

Electrical Engineering, Mathematics):

E�cient �nite �eld arithmetic for discrete logarithm (DL)

and elliptic curve cryptosystems (ECC)

ECC '99 WPI

finite fields

prime fields extension fields

special form primesgeneral
primes

Mersenne Mersenne binary composite OEF

mGF(p)

GF(2 - 2 ... -1)

GF(p)

char = 2 char > 2

n

GF(p)

n GF(2)n ns nGF((2 -c))mGF((2))m

Finite Fields Proposed for Use in PK Schemes

generalizedpseudo

GF(2 -c)

Platform Options

ASIC Intel, RISC embedded uP

hardware software

classical constrainedgeneral
proc. environm.

finite field arithmetic

FPGA

reconfig.

(DSP, smart card,...)

Arithmetic performance and area/cost greatly depends

on:

1. Platform

2. Finite �eld type

with strong interaction:

platform choice ⇔ �nite �eld type

ECC '99 WPI

Prime Fields GF (p)

General remarks:

• preferred for DL systems

• also popular for ECC

• addition is cheap

• inversion is much slower than multiplication

⇒ use of projective coord. for ECC

• \Remaining" problem: E�cient multiplication al-

gorithms

Problem de�nition: Multiplication with long numbers

(160{2048 bits) on processors with short word length

(8{64 bits).

ECC '99 WPI

General Prime Fields GF (p): Software

Exp: A,B ∈ GF(p), p < 21024, word size w = 16 bit

element representation:

A = a632
63·16+ · · ·+ a12

16+ a0 , ai ∈ {0,1, . . . ,216 − 1}
B = b632

63·16+ · · ·+ b12
16+ b0 , bi ∈ {0,1, . . . ,216 − 1}

1. Step: Multi-precision Multiplication

C ′ = A · B = c′1262
126·16+ · · ·+ c′12

16+ c′0

where

c′0 = a0b0

c′1 = a0b1+ a1b0+ carry
...

Complexity: (n/w)2 inner products (integer mult), where

n = dlog2 pe.

Rem: Quadratic complexity can be reduced to (n/w)1.58

using Karatsuba algorithm.

Further reading: [Menezes/van Oorschot/Vanstone 97]

ECC '99 WPI

General Prime Fields GF (p): Software

2. Step: Modular reduction

C ≡ A · B mod p ≡ C ′ mod p

1. (na��ve) approach: long division of C ′ by p

2. (better) approach: fast modulo reduction techniques

which avoid division:

2.1. Montgomery

2.2. Barrett

2.3. Sedlack

2.4. . . . (see, e.g., [Naccache/M'Ra��hi 96])

Complexity: ≈ (n/w)2 inner products + precomputa-

tions

Rem: Multi-precision mult (Step 1) and modular reduc-

tion (Step 2) can be interleaved.

further reading for Montgomery in SW: [Ko�c et al. 96]

ECC '99 WPI

General Prime Fields GF (p): Hardware

recall: n = dlog2 pe

Idea: Compute n inner products in parallel

Best studied architecture: Montgomery multiplication

Input: A, B, where A=
∑n+2

i=0 ai2
i, B =

∑n+1
i=0 bi2

i

Output: A ·B mod N

1. R0 = 0

2. for i= 0 to n+ 2 do

3. qi = Ri(0)

4. Ri+1 = (Ri+ ai · B+ qi ·N)/2 (?)

time complexity (radix 2): ≈ n clock cycles

time complexity (radix r): ≈ n/r clock cycles

area complexity: k · n gates, k constant

Rem: (?) is performance critical operation

ECC '99 WPI

General Prime Fields GF (p): Hardware

Remarks

1. is O(n) times faster than software

2. modular reduction is reduced to addition of long

numbers:

Ri+1 = (Ri+ ai ·B+ qi ·N)/2

3. ⇒ use systolic array or redundant representation to

avoid long carry chains

4. further reading:

[Eldridge/Walter 93] for general HW,

[Blum 99] for FPGA

ECC '99 WPI

Mersenne Prime Fields GF (2n − 1)
Idea: Reduce modular reduction to addition.

