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Abstract

In today’s connected world, the majority of secure connections over the Internet are established
by public-key cryptography. Common standards for public-key encryption, digital signatures as
well as key-agreement and key-exchange protocols provide security services to ensure authen-
tication, confidentiality, integrity and non-repudiation of sensitive data. The security of most
public-key standards relies on the hardness of two related problems: the factorization problem
in case of RSA-based cryptosystems and the (elliptic curve) discrete logarithm problem in case
of DH- and ECC-based cryptosystems. Albeit unlikely, there is no guarantee that cryptanalytic
advancements in solving either of the two problems (and thus breaking the current assumptions
of wide-spread public-key cryptography) will not be made in the future. In addition, the avail-
ability of a scalable quantum computer would invalidate the security assumptions of established
public-key cryptosystems currently deployed in the field due to Shor’s quantum algorithm which
efficiently solves the factorization and discrete logarithm problems. Combined with slow tran-
sitioning times to new cryptographic standards, e.g., in the banking industry, this calls for an
early investigation of alternative cryptosystems. Acknowledging the current situation, the NSA
Central Security Service recently announced preliminary plans to transition its Suite B family
of cryptographic algorithms which protects data classified as secret and top secret to quantum-
resistant algorithms and even discourages switching from RSA to ECC in favor of directly
moving to quantum-resistant cryptography. Furthermore, the National Institute of Standards
and Technology (NIST) initiated standardization efforts for quantum-resistant cryptography.

In this context, novel implementation techniques for alternative cryptosystems from the fami-
lies of code- and hash-based cryptography for efficient public-key encryption, hybrid encryption,
and digital signatures are investigated in this work. We particularly focus on exploring efficient
designs tailored for embedded platforms such as microcontrollers and FPGAs and their com-
petitiveness compared to today’s RSA and ECC cryptosystems. Quantum-resistant public-key
encryption in this work is based on two of the most promising and long-standing alternative cryp-
tosystems originating from coding theory: McEliece and Niederreiter. We instantiate McEliece
and Niederreiter with quasi-cyclic moderate density parity-check codes which, compared to
binary Goppa codes, require much smaller keys and allow lightweight implementations. We
present high-performance and area-efficient FPGA designs which can even outperform current
RSA and ECC implementations. Furthermore, first results on side-channel attacks and counter-
measures as well as a quantum-resistant IND-CCA-secure hybrid encryption for ARM Cortex-M
microcontrollers are provided. Quantum-resistant digital signatures are achieved in this thesis
through hash-based signatures by combination of the Merkle signature scheme with Winternitz
one-time signatures due to their clear and tight security reductions. We propose novel algorith-
mic improvements for the authentication path computation and show that side-channel leakage
is tightly bounded in our design.

Keywords. Public-Key Encryption, Digital Signatures, Code-Based Cryptography, Hash-
Based Cryptography, Quantum-Resistance, Embedded Devices, FPGAs, Microcontrollers





Kurzfassung
Die Vielzahl verschlüsselter Verbindungen im Internet wird mit Hilfe sogenannter Public-Key
Kryptographie hergestellt. Weitverbreitete Standards für Public-Key Verschlüsselung, digita-
le Signaturen sowie Protokolle zur Schlüsselvereinbarung und -verteilung stellen Authentizität,
Vertraulichkeit, Integrität und Nicht-Zurückweisbarkeit der Verbindungen sicher. Die Sicherheit
der eingesetzten Verfahren lässt sich dabei auf zwei miteinander verwandte Annahmen redu-
zieren: die Schwierigkeit der Primfaktorzerlegung großer Zahlen bei RSA-basierten Verfahren
und dem diskreten Logarithmus-Problem bei DH- und ECC-basierten Verfahren. Wenn auch
unwahrscheinlich, so ist es nicht ausgeschlossen, dass keine kryptanalytischen Fortschritte mehr
bei der Lösung dieser Probleme erzielt werden und dadurch die Annahmen heute weitverbreite-
ter Verfahren der Public-Key Kryptographie ihre Gültigkeit verlieren. Die Verfügbarkeit eines
skalierbaren Quantencomputers würde die getroffenen Annahmen ebenfalls außer Kraft setzen,
da der Shor-Quantenalgorithmus beide Probleme effizient in Polynomialzeit löst. Betrachtet
man zudem die langen Übergangszeiten zu neuen kryptographischen Standards, z.B. im Ban-
kensektor, so wird deutlich, dass alternative Public-Key Kryptosysteme frühzeitig untersucht
und geeignete Kandidaten identifiziert werden müssen. In Anbetracht dieser Situation hat der
NSA Central Security Service kürzlich in einer Pressemitteilung angekündigt die kryptogra-
phischen Algorithmen für ”Secret“ und ”Top Secret“ klassifizierte Daten auf quantenresistente
Algorithmen umzustellen und rät, so noch nicht geschehen, sogar davon ab den Wechsel von
RSA- auf ECC-basierte Kryptographie vorzunehmen und stattdessen quantenresistente Krypto-
graphie einzusetzen. Des Weiteren initiierte das National Institute of Standards and Technology
(NIST) den Standardisierungsprozess für quantenresistente Kryptographie.

In diesem Kontext werden in der vorliegenden Arbeit neuartige Techniken zur effizienten Im-
plementierung alternativer Kryptographieverfahren aus den Familien der codierungs- und hash-
basierten Kryptographie untersucht, um Public-Key Verschlüsselung, hybride Verschlüsselung
und digitale Signaturen zu realisieren. Insbesondere liegt der Fokus dabei auf maßgeschnei-
derten Designs für eingebettete Systeme wie FPGAs und Mikrocontroller und deren Kon-
kurrenzfähigkeit im Vergleich zu heutigen RSA und ECC Implementierungen. Quantenresis-
tente Public-Key Verschlüsselung wird in dieser Arbeit auf Basis zweier vielversprechender
Verfahren realisiert die der Codierungstheorie entstammen: McEliece und Niederreiter. Bei-
de Verschlüsselungsverfahren werden mit QC-MDPC Codes instanziiert, welche im Vergleich zu
binären Goppa Codes kleinere Schlüssel und leichtgewichtige Implementierungen ermöglichen.
Wir entwickeln hoch performante und flächeneffiziente FPGA Designs die die heutigen RSA
und ECC Implementierungen leistungsmäßig übertreffen können. Zudem werden erste Seiten-
kanalangriffe und Gegenmaßnahmen ebenso wie IND-CCA-sichere hybride Verschlüsselung für
ARM Cortex-M Mikrocontroller präsentiert. Quantenresistente digitale Signaturen werden in
dieser Arbeit mithilfe von hash-basierten Signaturen durch Kombination des Merkle Signatur-
schemas mit Winternitz Einwegsignaturen realisiert. Wir entwickeln neuartige algorithmische
Verbesserungen für die Berechnung des Authentifikationspfades und zeigen wie das Design den
Verlust von Schlüsselinformationen durch Seitenkanäle begrenzt.

Schlagworte. Public-Key Verschlüsselung, Digitale Signaturen, Codierungs-basierte Krypto-
graphie, Hash-basierte Kryptographie, Quantenresistenz, Eingebettete Systeme, FPGAs, Mi-
krocontroller
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Chapter 1

Introduction

This chapter motivates the need for alternative public-key cryptography besides the
well-known RSA, DH, and ECC schemes followed by a summary of this work’s
research contributions on quantum-resistant cryptography. We conclude with the
outline of the structure of this thesis and briefly introduce the content of each chapter.

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

The majority of today’s secure connections over the Internet are established by public-key
cryptography. Common standards for public-key encryption and digital signatures as well as
key-agreement and key-exchange protocols provide security services to ensure authentication,
confidentiality, integrity, and non-repudiation of sensitive data. The security of most public-
key standards relies on the hardness of two related problems: the factorization problem in
case of RSA-based cryptosystems and the (elliptic curve) discrete logarithm problem in case of
DH- and ECC-based cryptosystems. Albeit unlikely, there is no guarantee that cryptanalytic
advancements in solving either of the two problems (and thus breaking the current assumptions
of wide-spread public-key cryptography) will not be made in the future. Furthermore, Bach
showed that solving the discrete logarithm problem for a composite modulus is as hard as
factoring and solving it modulo primes [Bac84]. Due to the relationship between the integer
factorization problem and the discrete logarithm problem, a breakthrough in solving either of
the two problems could deteriorate the presumed hardness of both problems which calls for a
diversification of hard problems upon which public-key cryptosystems are based.
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Data which is protected by today’s public-key cryptography is likely being recorded and stored
for future analysis, e.g., in NSA’s data storage facility in Utah1. With an estimated storage
capacity in the range of exabytes this raises concerns about the long-term security of today’s
protected data. Recovery of medical records, diplomatic cables, journalists’ whistle-blower
sources, client-attorney communications, and many more could still have severe consequences for
the involved parties if an at the time secure communication is revealed by improved cryptanalytic
methods even after a long period of time, e.g., 10-20 years later.

It is well known that Shor’s quantum algorithm efficiently solves the underlying problem of
RSA (factoring) and can be adapted to break ECC and DH (discrete logarithms) given a scal-
able quantum computer capable of operating with many qubits [Sho97]. Although quantum
computers can handle only few qubits so far, proof-of-concept implementations of Shor’s algo-
rithm were verified several times with 56153 (241×233) being the largest number yet which was
factored into its prime factors by a quantum computer with four qubits [XZL+12, DB14]. In
this context the NSA Central Security Service recently announced preliminary plans to transi-
tion its Suite B family of cryptographic algorithms to quantum-resistant algorithms in the ”not
too distant future”2. NSA’s Suite B family of cryptographic algorithms was the first public
cryptography standard which specified a set of algorithms to protect data classified as ”Se-
cret” or ”Top Secret”. For symmetric encryption, the Suite B specifies AES in CTR or GCM
mode and message digests shall be computed using SHA-256/-384. Public-key cryptography
is provided based on elliptic curves, namely ECDSA for digital signatures and ECDH for key
agreement. According to the announcement, at least the currently recommended elliptic curve
public-key cryptography will be replaced with quantum-resistant schemes. Speculations about
the reasoning behind the NSA announcement were not only spurred by conspiracists but also by
renown cryptographers, e.g., by Koblitz and Menezes in [KM15]. A possible explanation could
be that NSA managed to develop or to acquire knowledge about a scalable quantum computer
with sufficiently many qubits powerful enough to weaken the security level of the recommended
ECC parameters. Another possibility is that NSA cryptanalysts identified a weakness in the
presumed hardness of the elliptic curve discrete logarithm problem with advanced classical
cryptanalysis. This scenario seems to be more realistic since also in the academic community
progress is made towards solving elliptic curve discrete logarithms more efficiently. Recent re-
sults achieved a heuristic quasi-polynomial algorithm for discrete logarithms in finite fields of
small characteristic [Jou14, BGJT14].

Although it is well-known that the factorization problem and the discrete logarithm problem
can be solved in polynomial time by Shor’s quantum computing algorithm, they still are the
basis for virtually all public-key cryptosystems used today. Alternative cryptosystems which
(a) provide the same security services, (b) have a comparable level of computational efficiency,
and (c) have similar costs for storing keys, are urgently required to diversify the public-key
primitives used in practice. Among the most promising alternatives to RSA and ECC public-
key encryption are the code-based public-key encryption schemes by McEliece [McE78] and
Niederreiter [Nie86]. The security of the McEliece and Niederreiter cryptosystems is based on
variants of hard problems in coding theory without any known relation to the factorization prob-

1http://www.forbes.com/sites/kashmirhill/2013/07/24/blueprints-of-nsa-data-center-in-utah-
suggest-its-storage-capacity-is-less-impressive-than-thought/, retrieved 11 October 2016.

2https://www.nsa.gov/ia/programs/suiteb_cryptography/, retrieved 11 October 2016.
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lem or the discrete logarithm problem. Having been regarded for a long time as impractical for
memory-constrained platforms due to their large key sizes, recent advances showed that reducing
the key-sizes to practical levels is possible. McEliece encryption instantiated with quasi-cyclic
moderate density parity-check (QC-MDPC) codes [Gal63] was introduced in [MTSB13], followed
by QC-MDPC Niederreiter encryption in [BBMR14]. Compared to the original proposal of us-
ing McEliece and Niederreiter with binary Goppa codes, QC-MDPC codes allow much smaller
keys and lightweight implementations. Yet it needs to be investigated if all requirements of
constrained platforms can be met with code-based cryptosystems instantiated with QC-MDPC
codes combined with improved decoding and implementation techniques to transform the the-
oretical efficiency into practice. This provides feedback to the research community and allows
well-founded comparisons to other alternative cryptosystems. Furthermore, the behavior with
regard to side-channel leakage is yet unknown and side-channel countermeasures need to be
developed.

Another important branch of public-key cryptography are digital signatures. With the in-
creasing popularity of contactless smart cards and near field communication, digital signatures
have become a key component of many embedded system solutions. The applications of digi-
tal signatures are numerous, ranging from identification over electronic payments to firmware
updates and protection against product counterfeiting. Due to the high computational require-
ments of today’s public-key cryptography, providing efficient digital signatures on embedded
microprocessors with and without dedicated co-processors is a challenge. Wide-spread clas-
sical digital signature schemes are RSA, e.g., PKCS#1 [RSA12], the digital signature algo-
rithm DSA [NIS13], its elliptic curve equivalent ECDSA [NIS13], and the rather new EdDSA
(Edwards-curve Digital Signature Algorithm) [BDL+12]. The underlying problems of these dig-
ital signature schemes would however similarly be affected by advanced classical cryptanalysis
and by quantum-computing attacks as their public-key encryption counterparts.

A promising candidate for alternative digital signatures is the Merkle Signature Scheme (MSS)
scheme based on hash function evaluations [Mer90]. The main idea of MSS is to sign messages
with a One-Time Signature Scheme (OTSS) and to authenticate the one-time verification keys
using binary hash trees. It was shown in [Hül13] that the security of hash-based signature
schemes can be reduced to the collision resistance or even just to the second-preimage resistance
of the underlying hash function which arguably is a minimal assumption for digital signature
schemes. Furthermore, hash-based signature schemes are usually built upon one-time signatures
which inherently provides possibilities for leakage-resilience since the signing keys are ever-
changing.

3



Chapter 1. Introduction

1.2 Research Contributions

The main research contributions of this thesis are the evaluation, implementation and op-
timization of quantum-resistant public-key encryption, hybrid encryption, and digital signa-
ture schemes on embedded devices. The focus for quantum-resistant public-key encryption is
on code-based cryptography, in particular McEliece and Niederreiter with QC-MDPC codes
targeting efficient designs for constrained embedded systems. We present high-performance
and area-efficient FPGA designs which can even outperform current RSA and ECC imple-
mentations. Furthermore, first results on side-channel attacks and countermeasures as well as
quantum-resistant IND-CCA-secure hybrid encryption for ARM Cortex-M microcontrollers are
presented. Quantum-resistant digital signatures are provided through hash-based signatures by
combining the Merkle signature scheme (MSS) and Winternitz one-time signatures. The main
goals of our work on hash-based signatures are to provide an efficient implementation of MSS
with a focus on the challenges when targeting constrained embedded systems, to design the
signature scheme such that it offers protection against side-channel attacks, and to quantify
and reduce the maximum side-channel leakage of the involved secrets.

The research contributions presented in this thesis were published at peer-reviewed confer-
ences, journals, and books as listed below.
Conferences
• Indocrypt 2012 [vMG12]
• CHES 2013 [HvMG13]
• SAC 2013 [EvMY14]
• DATE 2014 [vMG14a]
• PQCrypto 2014 [vMG14b]
• ACNS 2015 [CEvMS15]
• SAC 2015 [CEvMS16b]
• PQCrypto 2016 [vMHG16]

Journals
• ACM Transactions on Embedded Computing Systems, 2015 [vMOG15]
• IEEE Transactions on Information Forensics and Security, 2016 [CEvMS16a]

Books
• Number Theory and Cryptography, 2013 [EvMPY13].

Furthermore, the author co-authored the following publications as a doctoral student at Ruhr-
University Bochum. The topics covered in these publications are outside of the scope of this
thesis and are therefore not included.
• CARDIS 2012 [BEE+13]
• ASAP 2013 [SvMG13]
• Journal of Signal Processing Systems, 2014 [SvMGO14]
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1.3 Thesis Structure

This thesis is structured into three parts: Part I covers code-based public-key encryption and
code-based hash functions. Part II presents our work on hash-based digital signatures. Part III
concludes the thesis and provides a summary of the presented results.

Part I: Code-Based Public-Key Encryption and Hash Functions

In the first part of this thesis we present our work on code-based public-key encryption in
Chapters 2-7 followed by an implementation of the code-based hash function RFSB in Chapter 8.

Chapter 2: Error-Correcting Codes Error-correcting codes are the foundation of code-
based cryptography. This chapter provides necessary mathematical background and the no-
tations which will be used in Part I of the thesis. After reviewing general concepts of error
detection and correction with linear block codes, we introduce algebraic codes going from gen-
eralized Reed-Solomon codes over Alternant codes to Goppa codes. The chapter is concluded
by the introduction of graph-based codes with a particular focus on LDPC and MDPC codes.

Chapter 3: Code-Based Public-Key Encryption Schemes This chapter introduces
public-key cryptography and its basic concepts. Code-based public-key encryption is presented
starting with the traditional McEliece [McE78] and Niederreiter [Nie86] cryptosystems. We sur-
vey optimizations for McEliece and Niederreiter and furthermore show how to instantiate the
McEliece and Niederreiter cryptosystems with QC-MDPC codes. We conclude with a security
survey of code-based cryptography followed by a summary on parameter selection.

Chapter 4: Efficient Decoding of (QC-)MDPC Codes Decryption in code-based cryp-
tography requires decoding of received words which generally is a time-consuming task. The
selection of an efficient decoding algorithm is crucial to the overall decryption performance,
hence evaluation and comparison of available options and optimization investigations is essen-
tial. First we introduce LDPC and MDPC decoding techniques and evaluate their performance
with concrete QC-MDPC McEliece parameters. Novel proposals are made to accelerate decod-
ing and to effectively reduce the probability of decoding failures. We derive and evaluate several
decoding variations and compare them among each other to make a justified optimal decoder
selection which delivers high performance with least decoding failures.

Chapter 5: QC-MDPC McEliece for Reconfigurable Hardware High-performance
and lightweight QC-MDPC McEliece en-/decryption cores are developed in this chapter tar-
geting quantum-resistant public-key encryption in FPGA applications. Our high-performance
implementation achieves 13.7µs/82.1µs for en-/decryption and requires 2,924/10,988 slices on
Xilinx Virtex-6. Furthermore, we demonstrate that the cryptosystem can be implemented with
a significantly smaller resource footprint – still achieving reasonable performance sufficient for
many applications, e.g., challenge-response protocols or hybrid encryption. More precisely, our
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lightweight design requires just 68 slices for the encryption unit, around 150 slices for the de-
cryption unit and is able to en-/decrypt an input block in 2.2 ms and 13.4 ms, respectively on
Xilinx Spartan-6.

Furthermore, we present horizontal and vertical side-channel analysis techniques for an imple-
mentation of the McEliece cryptosystem. Target of this side-channel attack is our lightweight
and efficient QC-MDPC McEliece decryption FPGA implementation as presented in Section 5.3.
The presented cryptanalysis succeeds to recover the complete private key after a few observed
decryptions. It consists of a combination of a differential leakage analysis during the syndrome
computation followed by an algebraic step that exploits the relation between the public and
private key.

Chapter 6: QC-MDPC McEliece for Embedded Microcontrollers and General-Pur-
pose Processors QC-MDPC McEliece for embedded microcontrollers and general-purpose
processors with a focus on ARM’s Cortex-M4 and Intel’s Haswell architecture is presented in this
chapter. Besides practical issues such as random error generation, we demonstrate side-channel
attacks on straightforward implementations of QC-MDPC McEliece on embedded microcon-
trollers. We propose timing- and instruction-invariant coding strategies and countermeasures
to strengthen QC-MDPC McEliece against timing attacks as well as simple power analysis
attacks. Furthermore, we provide two implementations targeting general-purpose CPUs, a ref-
erence C implementation as well as a highly optimized implementation that makes use of vector
instructions to achieve maximum performance.

Chapter 7: IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter
Although QC-MDPC McEliece is a promising alternative public-key encryption scheme with
practical key sizes and good performance on constrained platforms such as embedded micro-
controllers and FPGAs, so far none of the QC-MDPC McEliece/Niederreiter implementations
provide indistinguishability under chosen plaintext or chosen ciphertext attacks. In this chapter
we close this gap by presenting (1) an efficient implementation of QC-MDPC Niederreiter for
ARM Cortex-M4 microcontrollers and (2) the first implementation of Persichetti’s IND-CCA
hybrid encryption scheme instantiated with QC-MDPC Niederreiter for key encapsulation and
AES-CBC/AES-CMAC for data encapsulation. Our implementations achieve practical per-
formance, at 80/128-bit security levels hybrid encryption takes 16.5 ms/83.2 ms, decryption
111 ms/477.5 ms and key-generation 386.4 ms/1511.8 ms.