Central relation: 2n ≡ 1 mod p

Algorithm: let A,B ∈ GF(2n − 1)

A · B = ch2
n+ cl where ch, cl ≤ 2n − 1

A · B ≡ ch+ cl mod p

Complexity: Modular reduction requires 1 add (as op-

posed to (n/w)2 mult in the case of general primes).

Remarks:

• Modular mult complexity is ≈ (n/w)2 inner products

• Roughly twice as fast as mult with general prime.

• GF(2n − c), c small, was proposed for ECC in

[Crandall 92]

ECC '99 WPI

Generalized Mersenne Prime Fields

see [NIST 99]

Idea: Generalize modulo reduction \trick" from 2n − 1

to primes

p= 2nlw ± 2nl−1w ± · · · ± 2n1w ± 1

where nl > nl−1 > · · · > n1 > 0

and w = 2i, often i= 16,32,64.

Let A,B ∈ GF(p), and write A ·B as:

A ·B = c2nl−12
(2nl−1)w + c2nl−22

(2nl−2)w + · · ·+ c12
w + c0

Coe�cients ci2iw, i > nl, can be reduced recursively:

2nlw ≡ ∓2nl−1w ∓ · · · ∓ 2n1w ∓ 1 mod p

For instance:

2(2nl−1)w ≡ ∓2(nl+nl−1−1)w ∓ · · · ∓ 2(nl+n1−1)w ∓ 1 mod p

ECC '99 WPI

Gener. Mersenne Primes: Example

p = 2192 − 264 − 1 = 23·64 − 264 − 1 , w = 64

A ·B = c52
320+ c42

256+ c32
192+ c22

128+ c12
64+ c0

Reduction equations:

2320 ≡ 2192 + 2128 modp
2256 ≡ 2128 + 264 modp
2192 ≡ 264 + 1 modp

A ·B ≡ c42
256+ [c5+ c3]2

192+ [c5+ c2]2
128+ c12

64

+c0 mod p

A ·B ≡ [c5+ c3]2
192+ [c5+ c4+ c2]2

128+ [c4+ c1]2
64

+c0 mod p

A ·B ≡ [c5+ c4+ c2]2
128+ [c5+ c4+ c3+ c1]2

64

+[c5+ c3+ c0] mod p

• Reduction requires no multiplication

• Modular mult complexity is ≈ (n/w)2 inner products

• Roughly twice as fast as mult with general primes

• Speci�c primes are recommended by NIST for ECC

ECC '99 WPI

Extension Fields GF (2m)

• applicable to DL and ECC

• extremely well studied (compared to other charac-

teristics) since 1960s due to applications in coding

• choice of char = 2 was traditionally driven by hard-

ware implementations

• arithmetic is greatly in
uenced by choice of basis

• bases proposed for applications:

1. standard (or polynomial) basis

2. normal basis

3. other (dual basis, triangular basis, . . .)

here: focus on polynomial basis.

ECC '99 WPI

GF (2m) Multiplication in Hardware

• active research area, many proposed architectures

• classi�cation according to time-area trade-o�

arch. type m #clocks #gates Remarks
(time) (area)

bit parallel any 1 O(m2) often \too big"
digit serial any m/D O(mD) D < m
hybrid D|m m/D O(mD) D < m
bit serial any m O(m) classical arch.
super serial any ms O(m/s) new, mainly

for FPGA [O/P 99]

main relevance for cryptography: bit serial, digit serial,

and hybrid multipliers

ECC '99 WPI

Bit Serial Multiplication

Standard basis GF multiplication:

A ·B = (am−1x
m−1+ · · · a1x+ a0)

(bm−1x
m−1+ · · · b1x+ b0) mod P(x)

where ai, bi ∈ GF(2).

Often: P(x) is trinomial or pentanomial

Two traditional architectures

• least signi�cant bit-�rst (LSB) multiplier

• most signi�cant bit-�rst (MSB) multiplier

(see, e.g., [Beth/Gollmann 89])

ECC '99 WPI

Least Signi�cant Bit-First Architecture

A · B = a0B(x)

+ a1[xB(x) mod P(x)]

+ · · ·
+ am−1[x(x

m−2B(x)) mod P(x)]

Architecture if P(x) is trinomial:

c m-10c 1c ct m-2c

0b b1 bt m-2b m-1b

2a0a a1, ,

In every clock cycle compute:

1. mult by x and mod red.: x× (xi−1B(x)) mod P(x)

2. scalar mult by ai and add: + ai × [xiB(x)]

time complexity: m clock cycles

area complexity: cm gates, c small

ECC '99 WPI

Hybrid Multipliers

• work for composite �elds GF((2n)m) (see [P/S 97])

• ⇒ total extension degree (nm) can't be prime

• trades space for speed (faster but larger than LSB)

• least signi�cant and most signi�cant architectures

are possible

• architectures analogous to bit serial mult (LSB,

MSB)

• fundamental idea: process n sub�eld bits in parallel

Recall: Element representation in binary �elds A ∈ GF(2nm)

A(x) = anm−1x
nm−1+ · · ·+ a1x+ a0 , ai ∈ GF(2)

Element representation in composite �elds A ∈ GF((2n)m)

A(x) = am−1x
m−1+ · · ·+ a1x+ a0 , ai ∈ GF(2n)

ECC '99 WPI

A · B = a0B(x)

+ a1[xB(x) mod P(x)]

+ · · ·
+ am−1[x(x

m−2B(x)) mod P(x)]

Architecture if P(x) is trinomial:

a1a0

0c

0p

n

0 1 tb b b

c1 ct

m-1b

cm-1

,

tp

n
n

n

n

n

n

- gate costs occur in GF(2n) bit parallel multipliers

- area compl.: ≈ mn2 AND + ≈ mn2 XOR

- time compl.: m ⇒ n times faster than LSB

ECC '99 WPI

Digit Multipliers

• relatively new [Song/Parhi 96]

• trades space for speed (faster but larger than LSB)

• time and area complexity similar to hybrid multipli-

ers

• works for any m

• LSD and MSD are possible

• fundamental idea: Process D > 1 bit at a time.

ECC '99 WPI

Least Signi�cant Digit Architecture

1. Step: Break A(x) down into s digit polynomials,

where s= dm/De.

A(x) = am−1x
m−1+ · · ·+ a1+ a0 , ai ∈ GF(2)

A(x) = ~as−1(x) x
(s−1)D + · · ·+~a1(x) x

D+~a0(x)

where

~ai(x) = ai,D−1x
D−1 + · · ·+ ai,1x+ ai,0 , ai,j ∈ GF(2)

2. Step: Digit wise multiplication

AB = ~a0(x)B(x) mod P(x)

+ ~a1(x)[(x
DB(x)) mod P(x)] mod P(x)

+ ~a2(x)[x
D(xDB(x)) mod P(x)] mod P(x) + · · ·

+ ~as−1(x)[x
D(xD(s−2)B(x)) mod P(x)] mod P(x)

Operations per clock cycle:

1. multiplication by xD and modular reduction:

xD · [x(i−1)DB(x) mod P(x)]

2. bit parallel multiplication of D ×m bit polynomials:

~ai(x) · [xiDB(x) mod P(x)]

ECC '99 WPI

2. Step:

AB = ~a0(x)B(x) mod P(x)

+ ~a1(x)[(x
DB(x)) mod P(x)] mod P(x)

+ · · ·
+ ~as−1(x)[x

D(xD(s−2)B(x)) mod P] mod P

m

m

D x m bit
 mult

m

Accu A B

B

X mod PD

~ ~aa1 0 D

- mult by xD is mainly a bit permutation

- gate costs occur in D ×m bit parallel mult

- area compl.: ≈ mD AND + ≈ mD XOR

- time compl.: m/D ⇒ D times faster than LSB

ECC '99 WPI

Optimal Extension Fields GF (pm)

• relatively new (see [B/P 98])

• main applications in ECC

• small extension degrees of m ≈ 3 . . .8 are common

• very fast arithmetic on 64 bit processors

ECC '99 WPI

Optimal Extension Fields GF (pm)

Idea: Fully exploit the fast integer arithmetic available

in modern microprocessors

Design Principles

1. Choose sub�eld GF(p) to be close to the proces-

sor's word size

→ fast sub�eld multiplication

2. Choose sub�eld GF(p) to be a pseudo-Mersenne

prime, that is, p = 2n ± c, for \small" c

→ fast sub�eld modular reduction

3. Choose m so that an irreducible binomial

P(x) = xm − ω exists

→ fast extension �eld modular reduction

ECC '99 WPI

Sub�eld Multiplication: ai · bj mod p
Note: Sub�eld mult is time critical operation

Important: p= 2n − c, where c ≤ 2n/2.