Chapter 8: Embedded Syndrome-Based Hashing In this chapter we present first im-
plementations of the syndrome-based hash function RFSB-509 on an Atmel ATxmega128A1 mi-
crocontroller and a low-cost Xilinx Spartan-6 FPGA. Several trade-offs between size and speed
are explored on both platforms and we show that RFSB is extremely versatile with applications
ranging from lightweight to high performance. The lightweight microcontroller implementation
requires just 732 bytes of ROM while still achieving a competitive performance compared to
established hash functions. Our fastest FPGA implementation is based on embedded block
memories available in Xilinx Spartan-6 devices and runs at 0.21 cycles/byte, with a throughput
of 5.35 Gbit/s. To the best of our knowledge, this is the first time the RFSB hash function is
implemented on either of these wide-spread platforms.
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Part II: Hash-Based Digital Signatures

The second part of this thesis, Chapters 9-10, presents our work on hash-based digital signatures.

Chapter 9: Hash-Based Digital Signature Schemes We introduce hash-based digital
signature schemes based on the Merkle signature scheme in combination with Winternitz one-
time signatures. Furthermore, we explain how to efficiently generate one-time signing keys
using PRNGs and provide insights into the BDS algorithm for efficient authentication path
computation. This chapter concludes with a survey of the existing security arguments for hash-
based signature schemes.

Chapter 10: Faster Hash-Based Signatures with Bounded Leakage Digital signatures
have become a key component of many embedded system solutions and are facing strong security
and efficiency requirements. At the same time side-channel resistance is essential for a signature
scheme to be accepted in real-world applications. Based on the Merkle signature scheme and
Winternitz one-time signatures we propose a quantum-resistant signature scheme with bounded
side-channel leakage. Novel algorithmic improvements for the authentication path computation
reduce the average signature computation time by nearly 50 % when compared to state-of-
the-art algorithms. Furthermore, our improvements tightly bound side-channel leakage and
we state the exact number of times each key is used. The proposed scheme is implemented
on two platforms, an Intel Core i7 CPU and an AVR ATxmega microcontroller, with carefully
optimized versions for the respective target platform. The theoretical algorithmic improvements
are verified in both implementations using cryptographic hardware accelerators to achieve high
performance.

Part III: Conclusion

The third part of this thesis concludes on the presented results and identifies future research.

Chapter 11: Conclusion This chapter concludes the thesis and provides a summary of the
presented results. The chapter ends with an overview of further interesting research topics for
alternative public-key cryptography, in particular for code-based public-key encryption and for
hash-based digital signatures.
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Chapter 2

Error-Correcting Codes

Error-correcting codes are the foundation of code-based cryptography. This chapter
provides necessary mathematical background and the notations which will be used
in the first part of this thesis. After reviewing general concepts of error detection
and correction with linear block codes, we introduce different code representations.
We survey the family of algebraic codes due to their historic importance for code-
based cryptography going from generalized Reed-Solomon codes over Alternant codes
to Goppa codes. This chapter concludes with the introduction of graph-based codes,
particularly LDPC and MDPC codes.

Contents

2.1 Introduction to Coding Theory . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Algebraic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Graph-Based Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

In this chapter we dive into coding theory by introduction of the family of error-correcting bi-
nary linear block codes. Apart from ensuring reliable data transmission in everyday applications
such as wireless networks, error-correcting codes are the foundation of code-based cryptography
and are an essential basis for the first part of this thesis. In the following we provide basic
concepts of coding theory, define the mathematical notion used in this thesis, and introduce
the families of algebraic and graph-based codes. Further material on the introduction to coding
theory can be found in [MS86, HP10].

2.1 Introduction to Coding Theory

Reliable and correct transmission of information over noisy channels is a long-standing problem
with many practical applications. In 1948, Shannon formulated the basis for the mathemat-
ical theory of communication [Sha48]. Elementary notions such as information sources and
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destinations, transmitters and receivers, noise sources and channels, information entropy and
redundancy, as well as the word bit for a binary digit, 0 or 1, were introduced in his seminal
work. The general setting in which a sender transmits a message m over a channel to a receiver
is shown in Figure 2.1. In case the channel is noisy, an error e of some form is applied to the
message in transit. Throughout this work we will work with additive errors but in general there
is no restriction on the form of the error.

A typical channel in the real-world is a laser beam which reads the content of a Compact
Disc (CD), Digital Versatile Disc (DVD), or Blu-ray Disc (BD). A typical form of noise in this
scenario are scratches and dust particles on the lens and disc.

Sender ReceiverChannel

e

m m+e

Figure 2.1: A sender transmits some message m over a noisy channel to a receiver. The noise is
represented by an error vector e which is added to the message during transmission.

Error-detecting/-correcting codes were primarily developed to enable reliable communication
over noisy channels. The general idea to detect or even correct errors introduced by a noisy
channel is to add redundancy to the message and transmit it along with the message over the
noisy channel. Adding redundancy to a message m with the help of codes is called encoding,
the resulting output c is called a codeword. At the receiver’s end, the process of recovering a
message from a (noisy) codeword c+ e is called decoding. It consists of verifying if the received
word contains errors, possibly correcting these errors, and extracting message m′. Figure 2.2
illustrates the general setting of en-/decoding messages before and after they are transmitted
over a noisy channel.

Sender DecoderChannel

e

m c+e
Encoder

c
Receiver

m'

Figure 2.2: Message m is encoded into codeword c before transmitting it over a noisy channel.
The channel adds an error vector e to the codeword and the result is fed into the
decoder which tries to recover the original message from the noisy codeword.

Important questions here are how to generate meaningful redundancy for specific messages
and how to detect and correct errors. For these tasks a multitude of codes and decoding
techniques have been developed over time which are generally divided into two main categories:
block codes and convolutional codes. We focus on block codes since convolutional codes do not
appear to be a good choice for code-based cryptography [LT13].

12



2.2. Linear Block Codes

2.2 Linear Block Codes

Codes which encode fixed-length messages into fixed-length codewords are called block codes in
coding theory. Linear block codes are error-correcting codes whose elements are taken from the
vector space Fnq , where Fq is the finite field with q = pm elements, with p being a prime number
and m being a positive integer.

Definition 2.2.1. (Linear Block Code)
A [n, k]-linear block code C is a linear subspace of Fnq with length n and dimension k.

The vectors c ∈ C are called codewords of code C. In case q = 2, we speak of a binary code.
In case q = 3, the code is called ternary. Next follows the definition of two important metrics
in coding theory, namely the Hamming weight and the Hamming distance.

Definition 2.2.2. (Hamming Weight)
The number of nonzero positions of a vector x ∈ Fnq is called the Hamming weight wt(x).
Equally, the Hamming weight can be defined as the Hamming distance of x to the all-zero
vector, dist(x, 0).

Definition 2.2.3. (Hamming Distance)
The number of differing symbols in two vectors {x, y} ∈ Fnq is called the Hamming distance
dist(x, y). Equally, the Hamming distance can be defined as the Hamming weight of the differ-
ence of x and y, dist(x, y) = wt(x− y).

In order to state an upper bound of how many errors can be detected and corrected by a
certain code C we first define the minimum distance of a code.

Definition 2.2.4. (Minimum Distance)
The minimum distance d of a linear block code C is the minimum Hamming distance of any two
distinct codewords of C.

d = min(dist(c1, c2)), {c1, c2} ∈ C, c1 6= c2.

Equally, the minimum distance is given by the lowest weight nonzero codeword of C.

d = min(wt(c)), c ∈ C, c 6= 0n.

In the following we refer to a linear block code of length n, dimension k, and minimum
distance d by a [n, k, d]-code.

Error-Detection and -Correction

A linear code C with minimum distance d can detect up to d − 1 errors since at least d errors
have to be added in order to change any codeword of C into another valid codeword. If the
received word is not a codeword, at least one error must have happened during transmission.
Hence, detecting up to d− 1 errors can be accomplished by checking whether the received word
is a codeword of C or not.
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Furthermore, t = bd−1
2 c errors can be corrected for every linear code with minimum distance

d. Since the Hamming distance of every two codewords of C is at least d, having a codeword with
at most t errors added to it still allows to unambiguously find its nearest neighbor by selecting
the codeword with the smallest Hamming distance to the received word. This phenomenon
can also be explained by imagining spheres of radius t around every codeword. Because of the
distance between any two codewords being at least d, all these spheres are non-intersecting. Any
codeword with at most t errors lies in exactly one of these spheres and can be directly associated
with the codeword in the center of the sphere. Figure 2.3 shows non-intersecting spheres of
radius t around three codewords c1 6= c2 6= c3 of a code C with minimum distance d. As long as
the Hamming weight of the error vectors e1, e2, e3 is at most t, the words c1 + e1, c2 + e2, c3 + e3
remain in the sphere of the respective codeword and are hence decodable. This decoding
technique is known as minimum distance decoding or maximum likelihood decoding in the
literature.

t

t

t

d

d d

c1

c2

c3

c1+e1

c2+e2

c3+e3

Figure 2.3: Example of a linear code C with minimum distance d. Non-intersecting spheres of
radius t = bd−1

2 c are drawn around three codewords c1 6= c2 6= c3 of C. Error vectors
e1, e2, e3 of weight at most t are added to c1, c2, c3. The resulting words (red) remain
in the sphere of the respective codeword.

Code Representations

A code C is commonly described in one of two ways, either by a generator matrix or by a
parity-check matrix. In general both matrices of a code are not uniquely determined.
Definition 2.2.5. (Generator Matrix)
The rows of a generator matrix G ∈ Fk×nq of a linear [n, k]-code C form a basis of C such that

C = {mG |m ∈ Fkq}.

Hence, the codewords of C are linear combinations of the rows of the generator matrix.
Definition 2.2.6. (Parity-Check Matrix)
The parity-check matrix H ∈ F(n−k)×n

q of a linear [n, k]-code C is defined as

C = {HcT = 0(n−k) | c ∈ Fnq }.
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Knowledge of either the generator or the parity-check matrix of a code is sufficient since they
can be transformed into each other given the relation HGT = 0.

Definition 2.2.7. (Syndrome)
Given a parity-check matrix H, the syndrome s ∈ Fn−kq of any vector x ∈ Fnq is defined as

s = HxT .

Hence, multiplying any codeword of code C with its parity-check matrix H results in the
all-zero vector 0n−k. Likewise, the syndrome of any word that is not a codeword of code C
differs from the all-zero vector.

Given the definitions of generator matrices, parity-check matrices, and syndromes, we can now
encode messages into codewords and check whether a received word is a codeword. Encoding a
message m ∈ Fkq is accomplished by multiplying it with the generator matrix:

c = mG.

Checking whether a received word is a codeword is done by computing its syndrome and
testing it for zero:

s = HxT
?= 0(n−k).

Decoding a received word that is not a codeword, i.e., a word whose syndrome differs from
the all-zero vector, on the other hand is much more complex and requires decoding algorithms
that depend on the specific codes. More details on decoding are introduced in Chapter 4.

Definition 2.2.8. (Systematic Generator Matrix)
If the generator matrix is given as

G = [Ik |Q],

with Ik being the k×k identity matrix and Q ∈ Fk×(n−k)
q , then the generator matrix is said to be

in systematic form. Note, for every [n, k]-code with a generator matrix that is not in systematic
form there exists an equivalent [n, k]-code with a generator matrix in systematic form.

Having a systematic generator matrix accelerates encoding as the k positions of the message
are simply copied to the first k positions of the codeword when computing c = mG = m · [Ik |Q].
Furthermore, the corresponding parity-check matrix to a systematic generator matrix G =
[Ik|Q] can be computed as H = [−QT |In−k].

Definition 2.2.9. (Cyclic Code)
A linear block code is cyclic if a circular right shift of each codeword results in another codeword
of the same code C.

Hence, if c = (c0, . . . , cn−1) and by right shift c′ = (cn−1, c0, . . . , cn−2) and it holds ∀c, c′ ∈ C
then the code is said to be cyclic. Given R = F2[x]/(xn − 1) we can also map the codeword
c = (c0, . . . , cn−1) to the polynomial c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1. A circular right shift of

the codeword is equal to a multiplication by x mod (xn − 1) which results in the polynomial
cn−1 + c0x+ c1x

2 + · · ·+ cn−2x
n−1.
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Definition 2.2.10. (Quasi-Cyclic Code)
A code C is quasi-cyclic (QC) if the code is closed under cyclic right shifts of its codewords by
n0 positions for some positive integer n0 > 0.

Quasi-cyclicity is a generalized form of cyclic codes which allows (fixed) right shifts of more
than one position. A quasi-cyclic code is equal to a cyclic code in case n0 = 1. In terms of
polynomials, let c(x) be a codeword polynomial of code C, then c(x)xn0 mod (xn− 1) is also a
codeword polynomial of C if the code is quasi-cyclic.

2.3 Algebraic Codes

Algebraic codes are introduced mainly due to their historic importance for code-based cryptog-
raphy and for the sake of completeness of this thesis. In the following chapters we will mostly
focus on the family of graph-based codes, their applications in code-based cryptography and
how they compete against classical code-based cryptosystems that are usually instantiated with
binary Goppa codes which are part of the family of algebraic codes.

2.3.1 Generalized Reed-Solomon Codes

Reed-Solomon codes are a class of cyclic error-correcting block codes which were introduced
in 1960 by Reed and Solomon [RS60]. After development of the Berlekamp-Massey decoding
algorithm [Ber66, Mas69], Reed-Solomon codes found wide-spread applications in practice, e.g.,
in the standards for digital video broadcasting (DVB) and digital audio broadcasting (DAB).
Reed-Solomon codes were generalized to GRS codes in [vS87].

Definition 2.3.1. (Generalized Reed-Solomon Codes)
Let 0 ≤ k ≤ n. Choose distinct elements L = {α1, . . . , αn} ∈ Fn and non-zero elements
v = {v1, . . . , vn} ∈ Fn from field F. A generalized Reed-Solomon code is defined by

GRSk(L,v) = {(v1f(α1), . . . , vnf(αn)) | f(x) ∈ F[x]k},

where F[x]k is the set of polynomials in F[x] of degree < k.

2.3.2 Alternant Codes

The family of alternant codes was defined by Helgert in 1974 [Hel74] and includes the famous
Reed-Solomon codes as well as BCH codes [BRC60]. Restricting generalized Reed-Solomon
codes from the extension field Fqm to the subfield Fq results is the class of alternant codes which
are subfield subcodes of generalized Reed-Solomon codes.

Definition 2.3.2. (Alternant Codes)
Alternant codes are defined by restricting GRS codes to the subfield Fq:

ALTk,q(L,v) := GRSk(L,v) ∩ Fnq .
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2.3.3 Goppa Codes

The relations between algebraic geometry and codes were first discovered by V. D. Goppa who
introduced algebraic geometric codes, better known as Goppa codes [Gop70]. We will restrict
the description to the binary case in the following since for cryptographic purposes only binary
Goppa codes are of interest.

Let m, t be positive integers. A binary Goppa code Γ(g,L) is defined by its Goppa polynomial
g(z) and by its support L = {α1, . . . , αn} ∈ Fn2m . The n distinct elements of the support L are
selected such that g(ai) 6= 0, ∀ai. The Goppa polynomial g(z) is a monic polynomial of degree
t and is defined over the finite field F2m as

g(z) =
t∑
i=0

giz
i ∈ F2m [z].

A binary Goppa code over F2m is defined as

Γ(g,L) =
{
c ∈ Fn2 |

n−1∑
i=0

ci
z − αi

≡ 0 mod g(z)
}
.

2.4 Graph-Based Codes

Two prominent classes of codes in the family of graph-based codes are Low-Density Parity-Check
(LDPC) and Moderate-Density Parity-Check (MDPC) codes. Instead of defining fixed struc-
tures as done for algebraic codes, LDPC and MDPC codes instead limit the Hamming weight
of their parity-check matrices. In this section we introduce and define LDPC and MDPC codes
before we explain proposals of using these codes in code-based cryptography in the following
chapter. An extensive analysis and optimizations of several decoding techniques for this class
of codes are presented in Chapter 4.

2.4.1 Low-Density Parity-Check Codes

Low-density parity-check codes were introduced in [Gal63] but did not attract much interest
at first, most likely because they were considered impractical to implement at that time due
to their size. Codes based on sparse parity-check matrices reappeared around 35 years later
in [MN95, AL96, Mac99], attracting much more interest and serving as base for several follow-up
works. Recently, LDPC codes became part of several standardized communication protocols,
e.g., the second standard for digital video broadcasting over satellites (DVB-S2), the standard
for 10 Gbit Ethernet (10 GbE), and the Wi-Fi standards 802.11n / 802.11ac.

LDPC codes are linear block codes which can either be represented using sparse bipartite
graphs or using generator/parity-check matrices as shown for algebraic codes. Similarly as for
algebraic codes, we will focus on the binary case throughout this work. For further reading on
LDPC codes the author would like to refer to the in-depth descriptions given in [Rya03, Nig04].
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Definition 2.4.1. (Low-Density Parity-Check Codes)
A low-density parity-check code is a linear block code whose parity-check matrix is sparse. An
LDPC code is regular if its parity-check matrix H consists of wc ones in each column and
wr = wc(n/r) ones in each row, with wc << r. Hence, the number of ones in each column and
row is constant for regular LDPC codes. An LDPC code is irregular if its parity-check matrix
H is sparse but the number of ones in columns or rows is not constant.

LDPC codes are graphically represented using bipartite graphs, commonly referred to as
Tanner graphs in the LDPC context. Tanner graphs were introduced in [Tan81] and consist
of variable nodes and check nodes. Given a sparse parity-check matrix of an LDPC code, the
corresponding Tanner graph is constructed following two basic rules:

(1) The bipartite Tanner graph of an LDPC code consists of n variable nodes vj for each code
bit and n− k check nodes ci for each parity-check equation.

(2) Check node ci is connected to variable node vj iff Hi,j 6= 0, (1 ≤ i ≤ n− k, 1 ≤ j ≤ n).

Furthermore, recall that by definition HcT = 0. Hence, all variable nodes vj connected to a
check node ci have to sum up to zero.

Example: Given a [7, 3] binary LDPC code with parity-check matrix

H[7,3] =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1

 ,
we can construct a Tanner graph as shown in Figure 2.4. From the first column of
H[7,3] we can derive that all check nodes c1, c2, c3 are connected to v1. Vice versa,
the first row of H[7,3] tells us that c1 is connected to variable nodes v1, v2, v3, and
so on. Using the Tanner graph we can determine that this LDPC code is irregular
since its variable nodes do not have a constant number of edges connecting them to
check nodes. This fact can also be seen using the matrix representation. Although
this code has a constant row weight wr = 3, its column weight wc is not constant.
The first column of H[7,3] has weight three, while the others have weight one.

v1 v2 v3 v4 v5 v6 v7

c1 c2 c3

Figure 2.4: The Tanner graph of a [7, 3] binary linear code.
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Given a [10, 5] binary LDPC code with parity-check matrix

H[10,5] =


1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1


we can construct the codes’ Tanner graph as shown in Figure 2.5. Compared to the
previous example, this LDPC code is regular since its check nodes and its variable
nodes both have a constant number of edges connecting them to each other (four
edges for each check node and two edges for each variable node). In the matrix
representation, the row and column weights are constant (wr = 4, wc = 2) and fulfill
wr = wc(n/r) = 2wc.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c1 c2 c3 c4 c5

Figure 2.5: The Tanner graph of a [10, 5] binary linear code.

2.4.2 Moderate-Density Parity-Check Codes

The term moderate-density parity-check code was coined in [OB09]. First applications of MDPC
codes in public-key cryptography were presented a few years later in [MTSB12, MTSB13].
MDPC codes belong to the family of binary linear [n, k] error-correcting codes, where n is the
length, k the dimension, and r = n − k the co-dimension of a code C. Binary linear error-
correcting codes are equivalently described either by their generator G or by their parity-check
matrix H. The rows of generator matrix G ∈ Fk×n2 form a basis of C while H ∈ Fr×n2 describes
the code as the kernel C = {c ∈ Fn2 |HcT = 0⊥} where 0⊥ represents an all-zero column vector.
The syndrome of any vector c ∈ Fn2 is defined as s = HcT ∈ Fr2. Hence, the code C is comprised
of all vectors x ∈ Fn2 whose syndrome is zero for a particular parity-check matrix H.

Similarly to LDPC codes, MDPC codes limit the weight of the parity-check matrix. MDPC
codes are defined by only allowing a moderate Hamming weight w = O(

√
n log(n)) for each row

of the parity-check matrix. The row Hamming weight is typically higher than in the case of
LDPC codes but still lower compared to common block codes. By an (n, r, w)-MDPC code we
refer to a binary linear [n, k] code with such a constant row weight w.

Recall that a code C is called quasi-cyclic (QC) if for some positive integer n0 > 0 the code is
closed under cyclic shifts of its codewords by n0 positions (cf. Definition 2.2.9). Furthermore,
it is possible to choose the generator and parity-check matrices such that they consist of p× p
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circulant blocks if n = n0 · p for some positive integer p. This allows to completely describe the
generator and parity-check matrices by their first row. If an (n, r, w)-MDPC code is quasi-cyclic
with n = n0 · r, we refer to it as an (n, r, w)-QC-MDPC code.

As for LDPC codes, MDPC codes can be described by a bipartite Tanner graph with n
variable nodes vj and n − k check nodes ci. The difference to LDPC codes is visible by an
increased number of edges due to a higher row weight in the parity-check matrices of MDPC
codes. A detailed description of how to use (QC-)MDPC codes in code-based cryptography is
given in Chapter 3 and decoding of (QC-)MDPC codes is investigated in Chapter 4.
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Chapter 3

Code-Based Public-Key Encryption
Schemes

This chapter introduces public-key cryptography and its basic concepts. Code-based
public-key encryption is presented starting with the traditional McEliece [McE78]
and Niederreiter [Nie86] cryptosystems. We survey optimizations for McEliece and
Niederreiter and furthermore show how to instantiate the McEliece and Niederre-
iter cryptosystems with QC-MDPC codes. We conclude this chapter with a security
survey of code-based cryptography followed by a summary on parameter selection.

Contents

3.1 Introduction to Public-Key Cryptography . . . . . . . . . . . . . . . . . . . 21
3.2 The McEliece Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 The Niederreiter Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Security of Code-Based Cryptography . . . . . . . . . . . . . . . . . . . . . 32
3.5 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction to Public-Key Cryptography

The notion of public-key encryption revolutionized cryptography in the 1970’s and strongly
influenced today’s modern cryptography. Historically, sensitive information was encrypted us-
ing secret-key encryption algorithms. However, secret-key encryption schemes share a major
drawback: they all require an initial secret channel between two parties to agree on some secret
key before being able to communicate confidentially over insecure channels, a typical chicken-
and-egg problem. Initial secret channels could be face-to-face meetings in a secure environment
or channels provided by trusted third parties, e.g., a trusted courier who transports the secret
from one communication partner to the other.

While some early secret-key schemes were used at larger scale, e.g., the military Enigma
rotor cipher in World War II, secret-key schemes alone are obviously not practical in times of
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Internet commerce and connected devices. Imagine a simple scenario of online shopping: a
customer opens the website of a merchant, selects some desired items and proceeds to checkout
and payment where he enters sensitive information about his identity as well as payment details.
Clearly, such data should not be transmitted in plain to prevent fraudsters from recording and
using this information for malicious activities, be it a simple analysis of buying patterns or
reusing the payment details for fraudulent transactions. Encryption of sensitive information
seems to be the logical solution to allow only the merchant to read and process the payment
data. However, using secret-key encryption in such scenarios is non-trivial in practice. The
merchant and the customer would have to agree on a secret-key in a secured environment
beforehand which is not feasible with millions of customers and merchants around the world.

In the 1970’s, long before the rise of the Internet and e-commerce, the secret-key distribution
problem was overcome by introduction of public-key cryptography, also known as asymmetric
cryptography. Instead of sharing a symmetric secret-key between two communication parties,
the main idea of asymmetric cryptographic schemes is to associate two mathematically related
keys with each entity. These key-pairs consist of a public-key and a private-key. The public-
key is assumed to be known to everyone with some binding to the owning entity. Knowledge
of the public-key and its owner allows to encrypt data which can only be decrypted by the
corresponding private-key. In contrast to the public-key, the private-key is kept secret by the
owner such that only the intended receiver is able to decrypt the data.

Diffie-Hellman Key Exchange

The starting point of public-key cryptography was the introduction of a key-agreement protocol
published by Diffie and Hellman [DH76]. This protocol for the first time allowed two parties
to agree on a secret-key without requiring an initial exchange of secret information, it merely
requires that those two parties communicate over public channels. The Diffie-Hellman protocol
is defined as follows: let p be a prime number and g be a generator of a multiplicative cyclic
group G in Z∗p. Alice randomly selects a secret a ∈R {1, . . . , p−1} and computes her public-key
pkA = ga mod p. Bob randomly selects a secret b ∈R {1, . . . , p − 1} and computes his public-
key pkB = gb mod p. Alice sends pkA to Bob while Bob sends pkB to Alice. The exchange of
pkA and pkB is done via a public channel, hence both public-keys are not only known to Alice
and Bob but to everyone who is listening to the public channel. The shared secret is derived
by Alice and Bob as follows: Alice computes

sk = pkB
a = (gb)a = gba mod p

while Bob computes
sk = pkA

b = (ga)b = gab mod p.

Due to the commutativity property of exponentiation mod p, Alice and Bob compute the same
secret element gba = gab mod p. Any passive attacker capable of observing messages sent over
the public channel only has knowledge of ga mod p and gb mod p. An attacker would need to
compute the discrete logarithm of either of these two values to obtain a or b which would allow
to compute gab mod p as done by Alice and Bob. Note, instead of directly allowing for public-
key encryption, the agreed secret of the Diffie-Hellman protocol is used to derive a secret-key
under which sensitive data is encrypted using a symmetric encryption scheme. Furthermore,
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the DH protocol in its basic form protects only against passive adversaries. An active adversary
can exchange sent messages to insert himself as a man-in-the-middle, making Alice and Bob
believe they are talking to each other while in fact their communication is being redirected and
re-encrypted by an attacker which allows him to obtain the plain messages.

There are many methods available to compute discrete logarithms, among them are the baby-
step giant-step [Coh93], index calculus [Adl79], number field sieve [LL93], Pollard rho [Pol78],
and many more methods. However, the runtime of all of these algorithms is exponential in
the group size. Solving discrete logarithms efficiently in polynomial time still remains an open
problem. While it is unclear whether discrete logarithms are the only way to break the DH
protocol, the equivalence of the security of the DH protocol and solving discrete logarithms was
shown in [Mau94] under certain conditions. It is generally believed that there are no efficient
solutions for computing discrete logarithms for carefully chosen groups and hence to attack the
DH protocol. However, due to Shor there exists an efficient algorithm in the world of quantum
computers which efficiently solves the discrete logarithm problem in polynomial time [Sho97].

RSA Cryptosystem

The work by Diffie and Hellman was followed by the introduction of RSA, a public-key cryptosys-
tem for data encryption and digital signatures by Rivest, Shamir and Adleman [RSA78]. The
RSA public-key encryption scheme works as follows: let p, q be prime numbers and n = p · q.
Randomly select a public-key e ∈R {2, . . . ,Φ(n) − 1} and compute the private key d = e−1

mod Φ(n)1. Encryption of a message m ∈ Zn is done by computing x = me mod n, decryption
reveals the message as m = xd mod n = (me)d = m mod n. The RSA signature scheme is
basically the inverse of the encryption scheme. Signing a message m is done by raising it to the
private key d giving y = md mod n. Everyone who is in possession of the public-key e can now
verify signature y by raising it to the power of e and checking whether the message m′, which
is sent along with the signature, matches the result m′ ?= ye mod n.

As shown above, the security of the Diffie-Hellman protocol is based on the hardness of the
discrete logarithm problem: with p prime, g a generator of a multiplicative cyclic group G in
Z∗p and given x = ga mod p, find a. RSA on the other hand bases its security on the hardness
of finding the e-th roots of arbitrary numbers in Zn. To date, the most efficient attack on
RSA is to perform integer factorization: given a composite n = p · q, find primes p or q. The
fundamental theorem of arithmetic states that every integer greater than 1 is either a unique
product of primes or a prime itself. Efficiently finding the prime factors of large composite
numbers becomes difficult. Finding the prime factors of a composite number that consists of
only two primes, a semiprime number, is to date the hardest instance of the prime factorization
problem. Specialized factoring algorithms such as the special number field sieve [Pom96], Euler’s
factorization method [Ore48], Fermat’s factorization method [Leh74], Pollard rho [Pol78] and
many more are available. None of these however are able to efficiently compute the prime
factors of a semiprime number in polynomial time and thus do not break RSA with properly
chosen parameters. On the other hand, as in the case of discrete logarithms, there is no proof
available stating that efficient prime factorization algorithms cannot exist. In fact, on quantum

1By Φ(n) we refer to Euler’s totient function Φ(n) := |{x ∈ N | 1 ≤ x ≤ n ∧ gcd(x, n) = 1}| which counts the
number of relatively prime positive integers of n.
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computers the Shor algorithm efficiently solves the prime factorization problem in polynomial
time [Sho97].

Elliptic Curve Cryptography

In the 1980’s, two independent proposals suggested the use of elliptic curves for cryptographic
applications [Mil86, Kob87]. Elliptic curves in cryptography are defined over finite fields and
are sets of points (x, y). Additive cyclic groups are defined over elliptic curves such that each
point is a multiple of a generator point P of the group. E.g. if sets of points (x, y) fulfill the
Weierstraß equation

y2 = x3 + ax+ b

with a, b fulfilling the condition 4a3 + 27b2 6= 0, then they form an elliptic curve without
singularities. In addition, ∞ is the point at infinity which acts as the neutral element of the
cyclic group.

Cryptosystems based on discrete logarithms in finite fields can be transformed to elliptic
curves by replacing exponentiations and multiplications in finite fields by scalar-multiplications
and point-additions on elliptic curves. The elliptic curve Diffie-Hellman (ECDH) for example
is a transformation of the earlier introduced Diffie-Hellman key exchange. In ECDH, Alice and
Bob compute their public keys Qa and Qb by selecting random integers a and b and multiplying
them with the generator point P of an agreed upon elliptic curve. Alice computes Qa = aP
while Bob computes Qb = bP. Alice and Bob exchange each other’s public keys and compute
the shared secret point (x, y) = aQb = bQa = abP on the elliptic curve. The shared secret is
then typically derived from the x-coordinate of the shared point (x, y), for example by hashing
x to derive a symmetric key.

The security of elliptic curve cryptography is based on the hardness of solving the elliptic
curve discrete logarithm problem (ECDLP), i.e., given two points P and Q on an elliptic curve,
find a scalar n such that nP = Q. To date, solving the elliptic curve discrete logarithm problem
with the baby-step giant-step [Coh93] and Pollard rho [Pol78] methods seems much harder
compared to computing discrete logarithms in finite fields or solving the factorization problem.
A 128-bit security level is reached for ECDH already with 256-bit keys while for RSA and DH
key sizes of 3072-bit have to be used according to NIST recommendations [NIS13]. Yet again
as in the case of RSA and DH, no proof exists to facilitate the hardness of computing discrete
logarithms on elliptic curves. Furthermore, Shor’s quantum algorithm can be transformed to
also efficiently solve discrete logarithms on elliptic curves in polynomial time [Sho97].

Cryptography from Coding Theory

The first public-key encryption scheme based on algebraic codes was introduced by Robert J.
McEliece in 1978 [McE78] and is usually referred to as the McEliece cryptosystem. A variation,
the Niederreiter cryptosystem, was later introduced by Harald Niederreiter in [Nie86] using GRS
codes instead of Goppa codes. The Niederreiter cryptosystem can be considered as the dual
of the McEliece cryptosystem. Both rely on the same idea of having a secret code description
and a public code description. Furthermore, McEliece and Niederreiter were shown to provide
equivalent security in [LDW94].
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While the secret code description allows efficient decoding, the public code description is
only useful to generate valid codewords/ciphertexts which can be decoded by the secret code
but knowledge of the public code does not allow for efficient decoding. Both cryptosystems
rely on variants of hard problems in coding theory, namely the hardness of decoding a random
linear code and the indistinguishability of the used code family from random codes in case of
McEliece and the syndrome decoding problem which was proven to be NP-complete in [BMv78]
in case of Niederreiter. Although the McEliece and Niederreiter cryptosystems have withstood
the test of time without being seriously broken, they did not see wide adoption in practice,
yet. A major drawback were their key sizes which, with cryptographically secure parameters,
are much larger than those of the RSA and ECC cryptosystems at equivalent security levels.
Recent advances in code-based cryptography however paved new ways for efficient public-key
cryptosystems based on coding theory which combine decent performance with moderate key
sizes making code-based cryptosystems serious competitors for RSA and ECC. In this context,
we will take a closer look at code-based cryptosystems in the remainder of this chapter.

Outline The McEliece cryptosystem is introduced in Section 3.2, followed by the Niederreiter
cryptosystem in Section 3.3. Security arguments of code-based cryptography are outlined in
Section 3.4 and parameter selection is summarized in Section 3.5.

3.2 The McEliece Cryptosystem

The central idea of the McEliece cryptosystem is to transform an efficiently solvable instance of
decoding a linear block code into another one which appears as a random linear code for which
decoding is hard. This is achieved by scrambling and permuting the generator matrix of an
efficiently decodable code.

The McEliece cryptosystem encodes a plaintext into a codeword using the generator matrix of
a public code selected by the receiver and adds a randomly generated error vector of Hamming
weight t to the codeword which can only be removed by the intended receiver who is in possession
of the secret code description. In the following we introduce traditional McEliece in Section 3.2.1,
show how to optimize McEliece in Section 3.2.2 followed by QC-MDPC McEliece in Section 3.2.3.
The content of this chapter follows the notation used in [Hey13, RZ14, Mis14].

3.2.1 Traditional McEliece Encryption

Given a binary [n, k, d]-Goppa code C, let G be a k×n generator matrix of C. Further, let there
be an efficient t-error correcting decoding algorithm Ψ∆. Such a decoding algorithms is able
to decode any codeword of C in polynomial time which has at most t errors added to it. For
binary Goppa codes, Ψ could be the decoding algorithm due to Patterson [Pat75] and ∆ would
be the Goppa polynomial g(x) and the support (α1, . . . , αn). From such a code the McEliece
cryptosystem is constructed as usual for public-key encryption systems by three algorithms for
key-generation, encryption, and decryption [McE78].
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Key-Generation

Select a random n × n permutation matrix P and a random non-singular k × k scrambling
matrix S. The public-key G′, which is a k × n generator matrix similarly to G, is computed
from G as

G′ = S ·G · P.

The private-key is comprised of a scrambling matrix S, a permutation matrix P , and an efficient
t-error correcting decoding algorithm Ψ∆, resulting in

sk = (S, P,∆).

More commonly, one would compute the inverse S−1 and P−1 during key generation and store
them instead of S and P since only their inverses are required during decryption. Hence, the
more common equivalent private-key is comprised of

sk = (S−1, P−1,∆).

Encryption

Given a message m ∈ Fk2, generate a random error e ∈R Fn2 with Hamming weight wt(e) ≤ t.
The ciphertext x ∈ Fn2 of message m is computed as

x = m ·G′ + e.

Decryption

Given a ciphertext x ∈ Fn2 , decryption is done in three steps:
(1) Revert the permutation:

x′ = x · P−1

(2) Decode the (still scrambled) ciphertext:

m′ = Ψ∆(x′)

(3) Descramble the message:
m = m′ · S−1

Note: the message is correctly recovered by the t-error correcting decoding algorithm ΨG as
long as the Hamming weight of the error is less than or equal to t, even though the error is
permuted in the first decoding step to

x′ = x · P−1 = (m ·G′ + e) · P−1 = m · S ·G+ e · P−1.

The important fact is that the Hamming weight of the error does not change by permutation,
hence decoder Ψ∆ is still able to remove e · P−1 from x′ in the second decoding step. Inverting
the linear transformation by multiplying the decoded result m · S with S−1 finally recovers the
plaintext.
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3.2.2 Improved McEliece Encryption

Since the keys of the McEliece cryptosystem are fairly large when using cryptographically secure
parameters, efforts were made to investigate optimizations of the key sizes while still maintaining
the same security level. As explained in [AF95], the scrambling matrix S of the McEliece
cryptosystem does not serve a cryptographic purpose but only ensures that the public-key is
not systematic. Since conversions for IND-CCA security are required nevertheless in both cases
with and without scrambling matrices [OS09], the scrambling matrix can simply be removed
and the public generator matrix can be brought to systematic form, i.e., G′ = [Ik |Q] with Ik
being the k×k identity matrix. Furthermore, the permutation matrix P can be stored implicitly
instead of permuting the generator matrix, e.g., by permuting the code support L when using
Goppa codes. Thus, the permutation matrix does not have to be stored as well.

With these optimizations, the private-key size is reduced since the formerly required matrices
S and P (or S−1 and P−1) are removed. The size of the public-key benefits as well, it is reduced
to a k × (n − k) matrix instead of a k × n matrix because for systematic matrices the k × k
identity matrix does not have to be stored. The three algorithms for McEliece key-generation,
encryption, and decryption are adapted as follows.

Key-Generation

Let G be a k × n generator matrix of a binary [n, k, d]-Goppa code C with an efficient t-error
correcting decoding algorithm Ψ∆. Bring G to systematic form G′ or equivalently, given a
parity-check matrix H of C, bring H to systematic form and compute the systematic generator
matrix

G′ = [Ik |Q]

from it by Gauß-Jordan elimination. The private-key is the efficient decoding algorithm Ψ∆,
the public-key is the systematic generator matrix G′.

Encryption

Encryption complexity is reduced since message m can simply be copied to the first k positions
of ciphertext x (i.e., a multiplication with Ik). The remaining n − k positions are computed
as mQ. After sampling an error vector e of Hamming weight wt(e) ≤ t, e is added to the
concatenation of m and mQ resulting in ciphertext

x = (m |mQ) + e.

Decryption

Decryption now simply requires to decode the received ciphertext x, i.e.,

m = Ψ∆(x).
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3.2.3 QC-MDPC McEliece Encryption

Instantiating McEliece with t-error-correcting (QC-)MDPC codes was proposed in [MTSB12,
MTSB13], mainly to significantly reduce the size of the keys while still maintaining reasonable
security arguments. The proposed parameters for an 80-bit security level are n0 = 2, n =
9602, r = 4801, w = 90, t = 84, which results in a much more practical public-key size of 4801
bits and a private-key size of 9602 bits compared to binary Goppa codes which require around
64 Kbytes for public-keys at the same security level.

In QC-MDPC McEliece, a r-bit plaintext block is encoded into an n-bit codeword to which
t errors are added. The parity-check matrix H has constant row weight w and consists of n0
circulant blocks, the redundant part Q of the systematic generator matrix G consists of n0 − 1
circulant blocks. The public-key has a size of r bits and the private-key has a size of n bits
which can be compressed since it is very sparse (w << n).

In the following we describe the key-generation, encryption and decryption of the McEliece
cryptosystem based on t-error correcting (n, r, w)-QC-MDPC codes.

Key-Generation

The parity-check matrix H is the private-key in QC-MDPC McEliece. Since the (n, r, w)-QC-
MDPC code is quasi-cyclic, the parity-check matrix consists of n0 concatenated r × r blocks

H = [H0 | . . . |Hn0−1] .

We denote the first row of each of these blocks by h0, . . . , hn0−1 ∈ Fr2. The public-key in
QC-MDPC McEliece is the corresponding generator matrix G, which is computed from H in
standard form as G = [Ik |Q] by concatenation of the identity matrix Ik ∈ Fk×k2 with

Q =


(H−1

n0−1 ·H0)ᵀ
(H−1

n0−1 ·H1)ᵀ
· · ·

(H−1
n0−1 ·Hn0−2)ᵀ

 .

The key generation starts by randomly selecting first row candidates h0, . . . , hn0−1 ∈R Fr2
such that the overall row Hamming weight sums up to w = ∑n0−1

i=0 wt(hi). Since we intend to
generate a code which is quasi-cyclic, the n0 blocks of the parity-check matrix are generated
from the first rows by cyclic shifts. The resulting parity-check matrix belongs to an (n, r, w)-
QC-MDPC code with n = n0 · r. If the last block Hn0−1 is non-singular, i. e., if H−1

n0−1 exists,
the public-key is computed as

G = [Ik |Q] .

Otherwise new candidates for hn0−1 are generated until a non-singular Hn0−1 is found.
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Encryption

A plaintext m ∈ Fk2 is encrypted by encoding it into a codeword using the recipient’s public-key
G and adding a random error vector e ∈ Fn2 of Hamming weight wt(e) ≤ t to it. Hence, the
ciphertext is computed as

x = (m ·G⊕ e) ∈ Fn2 .

Decryption

Given a ciphertext x ∈ Fn2 , the recipient removes the error vector e from x using a t-error
correcting QC-MDPC decoding algorithm Ψ and the secret code description H yielding

mG = ΨH(x).

Since we have a systematic generator matrix G = [Ik |Q], the first k positions after decoding
mG are equal to the k-bit plaintext.

3.3 The Niederreiter Cryptosystem

The central idea of the Niederreiter cryptosystem is to encode messages into error vectors and
to compute their public syndromes from which only the intended receiver who is in possession
of the secret code description can recover the error and hence the message. Another difference
to McEliece is that parity-check matrices are used instead of generator matrices. Because of
its similarities to the McEliece cryptosystem, Niederreiter is often called the dual of McEliece.
In the following we introduce traditional Niederreiter in Section 3.3.1, show how to optimize
Niederreiter in Section 3.3.2 followed by QC-MDPC Niederreiter in Section 3.3.3.

3.3.1 Traditional Niederreiter Encryption

As for the McEliece cryptosystem we assume being given a binary [n, k, d]-Goppa code C, this
time defined by its r × n parity-check matrix H. Further, let there be an efficient t-error
correcting decoding algorithm Ψ∆ which is able to decode any codeword of C with at most
t errors added to it. For binary Goppa codes, Ψ could be the decoding algorithm due to
Patterson [Pat75] and ∆ would be the Goppa polynomial g(x) and the support (α1, . . . , αn).
From such a code the Niederreiter cryptosystem is constructed as usual for public-key encryption
systems by three algorithms for key-generation, encryption, and decryption.