⇒ 2n ≡ c (mod (2n − c))

c

n bits

b

2n-1

a

 j

i

a i b
 j h l

0n n-1

h, l ≤ 2n − 1
ai bj = 2nh+ l

ai bj ≡ ch+ l mod p

ECC '99 WPI

Sub�eld Multiplication: ai · bj mod p

c * h

l

n bits

h’ l’

n/2 bits

aibj ≡ ch+ l mod p= 2nh′+ l′ ≡ ch′+ l′ mod p

c * h’+ l’

l’

0

c * h’

n+1

Sub�eld mult complexity: 3 mults by c + adds, shifts

OEF mult complexity: 3(m2 +m − 1) int mult (very

low for small m)

Rem: Major speed-up if c = 1, i.e., p is Mersenne prime

ECC '99 WPI

Some Research Problems

• Fast Galois �eld arithmetic in software for general

�eld polynomials?

• Hardware arithmetic architectures for some \new"

�eld types, such as generalized Mersenne prime �elds

and OEFs?

• Other GF(2m) bases which lead to faster arith-

metic?

• Thorough comparison of standard basis vs. normal

basis vs. . . ., especially in software?

• Faster inversion in GF(p)?

ECC '99 WPI

References

[1] D. Bailey and C. Paar. Optimal extension �elds for

fast arithmetic in public-key algorithms. In H. Krawczyk,

editor, Advances in Cryptography | CRYPTO '98, vol-

ume LNCS 1462, pages 472{485. Springer-Verlag, 1998.

[2] T. Beth and D. Gollmann. Algorithm engineering for

public key algorithms. IEEE Journal on Selected Areas

in Communications, 7(4):458{466, 1989.

[3] T. Blum. Modular exponentiation on recon�gurable

hardware. Master's thesis, ECE Dept., Worcester Poly-

technic Institute, Worcester, USA, May 1999.

[4] R. Crandall. Method and apparatus for public key ex-

change in a cryptographic system. United States Patent,

Patent Number 5159632, October 27 1992.

[5] S. E. Eldridge and C. D. Walter. Hardware imple-

mentation of Montgomery's modular multiplication al-

gorithm. IEEE Transactions on Computers, 42(6):693{

699, July 1993.

[6] C�. Ko�c, T. Acar, and B. Kaliski. Analyzing and

comparing Montgomery multiplication algorithms. IEEE

Micro, 16:26{33, 1996.

[7] A. J. Menezes, P. C. van Oorschot, and S. A. Van-

stone. Handbook of Applied Cryptography. CRC Press,

1997.

[8] D. Naccache and D. M'Ra��hi. Cryptographic smart

cards. IEEE Micro, 16:14{23, 1996.

[9] National Institute of Standard and Technology. Rec-

ommended elliptic curves for federal government use.

available at http://csrc.nist.gov/encryption, May 1999.

[10] G. Orlando and C. Paar. A super-serial Galois

�elds multiplier for FPGAs and its application to public-

key algorithms. In Seventh Annual IEEE Symposium

on Field-Programmable Custom Computing Machines,

FCCM '99, Napa Valley, USA, April 12{23 1997.

[11] C. Paar and P. Soria Rodriguez. Fast arithmetic

architectures for public-key algorithms over Galois �elds

GF((2n)m). In W. Fumy, editor, Advances in Cryptog-

raphy | EUROCRYPT '97, volume LNCS 1233, pages

363{378. Springer-Verlag, 1997.

[12] L. Song and K. K. Parhi. Low energy digit-serial/

parallel �nite �eld multipliers. Journal of VLSI Signal

Processing, 19(2):149{166, June 1998.

ECC '99 WPI