Key-Generation

After generating a r × n parity-check matrix H, select a random n× n permutation matrix P
and a random non-singular r × r scrambling matrix S. The public-key H ′ is computed as

H ′ = S ·H · P.
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The private-key is comprised of a permutation matrix P , a scrambling matrix S, and a secret
code description ∆ resulting in

sk = (S, P,∆).

As again only the inverses of S and P are required for decoding, more commonly their inverses
are computed and stored during key-generation as well giving the equivalent private-key

sk = (S−1, P−1,∆).

Encryption

Given a message m and public-key H ′, the sender encodes m into a binary vector e of length
n and Hamming weight wt(e) = t. Transformation of m into a vector with constant weight
is achieved through constant weight encoding [Sen05]. After transformation, the ciphertext is
computed as

x = H ′ · eᵀ.

Decryption

Given a ciphertext x ∈ Fr2, decryption is accomplished similarly to McEliece in four steps:

(1) Descramble the ciphertext:
x′ = S−1 · x

(2) Decode the descrambled but still permuted ciphertext:

e′ = Ψ∆(x′)

(3) Revert the permutation:
e = P−1 · e′

(4) Recover the message by reverting the constant weight encoded e into m.

Correctness of the decryption algorithm is shown as follows:

eᵀ = P−1 ·Ψ∆(S−1 ·H ′ · eᵀ)
= P−1 ·Ψ∆(S−1 · S ·H · P · eᵀ)
= P−1 ·Ψ∆(H · P · eᵀ)
= P−1 · P · eᵀ

= eᵀ.
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3.3.2 Improved Niederreiter Encryption

Similar to the improvements applied to McEliece, it is possible for Niederreiter to have a system-
atic public parity-check matrix H ′ and to omit permutation matrix P and scrambling matrix
S. With the applied optimizations, the size of the Niederreiter public parity-check matrix is
reduced from (n−k)×n to (n−k)×k and the private-key is reduced to storing the secret code
description ∆.

The three algorithms for Niederreiter key-generation, encryption, and decryption are adapted
as follows.

Key-Generation

Public-key H ′ is computed from the parity-check matrix H of a randomly selected binary
[n, k, d]-Goppa code C that has an efficient decoding algorithm Ψ∆ by bringing H to systematic
form

H ′ᵀ = [Q | In−k] ,

e.g., by Gauß-Jordan elimination. The identity part In−k of H ′ does not have to be stored,
hence reducing the size of the public-key. The private-key is the secret code description ∆,
leading to

sk = ∆.

Encryption

The encryption algorithm is not changed in optimized Niederreiter. The sender still encodes m
into e by constant weight encoding where e is a binary vector of length n and Hamming weight
wt(e) ≤ t, and computes

x = H ′ · eᵀ.

The only difference is that H ′ is of systematic form, hence multiplication of eᵀ with the identity
part In−k of H ′ can be done implicitly by copying eᵀ.

Decryption

Given a ciphertext x ∈ Fr2, decryption is accomplished in two instead of four steps:
(1) Decode the ciphertext: e = Ψ∆(x).
(2) Recover the message by reverting the constant weight encoded e into m.

3.3.3 QC-MDPC Niederreiter Encryption

The Niederreiter cryptosystem’s key-generation, encryption and decryption based on t-error
correcting (n, r, w)-QC-MDPC codes were proposed in [BBMR14]. We introduce QC-MDPC
Niederreiter following a similar notation as used in the original publication.
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Key-Generation

Key-generation requires to generate a (n, r, w)-QC-MDPC code C with n = n0r. The private
key is a composed parity-check matrix of the form

H = [H0 | . . . |Hn0−1]

which exposes a decoding trapdoor. The public-key is a systematic parity-check matrix

H ′ = [H−1
n0−1 ·H] = [H−1

n0−1 ·H0 | . . . |H−1
n0−1 ·Hn0−2 | I]

which hides the trapdoor but allows to compute syndromes of the public code.
In order to generate a (n, r, w)-QC-MDPC code with n = n0r, select the first rows

h0, . . . , hn0−1 of the n0 parity-check matrix blocks H0, . . . ,Hn0−1 at random with Hamming
weight ∑n0−1

i=0 wt(hi) = w and check that Hn0−1 is invertible (which is only possible if the
row weight dv is odd). The parity-check matrix blocks H0, . . . ,Hn0−1 are generated by r − 1
quasi-cyclic shifts of the first rows h0, . . . , hn0−1. Their concatenation yields the private parity-
check matrix H. The public systematic parity-check matrix H ′ is computed by multiplication
of H−1

n0−1 with all blocks Hi. Since the public and private parity-check matrices H ′ and H are
quasi-cyclic, it suffices to store their first rows instead of the full matrices. The identity part I
of the public-key is usually not stored.

Encryption

Given a public-key H ′ and a message m ∈ Z/
(n
t

)
Z, encode m into an error vector e ∈ Fn2 with

wt(e) = t. The ciphertext is the public syndrome

s′ = Heᵀ ∈ Fr2.

Decryption

Given a public syndrome s′ ∈ Fr2, recover its error vector using a t-error correcting (QC-)MDPC
decoder ΨH with private key H. If

e = ΨH(s′)

succeeds, return e and transform it back to message m. On failure of ΨH return ⊥.

3.4 Security of Code-Based Cryptography

The security of cryptographic schemes based on coding theory is usually considered twofold:
ciphertext security (decoding attacks) and key security (structural attacks). Decoding attacks
try to recover encrypted messages from ciphertexts while structural attacks try to recover the
private-key from the public code. The ciphertext security of the McEliece cryptosystem is based
on the hardness of finding a codeword of an arbitrary linear code which has minimum distance
to a given input vector. This is known as the general decoding problem which was proven to be
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NP-complete in [BMv78]. The NP-completeness of the related problem of finding the minimum
distance of a general code was proven in [Var97].

So far, the best generic message recovery attacks against McEliece and Niederreiter with
binary Goppa codes are based on generic decoding attacks, so called information-set decoding
(ISD) algorithms which allow to decode random linear codes. This attack was presented in the
original publication of the McEliece cryptosystem [McE78]. First ISD variants were presented
in [LB88, Leo88, Ste89], an improved ISD attack by Canteaut and Sendrier [CS98] found the
originally proposed parameters of McEliece to not reach the proclaimed security level such that
the parameters had to be adapted. Follow-up work by [BLP08, FS09, Pet10, BLP11] improved
on this attack, further improved ISD attacks were presented in [MMT11, BJMM12]. However,
none of these attacks are of devastating nature for code-based cryptosystems. With adapted
parameters that take improved attacks into account, the McEliece and Niederreiter cryptosys-
tems are still considered cryptographically secure public-key algorithms, especially when used
with binary Goppa codes. In fact, the long time of cryptanalysis without a serious weakness in
the structure of the cryptosystems is one of the strongest security arguments of McEliece and
Niederreiter. This assumption is furthermore underlined by a recent first implementation of
information-set decoding on special-purpose hardware which was presented in [HZP14]. Their
work showed that even with special-purpose hardware implementations no significant attack
speed-ups are achievable. In fact it seems that the attack realization adds non-negligible over-
head to the theoretically assumed attack costs.

An early observation on the McEliece cryptosystem is that if two ciphertext c1, c2 with a
low Hamming distance are observed by an attacker, i.e., if dist(c1, c2) ≤ 2t, there is a high
probability that those two ciphertexts encrypt the same plaintext. This is due to the fact
that limited entropy is used during encryption (n � t). This observation first appeared in
the Master thesis of Heiman [Hei87]. Later, Berson [Ber97] defined a message-resend condition
for McEliece as having two ciphertext c1 = mSGP + e1 and c2 = mSGP + e2 with e1 6= e2.
While the expected Hamming distance of cryptograms of different messages is around n/2, the
Hamming distance of c1 and c2 is limited to at most dist(c1, c2) ≤ 2t because both only differ in
t positions from mSGP . Hence, in the worst case the ciphertexts c1 and c2 differ in 2t positions
if the error vectors e1 and e2 do not share set bits in any position. If they do, these error bits
cancel each other out2, reducing the Hamming distance to less than 2t. Note, the improved
McEliece without scrambling and permutation matrices is susceptible to the same attack.

Building on this observation Berson showed in [Ber97] that it is even possible to recover the
plaintext from resent encrypted messages of the form c1, c2 in βk3 time, where β is a small
constant. Furthermore, he generalized the attack to a related message attack, assuming two
ciphertexts of the form c1 = m1SGP + e1 and c2 = m2SGP + e2 with m1 6= m2, e1 6= e2 and
knowledge of a linear relation between m1 and m2. This attack succeeds as before in βk3 time.

Another problem of the original McEliece cryptosystem is its malleability [EOS07]. Mal-
leability is a (usually undesired) property of cryptosystems which allows an attacker to modify
ciphertexts such that they result in different but valid ciphertexts whose modification is not
detectable by the receiver. Malleability is quite common, e.g., the plain RSA encryption/sig-
nature scheme is malleable without a padding scheme such as PKCS#1 [RSA12]. In case of

2Recall that c1, c2 ∈ Fn
2 and 1 + 1 = 0 mod 2.
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McEliece, an attacker is able to add any number of rows of the public-key G to a ciphertext
yielding another valid ciphertext. In plaintext this can be seen as the capability of adding any
m′ to the intended plaintext m which is encrypted to x = mG+ e by computing

x′ = m′G+ x = (m+m′)G+ e.

The receiver successfully decrypts the ciphertext x′ to m+m′ without detecting a modification.
Furthermore, the complexity of ISD attacks is significantly reduced if the plaintext is partially

known to an attacker [CS98]. Assuming l bits of the plaintext are known, their contributing
parts to the ciphertext can be computed from the corresponding rows of G. The attacker
subtracts these rows from the ciphertext. The modified ciphertext now needs to be decoded in
a code of reduced dimension k − l instead of dimension k which reduces the attack complexity.

The key security of the McEliece cryptosystem is based on the indistinguishability of the
public generator matrix from a random matrix of the same size. Key recovery attacks in code-
based cryptography are usually structural attacks which recover information about the private
code from the public code description, i.e., recovery of private-key information from public-
keys. McEliece and Niederreiter with binary Goppa codes did not encounter a successful key-
recovery attack so far. However, there are negative examples when using different code classes,
usually with some added structure. McEliece with maximum-rank-distance codes was proposed
in [GPT91] and got broken in [Gib95, Gib96]. The Niederreiter scheme with generalized Reed-
Solomon codes was successfully attacked in [SS92]; the attack was further improved in [Wie10].
Using binary Goppa codes instead of GRS codes was found to prevent the attack.

The suggested QC-MDPC McEliece/Niederreiter parameters in [MTSB13] account for the
best currently known ISD attack of [BJMM12] and the improvements achieved by the DOOM-
attack [Sen11] to counter previous attacks on McEliece schemes which were based on the com-
bination of a quasi-cyclic/dyadic structure with some algebraic code information. Furthermore,
[MTSB13] state that a quasi-cyclic structure by itself does not imply a significant improvement
for an adversary. The description of McEliece based on QC-MDPC codes in Section 3.2.3 elim-
inates the scrambling matrix S and the permutation matrix P which were used in the original
description of the McEliece cryptosystem. An IND-CCA conversion (e.g., [KI01, NIKM08])
allows G to be in systematic form without introducing security flaws. In addition, Perl-
ner [Per14] showed that McEliece/Niederreiter with cyclo-symmetric MDPC codes as proposed
in [BBMR14] do not reach the proclaimed security levels since improved information set decod-
ing attacks were not correctly accounted for during parameter selection. It is worth noting that
Perlner also states that his attack does not affect quasi-cyclic MDPC codes and even places
QC-MDPC codes above CS-MDPC codes in terms of efficiency (with adapted CS-MDPC pa-
rameters). A detailed discussion of the security of QC-MDPC McEliece is given in [MTSB13].

To prevent commonly known attacks, e.g., reaction attacks or malleability attacks, cryp-
tosystems used in practice should provide indistinguishability under adaptive chosen-ciphertext
attacks (IND-CCA). In case of McEliece and Niederreiter, so called IND-CCA conversion can
be applied. The McEliece variants proposed by Kobara and Imai [KI01] apply the IND-CCA
conversions of Fujisaki and Okamoto [FO99, FO13] and Pointcheval [Poi00] to McEliece. They
provide IND-CCA security and were proven as secure as the original McEliece scheme. A rather
new variant is the IND-CCA secure hybrid-encryption scheme which was developed on the basis
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of the Niederreiter cryptosystem by Persichetti [Per13]. An extensive list of security definitions
of several security goals such as indistinguishability under chosen-plaintext attacks (IND-CPA)
and IND-CCA as well as a closer look at IND-CCA conversions are provided in Chapter 7.3.

Although currently there are no indications of weaknesses, we would like to point out that QC-
MDPC codes in combination with McEliece and Niederreiter public-key encryption is a fairly
new proposal which has seen few cryptanalytic results so far. Hence, one goal of this thesis is
to highlight the excellent properties in practice which are offered by QC-MDPC codes in code-
based cryptosystems and to attract more attention of cryptanalysts towards these schemes.

For further reading, we recommend the detailed insights into the cryptanalytic efforts of the
McEliece and Niederreiter cryptosystems which is provided in [EOS07]. An overview of existing
side-channel attacks on code-based cryptosystems in given in Chapters 5.4 and 6.1.

3.5 Parameter Selection

Parameter selection is a challenging task for any cryptosystem and commonly requires a trade-off
between security and practicality, e.g., performance, key size, length of the plain-and ciphertexts.
From a security point-of-view it is tempting to choose parameters which provide large margins
against known attacks. On the other hand, overestimated parameters commonly cause severe
drawbacks with regard to performance and key/message sizes.

In practice, three security levels are commonly targeted: 80 bits, 128 bits, and 256 bits. These
security levels can be seen as a way to measure and compare the resistance of a cryptosystem
towards the best known attacks on this cryptosystem, e.g., integer factorization in the case
of RSA. Security levels are commonly stated in bits, however they actually reflect how many
”operations” are required on average by the best known attack to break a cryptosystem. These
operations can be vastly different, from single CPU instructions to full-blown en-/decryptions of
the cryptosystem under investigation. However, the Bachmann-Landau notation [Bac94, Lan09]
is commonly used to state the security level and neglects these constant factors. In order to
break a cryptosystems with parameters designed for a security level of 128 bits, an attacker
needs to perform O(2128) operations.

Originally, McEliece proposed to use the cryptosystem with binary Goppa codes of size
n = 1024, k = 524, t = 50. Using the ISD attack presented in the original work of McEliece,
breaking the cryptosystem with these parameters requires≈ 281 operations (cf. [McE78, AM89]).
Improved attacks presented in [BLP11] lowered the security level reached by the original parame-
ters to 249.69. Hence, the parameters were adapted as shown in Table 3.1. In [MTSB13], concrete
parameters for 80-/128-/ and 256-bit security levels are proposed for QC-MDPC McEliece (cf.
Table 3.2). Since small key sizes are particularly crucial for embedded systems, we select the
QC-MDPC parameter sets with n0 = 2 in this work. At an 80-bit security level, the following
parameters are proposed: n0 = 2, n = 9602, r = 4801, w = 90, t = 84. With these parameters, a
4801-bit plaintext block is encoded into a 9602-bit codeword to which t = 84 errors are added.
The parity-check matrix H has constant row weight w = 90 and consists of n0 = 2 circulant
blocks, the redundant part Q of the generator matrix G consists of n0 − 1 = 1 circulant block.
The public-key has a size of 4801 bits and the private-key has a size of 9602 bits which can be
compressed to 1440 bits since it is very sparse (w � n).
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Table 3.1: Parameters for different security levels equivalent to symmetric security for McEliece
with binary Goppa codes as proposed in [McE78, BS08, BLP08, BLP11, NMBB12].
The public-key size is given in systematic and in original form.

Security level n k t PK size PK size Reference
systematic [kB] original [kB]

50-bit 1024 524 50 32 66 [McE78]
80-bit 2048 1696 32 73 424 [BS08]
80-bit 2048 1751 27 64 438 [BLP08]
80-bit 1687 1226 43 69 252 [NMBB12]
128-bit 4096 3604 41 217 1802 [BS08]
128-bit 3178 2384 68 231 925 [BLP11]
256-bit 6944 5208 136 1104 4415 [BLP11]

Table 3.2: Parameters for different security levels for McEliece with QC-MDPC codes as pro-
posed in [MTSB13]. The private-key size is equal to code length n in bits.

Security level n0 n r w t PK size
[kB]

80-bit 2 9602 4801 90 84 0.59
80-bit 3 10779 3593 153 53 0.88
80-bit 4 12316 3079 220 42 1.13

128-bit 2 19714 9857 142 134 1.20
128-bit 3 22299 7433 243 85 1.81
128-bit 4 27212 6803 340 68 2.49
256-bit 2 65542 32771 274 264 4.00
256-bit 3 67593 22531 465 167 5.50
256-bit 4 81932 20483 644 137 7.50
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Chapter 4

Efficient Decoding of
(QC-)MDPC Codes

Compared to the relatively simple operations involved in McEliece encryption – a
vector-matrix multiplication followed by a vector addition – McEliece decryption re-
quires decoding erroneous codewords which generally is a more complex task. Since
the selection of an efficient decoding algorithm is crucial to the overall McEliece de-
cryption performance, it is imperative to evaluate and compare available options and
to investigate possible optimizations. In this chapter we introduce LDPC and MDPC
decoding techniques, evaluate the performance of concrete QC-MDPC McEliece pa-
rameter sets and make novel proposals to accelerate decoding and to effectively re-
duce the probability of decoding failures. We derive and evaluate several decoding
variations and compare them among each other to make a justified optimal decoder
selection which delivers high performance with least decoding failures.

The research presented in this chapter started out as a joint work with Stefan Heyse
and Tim Güneysu, the results were presented at CHES’13 [HvMG13]. Subsequently
the author investigated further improved decoding techniques which appeared in the
ACM Transactions on Embedded Computing Systems [vMOG15].
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4.1 Introduction

While this work focuses on the cryptographic applications of coding theory, efficient decoding
is of general interest also for non-cryptographic coding applications. An error-correcting code
whose decoding is time and memory consuming will diminish its usefulness in cryptographic
and non-cryptographic coding applications alike. While conceptually it is easy to grasp the
idea of decoding by identifying the nearest codeword to a received word (cf. Section 2.2),
constructing efficient algorithms for this task is typically hard. In general a better performance
is achieved by specifically designed decoding algorithms for a particular code class compared
to more general decoding algorithms which can be applied to larger code families. Maximum
likelihood decoding of LDPC/MDPC codes on binary symmetric channels is proven to be NP-
complete [BMv78]. Hence, it is not possible to achieve optimal decoding for typical LDPC
code sizes. On the contrary there are many sub-optimal decoders available which achieve very
good results in practice. LDPC decoders can be found in many wide-spread applications today;
LDPC codes are specified among others in the TV standards DVB-S2, DVB-T2, DVB-C2 and
in the Wi-Fi standards 802.11n / 802.11ac.

The most common class of LDPC and MDPC decoding algorithms is the class of iterative
message passing algorithms which are exchanging information back and forth between message
nodes and check nodes in the codes’ Tanner graph to achieve decoding (cf. Section ??). Belief
propagation decoding [Gal63] is a variant of this decoding technique which passes probabilities
between message nodes and check nodes. Belief propagation decoding algorithms for LDPC
and MDPC codes are mainly divided into two families commonly referred to as soft- and hard-
decision decoders. The family of soft-decision decoding generally offers a better error-correction
capability but is computationally more complex than the family of hard-decision bit-flipping
algorithms [Gal63]. Especially when handling large codes on embedded platforms, bit-flipping
decoders seem more appropriate as they do not require floating-point arithmetic and have lower
memory requirements.

Contribution The main contributions of this chapter are the evaluation of several different
decoding techniques for MDPC codes as well as the proposal of novel decoder optimizations
in order to find an optimal decoding algorithm with regard to parameter sets of QC-MDPC
McEliece and Niederreiter public-key encryption. Our decoder optimizations accelerate the
syndrome computation, reduce the decoding iterations required on average, and improve the
decoding failure rate.

Outline We introduce efficient decoding algorithms for LDPC codes in Section 4.2 and for
MDPC codes in Section 4.3. Novel optimizations are proposed in Section 4.4 to accelerate the
syndrome computation during decoding, to reduce the average number of decoding iterations,
and to decrease the decoding failure rate. We derive several combinations of decoding tech-
niques and optimizations which we evaluate and compare in Section 4.5 with a focus on the
proposed QC-MDPC McEliece/Niederreiter parameters of [MTSB13] to select the best decoding
algorithms as a basis for our implementations.
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4.2 Decoding LDPC Codes

The first decoding algorithms for LDPC codes were proposed by Gallager [Gal63]. In the
following we explain the main ideas of how decoding succeeds to eliminate errors from LDPC
codewords that were transmitted over noisy channels. The explanation loosely follows [Mis14]
and [Nig04]. In Section 4.3 we show how to transfer these decoding principles to MDPC codes.

The belief propagation decoding algorithms make use of the Tanner graph of the code. Prob-
abilities are passed in the Tanner graph between message nodes and check nodes to determine
which message nodes should be set to one and which should be set to zero. In each iteration
of these decoding algorithms, initial probabilities are sent from message nodes to check nodes
and are then adapted and returned vice versa. The term belief propagation stems from the fact
that each of the message nodes ”beliefs” with a certain probability whether it is supposed to be
a one or a zero.

Let the word which shall be decoded be denoted as x = [x1, . . . , xn], xi ∈ F2. Before decoding
starts, each received bit xi is assigned with a probability whether xi = 1. Depending on the
channel, the probabilities can all be the same for each received bit or can differ significantly.
The probabilities are assigned to the message nodes of the Tanner graph which send their initial
probability to all connected check nodes. The check nodes make new estimates based on the
received probabilities and send them back to the message nodes. This process is iterated in
discrete steps either until the probability of each message node becomes negligibly close to 1
or 0, or it is iterated for a fixed number of iterations after which a hard decision is made by
rounding to either 1 or 0 based on the estimated probabilities.

Picking up the example presented in Section 2.4.1, the first row of the parity-check matrix
H[10,5] is 1111000000, i.e., the first check node is given by c1 = x1 + x2 + x3 + x4. The check
node receives probabilities p1, p2, p3, p4 from the connected message nodes v1, v2, v3, v4 in the
Tanner graph (cf. Figure 2.5). The check node then computes new estimates p′1, p′2, p′3, p′4 from
the receives probabilities as:

p′1 = p2(1− p3)(1− p4) + p3(1− p2)(1− p4) + p4(1− p2)(1− p3) + p2p3p4

p′2 = p1(1− p3)(1− p4) + p3(1− p1)(1− p4) + p4(1− p1)(1− p3) + p1p3p4

p′3 = p1(1− p2)(1− p4) + p2(1− p1)(1− p4) + p4(1− p1)(1− p2) + p1p2p4

p′4 = p1(1− p2)(1− p3) + p2(1− p1)(1− p3) + p3(1− p1)(1− p2) + p1p2p3.

The new estimates p′1, p′2, p′3, p′4 are sent back to the corresponding message nodes v1, v2, v3, v4.
At the same time all other check nodes in the Tanner graph compute their updated estimates
and send them back to their connected messages nodes as well. Hence, each message nodes
receives multiple updated probabilities from all connected check nodes in parallel. Suppose
message node v1 receives three updated probabilities p′1, p′′1, p′′′1 from the three connected check
nodes. For the next iteration message node v1 prepares the three responses kp1p

′′
1p
′′′
1 , kp1p

′
1p
′′′
1 ,

and kp1p
′
1p
′′
1, which are returned to the first, second and third check node, respectively. The

normalization factor k is computed as k = 1/(p′1p′′1p′′′1 +(1−p′1)(1−p′′1)(1−p′′′1 )). This is iterated
several times as discussed above until either the probabilities of all message nodes become close
to either 0 or 1 or by a hard decision after a fixed number of rounds.
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A simplified version of this decoding technique is the hard-decision bit-flipping decoder which
was introduced in [Gal63]. The simplified version computes the number of unsatisfied parity-
check equations for each bit of the received word x and compares them to a precomputed
threshold b. If the threshold is exceeded, the bit of the received word is directly inverted.
Thus, the previously necessary floating point arithmetic for computing updated probabilities
are omitted. We discuss this decoder in more detail in the following section when decoding
MDPC codes.

The remaining question is how to precompute the bit-flipping threshold b. In fact, it is not
one single threshold but a series of bit-flipping thresholds bi is precomputed for each decoding
iteration i. Let Pi denote the probability of a bit being in error after i decoding iterations. The
initial error probability is set to P0 = t

n since we want to correct a randomly generated error
of length n and Hamming weight t in the case of QC-MDPC McEliece and Niederreiter. The
goal is to have Pi converge to zero with increasing decoding iterations in order to determine the
error locations and hence to succeed with decoding.

Assuming the probability of an unsatisfied parity-check (i.e., an odd number of errors in wr−1
positions) is

ri = 1− (1− 2Pi)wr−1

2 ,

[Gal63] computes the probability of a bit being in error after i+ 1 decoding iterations as

Pi+1 = P0

b−1∑
l=0

(
wc − 1
l

)
(1− ri)lrwc−1−l

i + (1− P0)
wc−1∑
l=b

(
wc − 1
l

)
rli(1− ri)wc−1−l.

Finding the smallest integer bi for which

1− P0
P0

≤
[

1 + (1− 2Pi)wr−1

1− (1− 2Pi)wr−1

]2bi−wc+1

holds then leads to the bit flipping threshold bi for iteration i.

4.3 Decoding (QC-)MDPC Codes

In the following we explain decoding strategies applicable to (QC-)MDPC codes. In particular
we propose several variations of known hard-decision bit-flipping algorithms [Gal63, HP10,
MTSB13] in order to find an optimal decoding strategy. Given an input x ∈ Fn2 , the hard
decision bit-flipping decoding algorithms are based on the following principle:

(1) Compute the syndrome s = HxT of the received word x.
(2) Count the unsatisfied parity-check equations #upc associated with each bit of x.
(3) Flip those bits of x which violate more than b equations, where b is a bit-flipping threshold.
(4) Recompute the syndrome of the updated x.
This process is repeated until either the syndrome becomes zero or a predefined maximum

number of iterations is reached upon which a decoding error is returned. The main difference
between the bit-flipping algorithms is how they determine threshold b:
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� In [Gal63], thresholds bi are precomputed for each iteration i as explained in Section 4.2.
Adapting Gallager’s precomputation technique to MDPC codes is done by replacing wr
and wc by w. Hence, the thresholds can be computed by finding the smallest integer bi
for which

1− P0
P0

≤
[

1 + (1− 2Pi)w−1

1− (1− 2Pi)w−1

]2b−w+1

holds for iteration i.
� [HP10] compute the number unsatisfied parity-check equations for each received bit and

set the threshold as the maximum of the unsatisfied parity-check equations b = max(#upc).
� [MTSB13] slightly adapt the approach of [HP10] and propose to use b = max(#upc)− δ,

for some small δ to accelerate decoding. In case of a decoding failure, δ is decreased and
decoding is restarted until δ = 0 where this decoder becomes equal to [HP10].

The number of unsatisfied parity-check equations is equal to the number of shared bits in a
row of the parity-check matrix H and the syndrome s. Recall that the syndrome depends, by
definition, only on the error e that is added to a codeword c:

s = HxT = H(c+ e)T = HcT +HeT = HeT

since HcT = 0 by definition.

4.4 Decoder Optimizations

Below we propose new ways to accelerate the syndrome computation and to reduce the decoding-
failure rate. We show that these novel techniques not only accelerate decoding but also decrease
the number of required decoding iterations on average.

Accelerating the Syndrome Computation Bit-flipping decoders in the literature recom-
pute the syndrome after every decoding iteration to decide whether decoding was successful or
not. The cost of one syndrome computation alone can be approximated at around twice the
cost of one encoding in the context of QC-MDPC codes with n0 = 2.

We propose an optimization that can be applied to all bit-flipping decoders based on the
following observation: if the number of unsatisfied parity-check equations exceeds threshold b,
the corresponding bit in the ciphertext is flipped and the syndrome changes. We stress that
the syndrome does not change arbitrarily, but the new syndrome is equal to the old syndrome
accumulated with row hj of the parity-check matrix that corresponds to the flipped bit at
position j:

snew = sold ⊕ hj .

By keeping track of which bits are flipped and by updating the syndrome accordingly, the syn-
drome recomputation can be omitted. Since only few bits are flipped in each decoding iteration,
updating the syndrome requires far less additions than an ordinary syndrome computation.
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Reducing Decoding Iterations There are two ways to apply the syndrome computation
optimizations from the previous paragraph. One is to store all changes to the syndrome in a
separate register and to add the changes at the end of a decoding iteration to the syndrome. This
way, the syndrome computation is accelerated but the decoding behavior remains unchanged.
The other possibility is to directly apply the changes to the syndrome whenever a ciphertext bit
is flipped. This similarly accelerates the syndrome computation but it also affects the decoding
behavior since the modified syndrome is used to determine the unsatisfied parity-check equations
of following ciphertext bits. We explore both approaches in Section 4.4.1 and show that directly
modifying the syndrome reduces the average number of decoding iterations.

Reducing Decoding Failures The decoder proposed in [Gal63] uses precomputed thresh-
olds based on the code parameters. We found that the error-correcting capability of this decoder
can be improved by incrementing the precomputed thresholds by a small ∆ in case of a de-
coding failure and restart decoding with the adapted thresholds. When restarting, the initial
syndrome does not need to be recomputed as it can be restored from the first decoding attempt.
Incrementing the precomputed thresholds upon a decoding failure is similar to the approach
taken by [MTSB13] when decrementing δ upon a decoding failure. We achieved the best im-
provements when setting ∆ = 1 and after every decoding failure increasing ∆ = ∆ + 1 until
reaching a predefined ∆max.

4.4.1 Investigated Decoding Techniques

Estimating the error-correction capability of LDPC and MDPC codes is non-trivial and in-
fluenced by several factors. Hence, we derive several bit-flipping algorithms, evaluate their
error-correcting capability, count how many iterations are required on average to decode a
codeword, and measure the execution time. Since we are mostly targeting embedded systems,
we omit variants that store counters for each ciphertext bit to compute their number of un-
satisfied parity-check equations #upc. Counters would allow to skip the second computation of
#upc in some decoder variants (A, C1 and C2), but would increase the memory consumption to
at least n · dlog2(w)e bits which is unacceptable for microcontrollers and FPGAs.

The first two decoders under investigation are:
Decoder A is given in [MTSB13] and computes the syndrome, checks the number of un-
satisfied parity-check equations once to compute max(#upc) and a second time to flip all
ciphertext bits that violate ≥ max(#upc)− δ equations. Afterwards, the syndrome is re-
computed and compared to zero. If decoding is not successful after some fixed maximum
of iterations, δ is reduced to δ = δ − 1 and the decoding process is restarted. This is
repeated after each unsuccessful decoding attempt until δ = 0 where the decoder becomes
equal to the decoder of [HP10] which always uses b = max(#upc).

Decoder B is given in [Gal63] and computes the syndrome, checks the number of unsat-
isfied parity-check equations once per iteration i and directly flips the current ciphertext
bit if #upc is larger than a precomputed threshold bi. Afterwards, the syndrome is recom-
puted and compared to zero.
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4.5. Decoding Performance Evaluation

In order to evaluate our optimizations of the syndrome computation and the adaptive pre-
computed thresholds, we derive the following decoders:

Decoder C1 computes the syndrome, checks the number of unsatisfied parity-check equa-
tions once to compute max(#upc) and a second time to flip all ciphertext bits that violate
≥ max(#upc) − δ equations. If a ciphertext bit j is flipped, the corresponding row hj of
the parity-check matrix is added to a temporary syndrome. At the end of each iteration
the temporary syndrome is added to the syndrome, resulting in the syndrome of the mod-
ified ciphertext without requiring a full recomputation. In case of a decoding error, δ is
decremented as in decoder A.

Decoder C2 computes the syndrome, checks the number of unsatisfied parity-check equa-
tions once to compute max(#upc) and a second time to flip all ciphertext bits that violate
≥ max(#upc) − δ equations. If a ciphertext bit j is flipped, the corresponding row hj of
the parity-check matrix is directly added to the current syndrome to always work with an
up-to-date syndrome. In case of a decoding error, δ is decremented as in decoder A.

Decoder C3 is similar to decoder C2 but compares the syndrome to zero after each flipped
bit and aborts the current iteration immediately once it becomes zero.

Decoder D1 is similar to decoder B but uses the direct update of the syndrome.

Decoder D2 is similar to decoder D1 and in addition increments the precomputed thresh-
olds in case of a decoding failure until ∆max = 5.

Decoder D3 is similar to decoder D2 and in addition uses early termination as decoder C3.

The features of all investigated decoders are summarized in Table 4.1 to ease comparison.

4.5 Decoding Performance Evaluation

The following performance measurements are taken for randomly generated QC-MDPC codes
with parameters n0 = 2, n = 9602, r = 4801, w = 90. Instead of only using the proposed t = 84
from the parameter set of [MTSB13], we evaluate the behavior of all decoders for error weights
t = {84, . . . , 90} to make decoding more difficult and to provoke decoding errors. A total of
1,000 random codes and 10,000 random decoding trials per code were evaluated on a computing
cluster equipped with 288 AMD Opteron 6276 CPU cores running at 2.3 GHz.

For decoders with precomputed thresholds bi we used the approach explained in Section 4.3 to
precompute the bi’s for every iteration i similar to [Gal63]. We list the thresholds in Table 4.2.
For decoders with b = max(#upc) − δ, we found that the smallest number of iterations are
required when starting with δ = 51. A decoding failure is returned in case the decoder did not
succeed within ten iterations.

1In the latest version of [MTSB12] the authors also suggest to use δ ≈ 5 for the given parameters.
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Table 4.1: Features of the investigated decoders for (QC-)MDPC codes. The bit-flipping thresh-
old b is either derived from the maximum number of unsatisfied parity-check equations
on-the-fly or precomputed based on the parameters of the code. We also mark if the
thresholds are adapted upon a decoding failure or not. The syndrome is either up-
dated after each decoding round or after every change to the ciphertext. Comparing
the syndrome to zero is done either after each decoding round or after every update
of the syndrome.

Decoder Threshold Syndrome Update Syndrome Check
on-the-fly precomp. adaptive each round temp. direct every iter. every upd.

A X X X X

B X X X

C1 X X X X

C2 X X X X

C3 X X X X

D1 X X X

D2 X X X X

D3 X X X X

Table 4.2: Precomputed bit-flipping thresholds for ten decoding iterations used during the eval-
uation of decoders B, D1, D2, and D3. The thresholds were computed for code pa-
rameters n0 = 2, n = 9602, r = 4801, w = 90 and error weights t = {84, . . . , 90}. See
Section 4.3 for details about how these thresholds are computed.

Error Weight Bit-flipping Thresholds

84 [26, 24, 22, 21, 21, 21, 21, 21, 21, 21]
85 [26, 24, 22, 21, 21, 21, 21, 21, 21, 21]
86 [26, 24, 22, 21, 21, 21, 21, 21, 21, 21]
87 [26, 24, 22, 21, 21, 21, 21, 21, 21, 21]
88 [26, 24, 22, 21, 21, 21, 21, 21, 21, 21]
89 [26, 25, 22, 21, 21, 21, 21, 21, 21, 21]
90 [27, 25, 23, 21, 21, 21, 21, 21, 21, 21]
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4.5. Decoding Performance Evaluation

4.5.1 Decoder Comparison

The average number of iterations required to decode a codeword with t added errors and the
decoding failure rate are listed in Table 4.3 for all decoders described in Section 4.4.1 and
Table 4.1. Figure 4.1a illustrates the timing behavior of the evaluated decoders, Figure 4.1b
compares the number of required decoding iterations on average, and Figure 4.2 shows the
observed decoding failures.

The timings given in Table 4.3 and Figure 4.1a should only be used to compare the decoders
among each other. The evaluation was done in software and was not particularly optimized
for speed. It was designed to keep the generating polynomial h in memory instead of the
whole parity-check matrix H. All following rows of H are derived at runtime by rotating the
polynomial.

Comparing the Decoders from Literature When comparing the two evaluated decoders
from literature (A and B), it is evident that decoder B requires around 40% less decoding
iterations on average and around half the time to decode an erroneous codeword. On the
other hand, decoder B encounters a higher number of decoding failures than decoder A, which,
depending on the fault tolerance of the system, might be undesirable.

Acceleration of the Syndrome Computation The acceleration of not having to recompute
the syndrome becomes apparent when comparing decoder A with C1. The only difference
between the two decoders is that C1 benefits from the accelerated syndrome update. The
decoding behavior of both decoders is still the same, as the changes to the syndrome are stored
in a temporary register and the syndrome is only updated after each decoding round. With this
technique we gain an average reduction of the execution time by 20%.

Direct Syndrome Update Directly updating the syndrome when flipping a ciphertext bit
has an even stronger impact on the decoding performance as well as on the decoding failure
rate. Not only do we speed up the computation time, but we also reduce the average number of
required decoding iterations by 40% (compare decoders C1 and C2). Furthermore, the number
of decoding failures is highly reduced (compare decoders C1 to C2 and B to D1). We had to
raise the error weight considerably during our evaluations to provoke decoding failures in case
of decoder C2. When decoding with precomputed thresholds, decoding failures occur 80 times
less using this technique (compare B and D1).

Combining Gallager’s precomputed thresholds with a directly updated syndrome results in
the lowest number of decoding iterations (compare decoders D1,D2,D3). On average we save
2.9 iterations compared to decoder A and 0.7 iterations compared to B (cf. Figure 4.1b). Less
iterations directly relate to the execution time. Combined with our syndrome update technique
decoding is overall 2-4 times faster as shown in Figure 4.1a.

Adaptive Thresholds Adapting the precomputed thresholds upon a decoding error as pro-
posed in Section 4.4 leads to the lowest decoding failure rates among all decoders under in-
vestigation (compare D1 with D2/D3). During 100,000,000 random decoding tries we only
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encountered two decoding failures for decoders D2/D3 and we had to raise the error weight
from 84 to 90 for this to happen.

The average number of decoding iterations and the average execution time increase only very
slightly when using the adapted thresholds. The small timing advantage of decoders C3/D3 over
C2/D2 is due to the immediate termination if the syndrome becomes zero.

Early Detection of Decoding Errors Another interesting observation for all decoders: if
an erroneous codeword is decodable, it is decoded with an overwhelming probability after a small
number of iterations. We noticed that if a ciphertext is not decoded within 4-6 iterations, a
higher number of iterations rarely leads to a successful decoding without adapting the thresholds.
Therefore, we conclude that an early detection of decoding failures is possible and that is it
more beneficial to adapt the thresholds and restart decoding instead of increasing the number
of decoding iterations with the same thresholds.

4.5.2 Decoding Algorithm Selection

Based on the evaluation results, we select decoders D1/D2 as the basis for our implementations
throughout this thesis. Even though decoder D3 has a small timing advantage, its runtime
is inherently dependent on secret data (the syndrome) which might introduce a timing side-
channel. Although we are not aware of a way to exploit the information of the time it takes
for the syndrome to become zero, history has shown that it is advisable to avoid leaking timing
information, especially if it can be avoided at low cost.

Decoder D1 is summarized as:
(1) Compute the syndrome s = HxT of the received ciphertext x.
(2) Count the number of unsatisfied parity-checks for every ciphertext bit.
(3) If the number of unsatisfied parity-checks for a ciphertext bit exceeds a precomputed

threshold, flip the ciphertext bit and directly update the syndrome.
(4) If s = 0r, the codeword was decoded successfully. If s 6= 0r, go to Step (2) or abort after

a defined maximum of iterations with a decoding error.
Decoder D2 can be seen as a wrapper around D1 which modifies the decoding thresholds upon
a decoding error and then calls D1 again.

4.6 Conclusion

In this chapter we introduced LDPC and MDPC decoding techniques, evaluated the perfor-
mance of existing QC-MDPC decoders and made novel proposals to accelerate decoding and
to effectively reduce the probability of decoding failures. We derived and evaluated several
decoding variations and compared them among each other to make a justified optimal decoder
selection which delivers high performance with least decoding failures.
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4.6. Conclusion

Table 4.3: Evaluation of the performance and error correcting capability of the decoders de-
scribed in Section 4.4.1 for QC-MDPC codes with parameters n0 = 2, n = 9602, r =
4801, w = 90 on AMD Opteron 6276 CPUs at 2.3 GHz.

Variant #errors time in ms failure rate avg. #iterations

Decoder A 84 32.15 0.0000000 5.2922
85 33.26 0.0000010 5.4027
86 34.16 0.0000058 5.5234
87 34.56 0.0000196 5.6792
88 34.90 0.0000794 5.8728
89 36.47 0.0002760 6.1311
90 38.44 0.0008348 6.4876

Decoder B 84 15.41 0.0002957 3.0936
85 15.93 0.0012654 3.1854
86 16.67 0.0046348 3.3343
87 17.67 0.0138536 3.5515
88 19.07 0.0360551 3.8790
89 21.47 0.0798088 4.3542
90 23.36 0.1534663 5.0191

Decoder C1 84 25.89 0.0000002 5.2961
85 26.79 0.0000008 5.4014
86 27.62 0.0000060 5.5250
87 28.46 0.0000282 5.6822
88 28.76 0.0000798 5.8730
89 29.65 0.0002744 6.1354
90 31.55 0.0008442 6.4895

Decoder C2 84 16.03 0.0000000 3.3780
85 16.60 0.0000000 3.4254
86 16.90 0.0000000 3.4864
87 17.47 0.0000000 3.5648
88 18.01 0.0000002 3.6726
89 18.88 0.0000026 3.8301
90 19.96 0.0000098 4.0596

Decoder C3 84 14.83 0.0000000 3.3776
85 15.42 0.0000000 3.4263
86 15.74 0.0000000 3.4871
87 16.26 0.0000004 3.5656
88 16.77 0.0000004 3.6736
89 17.65 0.0000020 3.8308
90 18.90 0.0000096 4.0602

Decoder D1 84 8.02 0.0000037 2.4019
85 8.32 0.0000180 2.4985
86 8.65 0.0000579 2.5975
87 8.99 0.0001879 2.6965
88 9.34 0.0005487 2.7928
89 9.70 0.0014897 2.8914
90 10.09 0.0036869 2.9992

Decoder D2 84 8.79 0.0000000 2.4021
85 9.00 0.0000000 2.4982
86 9.40 0.0000000 2.5977
87 9.57 0.0000000 2.6962
88 10.07 0.0000000 2.7938
89 10.32 0.0000000 2.8950
90 10.26 0.0000002 3.0106

Decoder D3 84 8.10 0.0000000 2.4021
85 8.17 0.0000000 2.4975
86 8.47 0.0000000 2.5964
87 8.71 0.0000000 2.6964
88 9.06 0.0000000 2.7941
89 9.45 0.0000000 2.8948
90 9.99 0.0000000 3.0109
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Figure 4.1: Analysis of the timing behavior and the number of decoding iterations of the eval-
uated decoders.
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Figure 4.2: Failure rates of the evaluated decoders in three different resolutions.
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Chapter 5

QC-MDPC McEliece for
Reconfigurable Hardware

In this chapter we develop combined QC-MDPC McEliece en-/decryption cores for
high-performance and lightweight FPGA applications. Our high-performance im-
plementation achieves 13.7µs/82.1µs for en-/decryption and requires 2,924/10,988
slices on Xilinx Virtex-6. Furthermore, we demonstrate that the cryptosystem can be
implemented with a significantly smaller resource footprint – still achieving reason-
able performance sufficient for many applications, e.g., challenge-response protocols
or hybrid encryption. More precisely, our lightweight FPGA design requires just 68
slices for the encryption unit and around 150 slices for the decryption unit. It is able
to en-/decrypt an input block in 2.2 ms and 13.4 ms, respectively on Xilinx Spartan-6.

This research was presented at CHES’13 and DATE’14 and is a joint work with
Tim Güneysu. An extended version appeared in the ACM Transactions on Embed-
ded Computing Systems [HvMG13, vMG14a, vMOG15]. The side-channel attacks
and countermeasures are joint work with Cong Chen, Thomas Eisenbarth and Rainer
Steinwandt. The results were presented at ACNS’15 and SAC’15 and appeared in
the IEEE Transactions on Information Forensics & Security [CEvMS15, CEvMS16b,
CEvMS16a].
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Chapter 5. QC-MDPC McEliece for Reconfigurable Hardware

5.1 Introduction

Field programmable gate arrays (FPGA) are reconfigurable integrated circuits which mainly
consist of configurable logic blocks, slices in Xilinx terms. Each slice contains lookup tables
(LUT), flip-flops (FF), and surrounding logic, e.g., to allow fast carry chaining. The logic
blocks are interconnected by programmable switch matrices. In addition, embedded resources
such as block memories (BRAM) and digital signal processors (DSP) are available on FPGAs.

Generally, FPGAs allow a faster time-to-market and have lower non-recurring costs for devel-
opment compared to application-specific integrated circuits (ASIC) which are fixed integrated
circuits that fulfill dedicated and unchangeable purposes. ASICs typically excel with higher
performance, lower energy consumption and lower recurring costs for large product volumes in
comparison to FPGAs. FPGAs are commonly used to prototype and test ASIC designs before
production and for low-volume applications.

FPGA implementations of the code-based McEliece and Niederreiter cryptosystems so far are
restricted to binary Goppa codes. The first implementation of a code-based cryptosystem (“Mi-
croEliece”) was proposed for a Xilinx Spartan-3 FPGA [EGHP09]. Since the storage capacity of
the FPGA did not suffice, external memory had to be used to store the public-key. A hardware
McEliece implementation based on Goppa codes including a CCA2 conversion was presented
for a Virtex5-LX110T FPGA in [SWM+09, SWM+10]. Another McEliece co-processor was
proposed for a Virtex5-LX110T FPGA by [GDUV12] with the main design goal of optimizing
the speed/area ratio. Niederreiter was implemented using Goppa codes in [HG12] for a Virtex6-
LX240T FPGA demonstrating that Niederreiter encryption can provide high performance with
a moderate amount of resources.

Previous code-based cryptosystem implementations in reconfigurable hardware require large
amounts of memory to store public-keys. Memory is either provided externally or through a
large number of internal block RAM. Since storage capacity in embedded applications is typically
low and expensive, the much smaller key sizes of QC-MDPC codes compared to binary Goppa
codes are of high practical relevance. Hence, we explore the design space of QC-MDPC McEliece
by providing high-performance and lightweight implementations of the cryptosystem targeting
Xilinx’s Virtex-6 and Spartan-6 FPGAs.

Contribution This chapter presents two FPGA implementations of QC-MDPC McEliece.
The first implementation is designed for high-performance applications while the second im-
plementation targets lightweight and low-cost applications. Both implementations provide en-
cryption and decryption functionality. Our high-performance implementation of QC-MDPC
in reconfigurable hardware targets Xilinx’s Virtex-6 FPGAs. Virtex-6 devices are powerful
FPGAs offering thousands of slices, whereas our lightweight implementation targets Xilinx’s
low-cost Spartan-6 family with much fewer available resources. The lightweight solution can
be extremely useful for public-key operations that are executed infrequently in a lifetime of
long-lasting hardware-based applications, e.g., a key (re-)establishment or firmware upgrade in
elevators or avionic systems. The high-performance implementation could be used in HSMs or
similar server applications where several connections have to be secured at the same time.

52



5.2. High-Performance QC-MDPC McEliece for FPGAs

We investigate two decoder variants in our high-performance implementations, an itera-
tive and a parallel design strategy. Encryption performance is 13.7µs, decryption takes
125.4µs/82.1µs. Such a high performance is achieved by storing the QC-MDPC keys and
intermediate results directly in FPGA logic, without requiring additional internal or external
memory.

Our lightweight implementation of QC-MDPC McEliece for Xilinx FPGAs shows how the
comparably small keys and intermediate results can be efficiently stored and accessed in em-
bedded block memories to achieve a low resource consumption while still maintaining a decent
performance sufficient for many applications. Since decoding is usually the most expensive
operation in code-based cryptosystems, we particularly focus on implementing a lightweight
design of the most efficient decoder for QC-MDPC codes according to our evaluations in Chap-
ter 4. We show that QC-MDPC codes allow to implement public-key cryptography with very
few resources while still providing excellent efficiency in terms of computational complexity for
encryption and decryption on the FPGA.

Furthermore, we present horizontal and vertical side-channel analysis techniques for an im-
plementation of the QC-MDPC McEliece cryptosystem. The target of the side-channel attacks
is our lightweight QC-MDPC McEliece decryption FPGA implementation as presented in Sec-
tion 5.3. The attack consists of a combination of a differential leakage analysis during the
syndrome computation followed by an algebraic step that exploits the relation between the
public- and private-key and succeeds to recover the complete private-key after a few observed
decryptions.

Note that IND-CCA conversions and true random number generation are out of the scope
of this chapter. For fair comparison between the two implementations we also implement our
lightweight designs on the same Virtex-6 FPGA as the high-performance design.

Outline We present a high-performance implementation of QC-MDPC McEliece for FPGAs
in Section 5.2 followed by a lightweight design in Section 5.3. In Section 5.4 we investigate
side-channel attacks and countermeasures. A conclusion is drawn in Section 5.5.

5.2 High-Performance QC-MDPC McEliece for FPGAs

The following sections explain our design choices and describe the implementations of QC-
MDPC McEliece in reconfigurable hardware. The primary goal of our first design is to provide
a high-performance QC-MDPC McEliece public-key encryption core for Xilinx FPGAs.

5.2.1 Design Considerations

Because of their relatively small size, the QC-MDPC McEliece public- and private-keys do not
necessarily have to be stored in external memory as needed in earlier FPGA implementations of
McEliece and Niederreiter based on binary Goppa codes. Since we aim for high-performance, we
keep all operands directly in registers and refrain from loading/storing them from/to internal
block memory or other external memory as this would degrade the achievable performance.
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Accessing a single 4,801-bit row of the public-key matrix via a 32-bit BRAM interface would
consume at least 151 clock cycles. Storing the vector in flip-flops allows access in one clock
cycle, leading to a much better performance. If maximum performance is not required, BRAMs
significantly reduce the resource consumption as will be shown in Section 5.3.

Furthermore, we do not take the sparsity of the secret polynomials into account in this FPGA
design. Using a sparse representation of the secret polynomials would require to implement
w = 90 13-bit counters, each indicating the position of a set bit in one of the two secret
polynomials. To generate the next row of the private-key, all counters would have to be increased
and in case of exceeding r, a counter would need to be reset to 0. If a bit in the ciphertext is set,
we would have to generate a 4,801-bit vector from the counters belonging to the corresponding
secret polynomial and XOR this vector to the current syndrome. An alternative would be to
read out the content of each counter and flip the corresponding bit in the syndrome. These
tasks, however, are time- and resource-consuming in hardware.

We base our high-performance QC-MDPC McEliece decryption implementation on decoder
D1/D2. The reason for not choosing decoder D3 is that we sequentially rotate the ciphertext
and private-key in every cycle of the bit-flipping iteration. If the syndrome becomes zero during
a bit-flipping iteration and we skip further computations immediately, the secret polynomials
and the codewords would be misaligned. To fix this we would have to rotate them manually
into their correct position which would take roughly the same amount of time as just letting the
decoder finish the current iteration. Furthermore, an early termination leaks timing information
about the point in time at which the syndrome became zero, which is undesirable as well.

5.2.2 High-Performance FPGA Implementation

Our target device is a Virtex-6 XC6VLX240T FPGA to allow fair comparison with previous
work – although all our implementations would fit smaller devices as well. The encryption and
decryption units are equipped with a simple I/O interface to decrease its impact on the required
FPGA resources. Messages and ciphertexts are sent and received bit-by-bit to reduce the I/O
overhead.

QC-MDPC McEliece Encryption

QC-MDPC McEliece encryption requires to implement a vector matrix multiplication to multi-
ply message m with the public-key matrix G. The resulting codeword c = mG is then XORed
with an error vector of Hamming weight wt(e) ≤ 84 to produce the ciphertext x = c ⊕ e. In
QC-MDPC McEliece encryption we are given a 4801-bit public-key g which is the first row of
the public matrix G. Rotating g by one bit position yields the next row of G and so forth.
Since G is in systematic form, the first half of c is equal to m due to a multiplication with the
identity matrix. The second half, called redundant part, is computed as follows.

We iterate over the message bit-by-bit and XOR the current public polynomial to the re-
dundant part if the current message bit is set. Implementing this in hardware requires three
4,801-bit registers to store the public polynomial, the message, and the redundant part. Since
only one bit of the message has to be accessed in every clock cycle, we store the message in a
circular shift register which is implemented using shift register LUTs.
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QC-MDPC McEliece Decryption

Decryption is performed by decoding the received ciphertext. The plaintext is obtained as
the first half of the decoded codeword. We implement bit-flipping decoder D1 as described in
Chapter 4, an algorithmic description is listed in Algorithm 1.

Algorithm 1 Decoding (QC-)MDPC Codes
Input: H, x = mG+ e, B = b0, . . . , bmax-1, max
Output: Message m or DecodingFailure

Compute syndrome s = HxT

for i = 0→ max− 1 do
for every ciphertext bit j do

Count unsatisfied parity-check equations #upc = hw(hj AND s)
if #upc ≥ bi then

Flip ciphertext bit xj = xj ⊕ 1
Update syndrome s = s⊕ hj

end if
end for
if s = 0r then

return x
end if

end for
return DecodingFailure

First we compute the syndrome s = HxT by multiplying the parity-check matrix H =
[H0 |H1] with the ciphertext x = [x0 |x1]. Given the first 9,602-bit row h = [h0 |h1] of H and
the 9,602-bit ciphertext x = [x0 |x1] the syndrome is computed as follows. We sequentially
iterate over every bit of the ciphertext x0 and x1 in parallel and rotate h by rotating h0 and h1
accordingly. If a bit in x0 and/or x1 is set, we XOR the current h0 and/or h1 to the intermediate
syndrome which is set to zero in the beginning. The syndrome computation is finished after
every bit of the ciphertext has been processed.

Next we test the syndrome for zero which is implemented using a bitwise OR tree. Since the
FPGA offers 6-input LUTs, we split the syndrome into 6-bit chunks and compute their bitwise
OR on the lowest level of the tree. The results are fed into another level of 6-input LUTs which
again compute the bitwise OR of their inputs. This is repeated until we are left with a single
bit that indicates if the syndrome is zero or not. In addition, we insert registers after the second
level of the tree to minimize the critical path.

Decryption is finished once the syndrome is zero. Otherwise we determine the number of
unsatisfied parity-check equations for each row h = [h0 |h1] by computing the Hamming weight
of the bitwise AND of the syndrome and h0 and h1, respectively. If the Hamming weight exceeds
threshold bi for the current iteration i, the corresponding bit of the ciphertext x0 and/or x1
is flipped and the syndrome is directly updated by XORing the current secret polynomial h0
and/or h1 to it. Rows h0 and h1 are rotated by one bit and we repeat until all rows of H have
been checked.
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There are two options to implement counting the number of unsatisfied parity-check equa-
tions for h0 and h1 since they are independent of each other. Either we compute the unsatisfied
parity-checks of the first and second secret polynomial iteratively or we instantiate two Ham-
ming weight computation units to process the polynomials in parallel. The iterative version is
expected to take twice the time using half the resources compared to a parallel implementation.
We explore both approaches to evaluate this time/resource trade-off.

Computing the Hamming weight of a 4,801-bit vector efficiently is challenging. Similar to
the zero comparator we split the input into 6-bit chunks and determine their Hamming weight
using look-up tables. We then compute the overall Hamming weight by building an adder tree
with registers on every layer to minimize the critical path and to enable pipelined Hamming
weight computations.

The syndrome is again compared to zero after all rows of H and the corresponding changes to
the ciphertext and syndrome have been processed. If the syndrome is zero, the first 4,801 bit of
the updated ciphertext hold the decoded message m which is returned as the result. Otherwise
the next decoding iteration i+1 is started with decoding threshold bi+1 until either the syndrome
becomes zero or the maximum number of iterations is reached.

5.2.3 Implementation Results

All our results are obtained post place-and-route (PAR) for Xilinx Virtex-6 XC6VLX240T
FPGAs using Xilinx ISE 14.7. The throughput figures assume an I/O interface capable of these
processing speeds is provided.

Our QC-MDPC encoder runs at a maximum clock frequency of 351.7 MHz and encodes a
4,801-bit message in 4,801 clock cycles which results in a throughput of 351.7 Mbit/s. The
iterative version of our QC-MDPC decoder runs at 222.5 MHz. The decoding execution time
depends on how many decoding iterations for successful decoding are needed. We calculate
the average required cycles for iterative decoding as follows: computing the initial syndrome
requires 4,801 clock cycles and comparing the syndrome to zero takes 2 clock cycles. For every
following bit-flipping iteration we need 9,622 clock cycles and additionally 2 clock cycles for
comparing the syndrome to zero. As shown in Table 4.3, decoder D1 needs 2.4019 bit-flipping
iterations on average. Thus, the average cycle count for our iterative decoder is

4, 801 + 2 + 2.4019 · (9, 622 + 2) = 27, 918.9 cycles.

Our parallel decoder processes both secret polynomials in the bit-flipping step in parallel and
runs at 199.3 MHz. We calculate the average cycles as before with the difference that every
bit-flipping iteration now takes 4, 811 + 2 clock cycles. Thus, the average cycle count for the
parallel decoder is

4, 801 + 2 + 2.4019 · (4, 811 + 2) = 16, 363.3 cycles.

The parallel decoder operates 35% faster than the iterative version while occupying 6-26%
more resources. Compared to the decoders, the encoder runs 6-9 times faster and occupies 2-5
times less resources. Table 5.1 summarizes our results.
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Table 5.1: Implementation results of our QC-MDPC McEliece implementations with parameters
n0 = 2, n = 9, 602, r = 4, 801, w = 90, t = 84 (80-bit equivalent symmetric security)
on a Xilinx Virtex-6 XC6VLX240T FPGA.

Aspect Encoder Decoder (iterative) Decoder (parallel)

FFs 14,429 (4%) 32,962 (10%) 41,714 (13%)
LUTs 9,201 (6%) 36,502 (24%) 42,274 (28%)
Slices 2,924 (7%) 10,364 (27%) 10,988 (29%)
Frequency 351.7 MHz 222.5 MHz 199.3 MHz
Time/Op 13.7 µs 125.4 µs 82.1 µs
Throughput 351.7 Mbit/s 38.3 Mbit/s 58.5 Mbit/s
Encode 4,801 cycles - -
Compute Syndrome - 4,801 cycles 4,801 cycles
Check Zero - 2 cycles 2 cycles
Flip Bits - 9,622 cycles 4,811 cycles
Overall average 4,801 cycles 27,918.9 cycles 16,363.3 cycles

Using the formerly proposed decoders without our optimizations (i.e., decoders A and B)
results in much slower decryptions. Decoder A needs

4, 803 + 5.2922 · (2 · 9, 622 + 4, 803) = 132, 064.5 cycles

in an iterative implementation which is nearly five times slower than our iterative decoder D1.
In a parallel implementation decoder A requires

4, 803 + 5.2922 · (2 · 4, 811 + 4, 803) = 81, 143.0 cycles

which again is five times more cycles than our parallel implementation of decoder D1.
Decoder B saves cycles by skipping the max(#upc) computation but still needs

4, 803 + 3.0936 · (9, 622 + 4, 803) = 49, 428.2 cycles

in an iterative and

4, 803 + 3.0936 · (4, 811 + 4, 803) = 34, 544.9 cycles

in a parallel implementation which are both outperformed by a factor of two by our implemen-
tations of decoder D1.

Comparison

A comparison with previous FPGA implementations of code-based (McEliece, Niederreiter),
lattice-based (Ring-LWE, NTRU), and standard public-key encryption schemes (RSA, ECC)
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is given in Table 5.2. The most relevant metric for comparing the performance of public-key
encryption schemes depends on the application. For key exchange it is usually the required time
per operation and for data encryption typically throughput is the most interesting metric when
multiple input blocks are processed.

A hardware McEliece implementation based on Goppa codes including a CCA2 conversion was
presented for Virtex5-LX110T FPGAs in [SWM+09, SWM+10]. Comparing their performance
to our implementations shows the advantage of QC-MDPC McEliece in time per operation and
throughput. The occupied resources are similar to our resource requirements but in addition 75
block memories are needed whereas we do not require block memories. Even more important for
real-world applications is the public-key size. QC-MDPC McEliece requires 0.59 Kbytes which
is only a small fraction of the 100.5 Kbytes public-key of [SWM+10].

Another McEliece co-processor was proposed by [GDUV12] for Virtex5-LX110T FPGAs.
Their design goal was to optimize the speed/area ratio, while we aim for high-performance.
Regarding decoding, our implementations outperform their work in both time/operation and
throughput. However, [GDUV12] need fewer resources which allows an implementation on low-
cost devices such as Spartan-3 FPGAs. Their public-keys have a size of 63.5 Kbytes which is
still much larger than the 0.59 Kbytes of QC-MDPC McEliece.

The Niederreiter public-key scheme was implemented with binary Goppa codes by [HG12]
for Virtex6-LX240T FPGAs. Their work shows that Niederreiter encryption can provide high-
performance with a moderate amount of resources. Decryption is more expensive in computation
time as well as in required resources compared to our work. Their Niederreiter encryption is the
superior choice for a minimum time per operation while QC-MDPC McEliece achieves better
throughput results. Furthermore, public-keys with a size of 63.5 Kbytes are a tough memory
requirement for FPGAs.

FPGA implementations of lattice-based public-key encryption were proposed by [RVM+14,
PG14b] for Ring-LWE and by [KY09] for NTRU. The Ring-LWE implementations require 1.5-2
times more time to encrypt a smaller plaintext but they decrypt ciphertexts faster and occupy
less resources at the cost of using block RAMs and digital signal processors. For high-throughput
applications, QC-MDPC McEliece outperforms both implementations at encryption and de-
cryption. NTRU as implemented by [KY09] provides high-performance at moderate resources
requirements. However, the selected parameters for this implementation only achieve a security
level of around 64 bits. Note further that the results are reported for an outdated Virtex-E
FPGA which is hardly comparable to modern Xilinx Virtex-5/-6 devices.

Efficient ECC hardware implementations for curves over GF (p) and GF (2m) are [DJJ+06,
GP08, RRM12, SRM12] which all yield good performance at moderate resource requirements.
The most efficient RSA hardware implementation to date was proposed in [Suz07, SM11]. The
time to encrypt and decrypt one block as well as the throughput are considerably worse than
QC-MDPC McEliece.
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5.3 Lightweight QC-MDPC McEliece for FPGAs

Next we present a lightweight implementation of QC-MDPC McEliece for reconfigurable hard-
ware. The goal of this work is to provide a cost effective public-key encryption engine with low
resource requirements while maintaining reasonable performance.

5.3.1 Design Considerations

Intuitively, the comparably small keys of QC-MDPC McEliece should allow for small area foot-
print implementations. Instead of having to provide 50-100 Kbytes of memory as necessary for
binary Goppa codes, the QC-MDPC public-key requires 4801 bits and the private-key 9602 bits.
Apart from keys, additional data, such as the message, the ciphertext, and the syndrome, has
to be stored and requires memory in the same range.

FPGAs of the Xilinx Spartan-6 and Virtex-6 family are equipped with dual-ported block
memories (BRAMs), each capable of storing up to 18/36 Kbits of data. In each clock cycle two
separate 32-bit words can be read from two different memory addresses, and it is even possible
to write data to a memory cell in the same clock cycle after reading its content in Read First
mode.

Our design of the encryption and decryption unit stores all inputs, outputs, keys and inter-
mediate values in these block memories and processes them in 32-bit blocks to achieve a very
compact structure. Below follow our design choices for the encryption and decryption cores in
more detail.

QC-MDPC McEliece Encryption

Recall that for QC-MDPC McEliece encryption we have to compute x = mG ⊕ e which boils
down to an accumulation of the rows of the generator matrix G depending on set bits in the
message m and an addition of the error vector e. Hence, we have to hold the message (4801 bits),
one row of the generator matrix (4801 bits), and the redundant part (second half of x, 4801 bits)
in memory. The error vector e is added on-the-fly and is provided through a 32-bit interface
to avoid having to store additional 9602 bits, of which at most 84 are set. In total we have to
store 3 · 4801 bits, fitting one 18-Kbit BRAM. In addition to the available storage space we also
have to consider that only two data ports are available for each BRAM. In a straightforward
approach we would need three data ports (and thus 2 BRAMs), one for the message, one for
the public-key and one for the redundant part.

Since each message bit is accessed only once as opposed to the redundant part and the rows
of the public-key which are accessed 4801 times each, we store all of them in one BRAM and
spend a 32-bit register to hold the current 32-bit message block which we are processing.

While the encryption unit is idle, it allows external components to access its internal BRAM
to read out the encrypted ciphertext, to write a new message and, if desired, to change the
public-key. When starting the encryption, the unit takes control of the BRAM and allows
outside components to access the BRAM only after the encryption is finished.
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QC-MDPC McEliece Decryption

For decryption we have to store the private-key (9602 bits), the received ciphertext (9602 bits),
and the syndrome (4801 bits). Decoding is performed in-place, i.e., after the decoder finishes,
the first 4801 bits of the decoded ciphertext hold the decrypted message. The private-key and
the ciphertext consist of two separate 4801-bit vectors that can either be processed in parallel
or iteratively. Since decryption is more complex than encryption we process them in parallel to
not further widen the gap between encryption and decryption performance.

Concerning memory, two 18-Kbit BRAMs suffice to store all the necessary values but we
have to keep in mind that each BRAM only offers two data ports. Since the private-key and
the ciphertext consist of two separate 4801-bit vectors that are processed in parallel, four data
ports plus one data port for the syndrome are required. To increase performance at the cost of
few additional resources, we include an additional 18-Kbit BRAM to store the syndrome.

The first step during decoding is the syndrome computation. Depending on set ciphertext
bits, rows of the two parity-check matrix blocks are accumulated. For comparing the syndrome
to zero, we compute the OR of all 32-bit blocks of the syndrome. If the result is zero, the
syndrome is zero as well. Counting the number of unsatisfied parity-check equations is done by
computing the Hamming weight of the binary AND of the syndrome and the two parts of the
private-key in 32-bit steps.

While the decryption unit idles, access to the ciphertext BRAM is granted to allow external
components to write new ciphertexts and to read out decrypted plaintexts. External components
are not allowed to access the private-key in our design. Depending on the application it might
be desired to at least be able to write a new private-key which can be easily accomplished in our
design by forwarding the control signals and data lines of the private-key BRAM to external
components.

5.3.2 Lightweight FPGA Implementation Details

Next we detail our lightweight implementations of QC-MDPC McEliece en- and decryption
based on the design decisions explained in Section 5.3.1. Note that the implementation of an
IND-CCA conversion as well as the implementation of a true random number generator are out
of the scope of this chapter.

QC-MDPC McEliece Encryption

Encryption usually starts by resetting the redundant part to zero. It then accumulates the rows
of the generator matrix depending on the message bits and adds an error vector in the end. Our
implementation combines resetting the redundant part and adding the error vector by directly
loading the second half of the error vector into the redundant part and accumulating the rows
of G to it. We rely on being provided a uniformly distributed error vector of weight at most
t = 84 through a 32-bit interface.

The most performance-critical operation of the encoder is the rotation of 4801-bit vectors.
More precisely, the first row g of the generator matrix has to be rotated 4801 times to iterate
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Figure 5.1: Fast vector rotation using the Read First mode in a Xilinx block RAM with 8-bit
registers and four memory cells. Each rotation moves the first 8 bit of the vector
(grey cells) to the following memory cell. Rotation is performed to the right.

over all rows of G. In a BRAM-based implementation, each data port can only access 32 bits
per clock cycle. Hence, rotating a 4801-bit vector requires to load 152 32-bit cells1, rotate them
by one bit, and store the result.

Two clock cycles would be needed to rotate each 32-bit block in a straightforward approach
with one data port. One cycle for loading and rotating the value and another cycle to store
the result. When two data ports are used, one data port can be used to read blocks and the
second port can be used to write blocks delayed by one clock cycle. This requires one clock
cycle to rotate each 32-bit block plus a small overhead for loading the least significant bit and
introducing the delay required for storing the results. However, this approach encounters a
problem when having to add the current row of the generator matrix to the redundant part.
Since both data ports are already occupied, we cannot load the redundant part and XOR the
current row to it without spending additional clock cycles.

Instead we implement the following approach that allows to efficiently rotate g and XOR it
to the redundant part at the same time if necessary with only two data ports. As described
above, Xilinx BRAMs support the Read First mode which allows to first read the content
of a memory cell and then to overwrite the cell with new data in the same clock cycle. After
loading the least significant bit, the first 32-bit memory cell of g is read. In the next clock cycle
we activate the write signal and store the rotated content of the first cell to the second cell after
loading its content. By applying this trick we additionally introduce a rotation of the memory
cells. The rotated 32-bit value that was previously stored in memory cell 0 is stored to memory
cell 1, the rotated value of memory cell 1 is stored in cell 2, and so on. This requires to wrap
the addresses after accessing the last memory cell and to keep track of which memory cell holds
the beginning of the rotated vector. After one rotation, the first 32 bits are located in memory
cell 1 instead of memory cell 0, after the second rotation the first 32 bits are located in cell 2,
and so on. An example of this rotation technique is illustrated in Figure 5.1 for a block RAM
with 8-bit registers and a total of four memory cells. This technique allows us to occupy only
one data port of the BRAM while still being able to efficiently rotate a 4801-bit vector using
just 153 clock cycles instead of nearly twice as many cycles with the previous approach.

We apply the same trick to the redundant part even though it does not need to be rotated.
This allows us to load a 32-bit block of the redundant part, XOR the corresponding 32-bit block

1Rotating a 4801-bit vector that is stored in 32-bit cells requires d4801/32e = 151 loads plus one additional
load to extract the least significant bit.
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Figure 5.2: Block diagram of the syndrome computation circuit. Depending on set bits in the
ciphertext, rows of both blocks of the private-key are XORed to the syndrome in
32-bit steps.

of g to it if the current message bit is set, and store the result while rotating g at the same
time. Both operations can work in parallel since they only need one data port each.

After 32 rotations of row g, we XOR the current 32-bit message block with its corresponding
32-bit block of the error vector and store the result. Then we load the next 32-bit message block
to a 32-bit register and repeat until all message bits are processed. The resulting ciphertext can
be read out from the BRAM by external components once decoding is finished.

QC-MDPC McEliece Decryption

Decryption first computes the syndrome of the received ciphertext. After resetting the syndrome
to zero, we rotate both parts of the private-key using the same trick as for rotating the public-
key when encrypting. Similarly, we apply the same trick to the syndrome that we applied to the
redundant part. The syndrome itself does not need to be rotated, but we benefit from the same
performance gains when adding one or even both rows of the private-key to the syndrome as
when adding one row of the generator matrix to the redundant part during encryption. Due to
the similar structure of the syndrome computation and the encryption of a message both take
nearly the same amount of clock cycles to finish. The computation would take twice as long if
we would not process both parts of the private-key and the ciphertext in parallel. Figure 5.2
illustrates our syndrome computation circuit.

Testing the syndrome for zero is implemented by computing the binary OR of all 32-bit
blocks of the syndrome and comparing the results to zero. To count the number of unsatisfied
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parity-check equations for a ciphertext bit, we load 32 bits of the syndrome and 32 bits of the
current rows of the parity-check matrix blocks and compute their binary AND. The Hamming
weight of the result determines if the corresponding ciphertext bits have to be inverted. The
Hamming weight is computed by splitting the 32-bit AND result into five 6-bit chunks and one
2-bit chunk, looking up their Hamming weight from tables and accumulating the results. We
proceed with the following 32-bit blocks and compute the overall Hamming weights for two
ciphertext bits in parallel.

Next we reload the current rows of the parity-check matrix blocks and rotate them using
our previously described rotation technique. If one or two ciphertext bits caused more than bi
unsatisfied parity-check equations for the current iteration i, we invert the ciphertext bit(s) and
XOR one or two rows of the parity-check matrix block to the syndrome while rotating them.

After processing 2 · 32 ciphertext bits, we store both modified parts of the ciphertext back
to the BRAM and load the next 32-bit blocks to two 32-bit registers. After processing the last
ciphertext bit, we again compute the binary OR of all 32-bit blocks of the syndrome and check
if the result is zero. If it is we notify external components that the plaintext can now be read
out, otherwise we repeat the bit-flipping decoding with adapted thresholds or signal a decoding
error if the maximum number of iterations is exceeded.

5.3.3 Implementation Results

We present our implementation results in terms of occupied resources and performance for
Xilinx FPGAs. Furthermore, we compare our results with the high-performance QC-MDPC
McEliece FPGA implementation presented in Section 5.2 and with previous work.

The implementation results are obtained post place-and-route (PAR) and are listed in Ta-
ble 5.3 for a low-cost Xilinx Spartan-6 XC6SLX4 (the smallest device in the Spartan-6 family)
and for a high-end Xilinx Virtex-6 XC6VLX240T FPGA using Xilinx ISE 14.7. The encoder oc-
cupies 64-68 slices and the decoder 148-159 slices on these devices. As detailed in Section 5.3.1,
the encoder uses one BRAM and the decoder uses three BRAMs to store inputs, outputs, and
intermediate values. While the resource consumption is similar on both FPGAs, the design
naturally runs at higher clock frequencies on the Virtex-6 FPGA.

To encrypt a message, the cycle counts listed in Table 5.4 are required. First 151 cycles are
needed to load the second half of the error vector into the redundant part. Rotating g and
XORing it to the redundant part if the current message bit is set takes 153 cycles and has to be
repeated 4801 times. After processing 32 message bits we load the next 32-bit message block
and store the previous message XORed with the corresponding 32 bits of the error vector which
takes 3 cycles and has to be repeated 151 times. Finally, we store the least significant bit of the
redundant part which takes one additional clock cycle. Overall,

151 + 4801 · 153 + 151 · 3 + 1 = 735, 158 cycles

are needed to encrypt a 4801-bit message block. This translates to 2.2 ms on the Virtex-6 FPGA
and to 3.4 ms on the Spartan-6 FPGA.

Decrypting a ciphertext requires cycle counts as listed in Table 5.4. Resetting the syndrome
finishes after 151 cycles. Computing the syndrome is basically the same operation as encoding
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Table 5.3: Resource consumption of our lightweight QC-MDPC McEliece implementations on a
low-cost Xilinx Spartan-6 XC6SLX4 and on a high-end Xilinx Virtex-6 XC6VLX240T
FPGA. All results are obtained post place-and-route.

Virtex-6 XC6VLX240T Spartan-6 XC6SLX4
Aspect Encryption Decryption Encryption Decryption

FFs 120 412 119 413
LUTs 224 568 226 605
Slices 68 148 64 159
BRAM 1 3 1 3
Frequency 334 MHz 318 MHz 213 MHz 186 MHz
Time/Op 2.2 ms 13.4 ms 3.4 ms 23.0 ms

a message. It takes 153 cycles to rotate both parts of the private-key by one bit and optionally
XORing them to the syndrome which is repeated 4801 times. Loading the next two 32-bit
ciphertext blocks requires one cycle and is repeated 151 times. Overall,

151 + 4801 · 153 + 151 = 734, 855 cycles

are needed to compute the syndrome. Comparing the syndrome to zero takes 151 cycles.
Counting the number of unsatisfied parity-check equations, i.e., computing the Hamming weight
of the binary AND of the syndrome and the two current rows of the parity-check matrix blocks,
takes 154 cycles and is repeated 4801 times. Loading the next two 32-bit ciphertext blocks
takes 2 cycles and is repeated 151 times. After computing the Hamming weight, generating the
next row of the parity-check matrix takes 153 cycles, which is also repeated 4801 times. Storing
modified ciphertext blocks takes one cycle and is done 151 times before the next two 32-bit
ciphertext blocks are loaded. Finally, the syndrome is again compared to zero. In summary,
one iteration of the bit-flipping step takes

151 · 2 + 4801 · 154 + 4801 · 153 + 151 + 151 = 1, 474, 511 cycles.

As evaluated in Chapter 4, on average 2.4 decoding iterations are needed for successful decoding.
Hence, our overall average cycle count is

151 + 734, 855 + 151 + 2.4 · 1, 474, 511 = 4, 273, 983 cycles.

The design can be clocked at 318 MHz on the Virtex-6 FPGA which translates to 13.4 ms. On
the Spartan-6 FPGA the design runs at 186 MHz which results in 23 ms for decrypting one
message block.

Comparison

A comparison of our lightweight implementation with our high-performance implementation
of QC-MDPC McEliece and other lightweight code-based FPGA implementations as well as
lightweight Ring-LWE and RSA implementations is presented in Table 5.5.
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Table 5.4: Required cycles for our lightweight QC-MDPC McEliece en-/decryption cores.
Encoder Operations Cycles Decoder Operations Cycles

Load error vector 151 Reset syndrome 151
Rotate PK & XOR 153 Compute syndrome 734,704
Store & load message 3 Check syndrome 151

Correct ciphertext bits 1,474,511
Overall average 735,000 Overall average 4,274,000

A fair comparison between the high-performance and the lightweight QC-MDPC McEliece
implementations is difficult since the implementations aim for very different goals. When com-
paring the occupied resources it is fair to say that the lightweight goal was achieved by requir-
ing less than 250 slices and four BRAMs for a combined en-/decryption core instead of using
around 13,000 slices which allows to use much smaller and less expensive devices. As expected,
the lightweight implementation is outperformed in terms of time per operation, but still pro-
vides timings in the range of a few milliseconds which seems reasonable for a large number of
real-world applications.

Previous lightweight McEliece implementations [EGHP09, GDUV12] are based on Goppa
codes. The first lightweight implementation of a code-based cryptosystem (“MicroEliece”) was
proposed for a Xilinx Spartan-3 FPGA. Since the storage capacity of the FPGA did not suffice,
external memory had to be used to store the public-key. More recently, [GDUV12] proposed a
lightweight McEliece decryption co-processor for Xilinx Spartan-3 and Virtex-5 FPGAs. When
comparing previous work to our results it is important to keep in mind that even though all
works implement McEliece, they are based on different codes. Decoding Goppa codes requires
decoders which are very different from (QC-)MDPC decoders.

Our implementation uses less resources and performs at about the same speed compared
to [EGHP09]. However, a direct comparison of the consumed resources is difficult since Spartan-
3 FPGAs only offer 4-input LUTs as opposed to Spartan-6/Virtex-6 devices which offer 6-input
LUTs. The structure of a slice has changed as well, newer Xilinx FPGAs offer more resources
with each slice. But even when reducing the LUT and slice count of MicroEliece by 50%, our
implementations are still smaller, especially when comparing decryption.

We need around nine times less slices in our implementation compared to [GDUV12], but
also more time to decrypt. The resource consumption can be compared more or less directly
since Virtex-5 and Virtex-6 FPGAs offer similar resources. Besides resource consumption and
efficiency an important criterion for real-world applications is the size of the public-key. Here,
the quasi-cyclic structure of QC-MDPC codes shows its advantage by reducing the public-key
from 63.5 Kbytes [GDUV12] or even 437.8 Kbytes [EGHP09] to just 0.6 Kbytes.

A lightweight implementation of the lattice-based Ring-LWE scheme was recently presented
in [PG14a] for a Spartan-6 XC6SLX9 FPGA. Their encryption core requires around 50% more
resources but takes less time per operation. Since Ring-LWE decryption does not require
complex decoding, its implementation requires fewer resources and less time to complete.
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Table 5.5: Performance comparison of our lightweight QC-MDPC McEliece (McE) implementa-
tions with other lightweight public-key encryption implementations. For comparison
with the high-performance QC-MDPC McEliece the iterative decryption implemen-
tation results are used. 1Additionally uses a DSP48 block.

Scheme Platform Time/Op FFs LUTs Slices BRAM

Lightweight McE (enc) XC6SLX4 3.4 ms 119 226 64 1
Lightweight McE (dec) XC6SLX4 23.0 ms 413 605 159 3
Lightweight McE (enc) XC6VLX240T 2.2 ms 120 224 68 1
Lightweight McE (dec) XC6VLX240T 13.4 ms 412 568 148 3
High-performance McE (enc) XC6VLX240T 13.7 µs 14,429 9,201 2,924 0
High-performance McE (dec) XC6VLX240T 125.4 µs 32,962 36,502 10,364 0
McEliece [EGHP09] (enc) XC3S1400AN 2.2 ms 804 1,044 668 3
McEliece [EGHP09] (dec) XC3S1400AN 21.6 ms 8,977 22,034 11,218 20
McEliece [GDUV12] (dec) XC5VLX110T 0.5 ms n/a n/a 1,385 5
McEliece [GDUV12] (dec) XC3S1400AN 1.02 ms 2,505 4,878 2,979 5
Ring-LWE [PG14a] (enc) XC6SLX9 0.9 ms 238 317 95 21

Ring-LWE [PG14a] (dec) XC6SLX9 0.4 ms 87 112 32 11

RSA (Tiny32) [Hel15a] Spartan6-3 312 ms n/a n/a 142 1
ECC-P233 [HB10] XC3S50 520 ms 244 578 452 4

Helion Inc. offers a lightweight modular exponentiation core capable of performing 1024-
bit RSA operations (Tiny32) [Hel15a]. They report a time/operation of 312 ms at a resource
consumption of 142 slices plus one 18-Kbit BRAM on a Spartan-6 device.

A resource-efficient implementation of elliptic curve cryptography was presented in [HB10].
The resource requirements are similar to QC-MDPC McEliece but their performance is a factor
of 20-150 slower. If their design would be implemented for a newer device, e.g., a Spartan-6
instead of a Spartan-3, the efficiency would presumably be improved, but usually these improve-
ments are of a small factor.

5.4 Side-Channel Attacks and Countermeasures

In this section we are not concerned with the security of the specific QC-MDPC parameters
against underlying theoretical problems but instead focus on side-channel attacks. Even in
a post-quantum world, i. e., when scalable quantum computers are available, implementation-
specific information leakage will remain a serious practical issue. So far no differential side-
channel analysis such as DPA has been documented on FPGA implementations of McEliece.
In fact, [HMP10] concluded that a classical DPA attack is not possible for their FPGA target
implementations of McEliece with binary Goppa codes. We demonstrate that DPA can be a
realistic threat for a state-of-the-art FPGA implementation of QC-MDPC McEliece and present
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a horizontal and a vertical side-channel attack exploiting slightly different leakages during the
syndrome computation step of the decryption implementation. The found attacks show that
side-channel leakage can be efficiently exploited even if straightforward methods that work well
on contemporary ciphers such as AES and RSA seem inapplicable. Hence, claims on ‘free’ side-
channel resistance should be treated with caution. Besides showing that significant parts of the
private-key can be recovered by side-channel analysis, we show that knowledge of the public-key
can be utilized to recover missing key information or to correct remaining errors in hypothesized
key bits. On the conceptual side it deserves to be noted that our cryptanalysis targets the
decoding algorithm, and thus is not restricted to the original QC-MDPC McEliece as presented
in Section 3.2.3. Our side-channel attacks are not prevented if the basic scheme is augmented
with a common padding to establish stronger provable guarantees, e.g., the aforementioned
IND-CCA conversions, as long as the decryption algorithm is applied to the ciphertext directly,
possibly followed by some plausibility checks.

The author would like to note that the QC-MDPC McEliece side-channel attacks and coun-
termeasures presented in this section were mainly developed by Cong Chen, Thomas Eisenbarth
and Rainer Steinwandt. The author contributed to the research and co-authored the result-
ing publications which appeared in [CEvMS15, CEvMS16b, CEvMS16a] but does not claim
the presented ideas and attacks as his own. The results are included in this thesis for sake of
completeness.

5.4.1 Related Work

Side-channel leakages of McEliece have first been studied in [STM+08]. This work, as well as two
follow-up studies focused on analyzing timing behavior of different parts of PC implementations
of McEliece [SSMS10, Str10]. Subsequently, [AHPT11] improved over prior results, presented
countermeasures and pointed out leakages in the preprocessing steps of McEliece encryption.
[HMP10] performed power analysis on software implementations of classic McEliece implemen-
tations. Their work relies on simple power analysis (SPA)-based approaches, which usually do
not translate well into hardware implementations, due to the increased parallel processing of
data and a much smaller side-channel leakage. They also show that side-channel analysis is
impeded by the large key sizes of McEliece. AVR and ARM microcontroller implementations
of QC-MDPC McEliece are shown to be susceptible to SPA attacks in Section 6.3. The found
weaknesses rely on secret dependent branches, which allow to recover the encrypted message as
well as to recover the private key.

The conference version of this work [CEvMS15] introduced a horizontal DPA attack on our
lightweight FPGA implementation of QC-MDPC McEliece. In [CEvMS16a] we introduced a
novel vertical DPA that targets the leakage of the syndrome computation. While the vertical
attack is less efficient than the horizontal attack (more traces are needed for full key recovery),
it is less specific to the implementation and is more difficult to prevent.

5.4.2 Side-Channel Attack on QC-MDPC McEliece Encryption

Usually DPA attacks exploit an intermediate state y = f(x, k) that is a function of a known
data item x and a subkey k. The subkey space K should be small enough so that a hypothesis y
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can be checked for all candidates k ∈ K. Some works that elaborate on this model are [MOP07,
KJJR11, WOS14]. McEliece does not offer itself for this approach, as also noted in [HMP10].
One would expect the syndrome s to serve as a potential predictable intermediate state y.
However, the bits in the ciphertext x only determine which rows of the parity check matrix H
are added to s, where H is the private key to be recovered. Predicting (parts of) the syndrome
s requires an additional key bit hypothesis for each variation of each bit of s, i. e., each bit
of s depends on l key bits after l variations, supporting the infeasibility claim of [HMP10]. A
way of avoiding the exponential growth of key dependencies for each bit of the syndrome state
are chosen ciphertexts of low weight. This approach is elaborated in Section 5.4.2. One of the
strengths of QC-MDPC, its small private key size, stems from the fact that secret information is
highly redundant: each row of H contains the same information—namely 〈h0 ≫ z||h1 ≫ z〉—
only rotated by one bit per row, z ∈ {0, 4800}. This redundancy allows for an efficient recovery
of key information. More important, it enables a differential analysis approach which greatly
enhances the visibility of even faint leakages. Since the key information is reused over and
over again even within the same decryption operation, the algorithm and its implementation
enable what has been described as horizontal side-channel analysis, e.g. in the framework
of [BJPW13]. Horizontal side-channel analysis has the advantage that it can utilize several
leakages of the same intermediate sensitive variable from a single decryption operation, making
the resulting attack potentially orders of magnitude more efficient than classical DPA attacks,
usually classifiable as vertical side-channel analysis.

We exploit two different types of leakage, both occurring during syndrome computation. The
first analysis recovers key leakage from the syndrome computation itself and requires chosen
ciphertexts of low Hamming weight. It resembles classical DPA more closely and, as it only
exploits one leakage sample per measurement, can be classified as a vertical side-channel anal-
ysis. The second analysis recovers a static key leakage of the key rotation operation that is
completely independent of the known or chosen ciphertext input x. Since the exploited leak-
age occurs several times during one syndrome computation, our attack combines these leakage
events, as commonly done in horizontal side-channel attacks.

Leakage Behavior

Recall that the lightweight FPGA implementation stores inputs, outputs and most intermediate
values during encryption and decryption in block memories. Decryption uses three BRAMs,
one BRAM stores the 2 · 4801-bit private key, one BRAM stores the 2 · 4801-bit ciphertext, and
one BRAM stores the 4801-bit syndrome. Each BRAM is dual-ported and allows to read/write
two 32-bit values at different addresses in one clock cycle. To compute the syndrome, set bits
in the ciphertext select rows of the parity-check matrix blocks that are accumulated. Since only
one row of each block is stored in the BRAM, they need to be rotated by one bit to generate
the next rows. To generate all rows of H, the rotation is repeated 4801 times.

Rotating the two parts of the private key is implemented in parallel, which means that the
4801-bit rows of the first and the second part of the parity-check matrix are rotated at the
same time. Efficient rotation is realized using the Read First mode of Xilinx’s BRAMs which
allows to read the content of a 32-bit memory cell and then to overwrite it with a new value, all
within one clock cycle. The key rotation is implemented as follows: in the first clock cycle, the
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Figure 5.3: Abstract block diagram of the QC-MDPC McEliece syndrome computation circuit
including key rotation as implemented in our lightweight FPGA design.

least significant bit (LSB) is loaded from the last memory cell. The first 32-bit of the row to be
rotated are loaded next. In all following clock cycles, the succeeding 32-bit blocks of the row
are read and overwritten by the rotated preceding 32-bit block. The LSB of each 32-bit block
is delayed by a flip-flop and becomes the most significant bit (MSB) of the following block.
An abstraction of this implementation is depicted in Figure 5.3. In addition to a rotation of
the rows, this introduces a rotation of the memory cells. After one 4801-bit rotation, the most
significant 32 bits of a parity-check matrix row do not reside in memory cell 0 but in memory cell
1. The syndrome s is computed by processing the ciphertext x in a bitwise fashion. If the j-th
bit is set, i. e., xj = 1, then the j-th row of H is added to the syndrome s. The implementation
adds two 32-bit words in parallel: one word of the rotated h0 and one word of h1 are processed
in each clock cycle.

The described attacks recover the key during the syndrome computation step of the decryption
algorithm. The key for QC-MDPC consists of a single line of the parity check matrix H, namely
h0||h1. Only this line of H, or one of its rotated versions 〈h0 ≫ z||h1 ≫ z〉, is stored in BRAM.
The key has some noteworthy features that influence the derived DPA attacks. First, the private
key is of low weight: both parts of the private key h0 and h1 are of low Hamming weight such
that, wt(h0||h1) = w. For the target implementation, w = 90 and wt(hi) = 45, i. e., both h0
and h1 have exactly 45 bits set. This means, each key bit hi,j ∈ {0, 1} where i ∈ {0, 1} and
j ∈ {0, 4800} is set with probability Pr(hi,j = 1) = w/(n0r) = 45/4801 ≈ .94%. This implies
low-weight leakages: Syndrome and key parts hi are stored in BRAMs and are processed as 151
32-bit words. The chance of a 32-bit key word to be all-0 is still 74%, about 22% contain a
single one bit, leaving the chance of having more than one bit set in a word below 5%.
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The critical parts of the target implementation that feature exploitable key leakage are de-
picted in Figure 5.3. There are two operations that contribute to the leakage during syndrome
computation. One operation is the key rotation (left part of Figure 5.3), which is always per-
formed. The second operation is the syndrome computation (right part of Figure 5.3).

Leakage of the Key Rotation The key rotation is always performed and thus is independent
of the ciphertext input x. The stored key row 〈h0 ≫ z||h1 ≫ z〉 is constantly rotated during
the syndrome generation. In fact, it is rotated by a single bit 4801 times, where each rotation
takes 151 clock cycles (plus two additional clock cycles for preprocessing and a data read-write
delay, resulting in 153 clock cycles). The implementation features a separate register which
stores the carry bit during rotations. In each of these clock cycles, one bit hi,j—the LSB of
the last accessed word—is written to the carry register, causing leakage λcarry(i, j). In the
following clock cycle, that bit is overwritten with the LSB of the next word, hi,j+32. Assuming
a Hamming distance leakage function, this register leaks first

λcarry(i, j) = w1 · wt(hi,j−32 ⊕ hi,j), (5.1)

then, in the subsequent clock cycle, leaks λcarry(i, j+ 32) = w1 ·wt(hi,j⊕hi,j+32), where w1 ∈ R
is an appropriate weight. Assuming that hi,j = 1 and further hi,j±32 = 0, λcarry(i, j) gives a
clearly distinguishable leakage from the case where hi,j = 0. This leakage is the target of the
described attack.

In addition to the leakage of the carry register λcarry(i, j) described in Equation (5.1), there
are related leakages happening in the same clock cycles. In fact, when hi,j is written to the
carry register, the implementation also reads the word 〈hi,j+1 . . . hi,j+32〉 from the block memory
at one address and then stores the word 〈hi,j−32 . . . hi,j−1〉 into the block memory at the same
address. Both reading and storing operations will cause leakages at different levels. Assuming
a Hamming weight leakage function here, reading data and storing data words leaks as

λread(i, j) = w2 · wt(〈hi,j+1 . . . hi,j+32〉) and
λstore(i, j) = w3 · wt(〈hi,j−32 . . . hi,j−1〉),

respectively. Here, w2 ∈ R and w3 ∈ R are appropriate weights for the different types of
operations. The overall observed leakage of the key rotation is thus approximated as:

Li(j) = λcarry(i, j) + λread(i, j) + λstore(i, j) +N

where Li is the overall leakage at the clock cycle where hi,j is written into the carry register and
N is noise, which is assumed to be Gaussian. Note that the target implementation processes
h0 and h1 in parallel. This means that the leakage functions L0 and L1 for h0 and h1 overlap.
There are two carry registers (cf. Figure 5.3), one stores h0,j when the other stores h1,j . While
these leakages slightly differ, we will not attempt to distinguish them. Instead we recover the
combined leakages. That is, we predict the combined leakage hΣ = h0 +h1, which is still sparse.
Note that the addition here is not in F2, i. e., we can distinguish the case where h0,j = h1,j = 1
from the case h0,j = h1,j = 0, although this case is very rare (and will be ignored in the further
description). While the model is not perfect, it describes the observed leakages well enough to
base a decent key recovery on it.
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We can now hypothesize the value of each key bit hi,j separately. We further know at
which clock cycle the leakage of the carry registers (for the key rotation) occurs. Since this
happens several times during the syndrome computation step of each decryption, one can build
a horizontal side-channel attack, as described in Section 5.4.2.

Leakage of the Syndrome Computation Besides the key rotation, the computation of
the syndrome s contributes significantly to the leakage. The target implementation processes
the ciphertext x in a bitwise fashion. If the i-th bit is set, i. e., xi = 1, then the i-th row of H is
added to the syndrome s. The implementation can add two 32-bit words in parallel: one word of
the rotated h0 and one word of h1 are processed each clock cycle. This means that the addition
of one row of H takes 151 clock cycles (plus two additional clock cycles for preprocessing and
data read-write delay, resulting again in 153 clock cycles). The syndrome s is initially zero and
is only updated if at least one of the currently processed ciphertext bits xi is set. For the first
set bit xi = 1, the zeroed syndrome s is overwritten with (a shifted version of) h0 or h1. The key
bit hi,j is processed as part of one 32-bit word 〈hi,j−l . . . hi,j . . . hi,j−l+31〉, where l ∈ {0, . . . , 31}
depends on j and the position of the set bit in x. Assuming a Hamming distance leakage, the
Hamming weight of the word will leak, since it overwrites a zeroed register, i. e., the leakage of
the corresponding syndrome word can be modeled as

λj,syn = w0 · wt (〈hi,j−l . . . hi,j . . . hi,j−l+31〉)

with an appropriate weight w0 ∈ R. Note that this leakage model is specific to the first key
addition to the syndrome state s.

One problem of exploiting this leakage is caused by correlated leakages from the key rotation.
Both h0 and h1 are rotated during the above computation, with the same key words being
processed in the studied clock cycle, as described above. Since those leakages are dependent
on the predicted bit, they are not independent noise that decreases by averaging, as usually
happening in DPA. However, these leakages Li(j) occur independently of whether the syndrome
is updated or not. It is possible to remove these constant leakages, i.e., all leakages that occur
independently of whether the syndrome is updated or not, by simply subtracting the average
leakage during the corresponding clock cycles. These are the leakage of the same clock cycles
when the key word is not added to the syndrome word (and the set bit in x is zero), which we
refer to as λj,const. the resulting leakage observed when hi,j is added to the syndrome is:

Lj,syn = λj,syn + λj,const +N , (5.2)

where N is the noise, which is assumed to be Gaussian and can be minimized by increasing the
number of observations used for computing Lj,syn. We know for each key bit hi,j at which clock
cycle it is processed2. In fact, knowing the implementation and x, it is predictable which 32-bit
word of hi is added to the syndrome at which point in time, just as it is predictable which key
bit hi enters the carry register in which clock cycle for the key rotation.

The other disadvantage of this leakage function is that bits of hi located close to each other
have highly correlated leakage functions. In fact, since 32-bit registers are leaking, all bits in

2If not, several hypotheses can be checked in parallel by analyzing neighboring clock cycles, as long as the
processing order is deterministic.
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the same register will enter the leakage function in the same way. We will later show how this
second problem can be solved. We use the leakage of the syndrome computation λj,syn to build
a vertical differential power analysis attack and hypothesize each key bit hi,j separately to be
one, knowing that this hypothesis will be wrong 99% of the time. Based on this knowledge, one
can build the following attack.

Vertical DPA of Syndrome Computation

The vertical power analysis attack targets the leakage of the syndrome during its computation.
This analysis assumes the adversary sends chosen ciphertexts of weight one, i. e., all possible
x such that wt(x) = 1. Ciphertexts of weight one ensure that a rotated version of either h0
or of h1 is written into a zeroed syndrome s. To recover h0, we chose only the first 4801 bits
of x to be one, yielding a total of 4801 different ciphertexts for the analysis. As detailed in
Section 5.4.4, once h0 is known the remaining part of the private key can be derived easily.

For each x we further know when a line of the key is added to the syndrome. We also know
at which clock cycle during that addition the word containing hi,j is added. Our algorithm
recovers the clock cycle where the hi,j is added to s for each x and the corresponding leakage
in the leakage trace L. Next, we simply sum all the leakage instances of the target hi,j for the
different xi into a bin, as typically done by DPA. Unlike DPA, we have only one bin per key
bit. However, assuming that each bit leaks similarly, we have 4756 bins that correspond to a
hi,j = 0, and only 45 bins corresponding to a bit hi,j = 1.

Based on the leakage model derived in Equation (5.2), we can compute a differential trace
∆syn(j) representing the syndrome leakage of each bit hi,j . We can approximate λj,const by
simply averaging over all observed traces and compute it as Lj,const = avg(Lj). This average is
then subtracted from the leakage trace for Lj,syn, which is computed as

∆syn(j) =
4800∑
l=0

(Lj,syn(l)− Lj,const(l)) . (5.3)

The resulting differential trace ∆syn(j) is depicted in Figure 5.4, where the red (gray) line
depicts the observed leakage while the blue (black) line depicts the leakage derived from the
model as described above. From the plot as well as the model it can be observed that bits of
hi located close to each other have highly correlated leakage functions. In fact, since 32-bit
registers are leaking, all bits in the same register will enter the leakage function in the same
way. However, whether a given neighboring bit is in the same register depends on the row index
that is currently processed, since the key bits are rotated by one bit for each row. This means
that the neighboring bits will leak in a different clock cycle eventually, as the position of the
set bit in x changes for different ciphertexts. The closer the bit is to the correct bit, the higher
their correlation is (since they are more likely to be in the same register). We will later show
that, while key bits equal to one can be detected, their exact position is harder to detect, since
neighboring bits “look like” ones as well.

The plot of the differential trace in Figure 5.4 shows the highest consumption for the correct
key bits. The consumption decreases linearly as the distance to the bit increases, at least for
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Figure 5.4: Differential leakage for syndrome computation with key part h0 only. The plot
shows the normalized leakage (vertical axis) for each key bit of h0 (horizontal axis)
for simulated leakage according to λj,syn (blue/black line) and real measurement,
i. e., empirical ∆syn(j) (red/gray line). Due to correlation in the leakage of closely
located bits, the shapes overlap on several positions.

key bits with a higher index. Bits at least 32 positions away from a set key bit show the lowest
consumption, since they never share a leakage with a set bit. However, from the magnified
version depicted in Figure 5.5 it can be seen that there is still a correlated leakage occurring
that is not caught by our model. In fact, bits up to 64 bits lower than the predicted one still
exhibit a correlation. We assume this to be due to the Read First mode of the BRAM. In
fact, when a specific syndrome word is written to BRAM, the next one is simultaneously read,
as is the corresponding part of the key. Hence, the next clock cycle’s word could already be
computed. While we expect this leakage to be constant, i. e., to occur independently of whether
the syndrome will be updated or not, the observed leakage suggests otherwise.

In summary, the described method lets us detect leakages of h0 and h1 separately. It allows
us to reliably distinguish set bits from zero bits. We get a single leakage observation per trace
L for chosen ciphertexts of weight one. However, closely co-located bits are highly correlated,
making the exact position of a bit difficult to detect.

Horizontal DPA of Key Rotation

As mentioned above, we cannot distinguish h0,j and h1,j for the key rotation operation. Instead,
we predict the combined leakage hΣ,j = h0,j + h1,j . Our key recovery works well for this
combined leakage, as explained in Section 5.4.4. Note that we know for each key bit hi,j
at which clock cycle it is processed (if not, several hypotheses can be checked in parallel by
analyzing neighboring clock cycles). In fact, knowing the implementation, it is predictable
which key bit hi,j enters the carry register in which clock cycle for the key rotation. We use
this information to build a differential power analysis attack. In spite of the independence of
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Figure 5.5: This plot is a magnification of Figure 5.4 which shows the characteristic shape of
a single set key bit (left, h0,118 = 1) and two adjacent set key bits (center left,
h0,267 = h0,306 = 1). The two shapes on the right are due to two other set key bits
(h0,501 = 1 and h0,616 = 1).

the input x we claim the analysis method to be differential leakage analysis, since differential
leakage traces can be computed—similar to the approach originally proposed in [KJJ99].

Our algorithm identifies all clock cycles where hi,j is written to or overwritten in the carry
register in each trace L and extracts that leakage from L. Per processed ciphertext bit, only
150 words are rotated. The additional bit is stored in the carry register. Hence, all rotations
together result in a total of 4801 · 150 carry register overwrites for each hi. Since there are
4801 bits in hi, each bit is written to the carry register 150 times. The corresponding clock
cycles l are then identified and their corresponding leakage Li(j, l) is combined, as done in
horizontal SCA. The result is a differential leakage trace ∆carry with only one bin per key bit.
In other words, the difference between a key bit being zero and a key bit being one can be
observed by comparing points of the leakage trace ∆carry horizontally. Since the key is sparse,
there are only very few bins that correspond to a bit hi,j = 1, while most bins correspond to
a bit hi,j = 0. The implicit assumption of all bits leaking the same way is perfectly justified:
each bit hi,j takes each column position exactly once, in a specific row. That means due to the
rotation, each key bit leaks in every position exactly once, averaging out any position-specific
leakages.

In order to detect whether a key bit is set, i. e., hi,j = 1, we average over all clock cycles
where hi,j is written to the carry register.

∆carry(j) = 1
150

150∑
l=1

(L0(j, l) + L1(j, l))

= avg (λcarry(0, j) + λread(0, j) + λstore(0, j)
+λcarry(1, j) + λread(1, j) + λstore(1, j))
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Figure 5.6: Differential leakage trace for key rotation. The plot shows the normalized leakage
(vertical axis) of both key parts hΣ,j = h0 + h1 over the key bit index (horizontal
axis). The red (gray) line is the simulated leakage while the blue (black) line is the
observed leakage from the target implementation.

Since hi,j−32 = 0 with very high probability, ∆carry(j) depends directly on the key bit. Fur-
ther, hi,j = 1 has an even stronger influence on ∆carry(j ± 32), since it leaks through λcarry(i, j)
and either λread(i, j) or λstore(i, j). The dependence of ∆carry(j) on neighboring key bits hi,j±δ,
with δ ≤ 32, implies that each set key bit not only results in an increased leakage signal for its
own position (i. e., index j), but also in the neighboring positions. Note that due to the differing
weights, each set key bit imprints a characteristic shape onto the leakage trace. These shapes
can (and actually will) overlap if several key bits in the same region are set.

Figure 5.6 shows the comparison of the simulated leakage trace (red(gray) line) using the
power model and the real leakage trace (blue/black line). The characteristic shape is highlighted
in Figure 5.7, which is a magnification of a single set bit of the key, surrounded by zeroes.

In summary, the key rotation analysis allows us to detect joint leakages of h0 and h1. This
is due to the target implementation that processes both in parallel. The key rotation leakage
features a characteristic shape with easily detectable bounds. This allows for a precise location
of set key bits. Furthermore, the analysis of the key rotation is mostly input-independent, as
will be discussed in Section 5.4.3. More importantly, each bit features 150 leakage observations
per trace L, resulting in a very strong leakage.

Key Bit Recovery

The computation of syndrome and key rotation both cause leakages which can be analyzed in
the presented differential traces. In both of the differential traces, characteristic shapes caused
by set key bits can be detected and used to recover the set key bits. In the same way, the traces
can be used to detect key bits that are not set. For the computation of the syndrome, the
differential trace can recover the key bits of h0 or h1 separately, depending on the ciphertext we
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Figure 5.7: A magnified version of Figure 5.6 that highlights the characteristic shape of a single
set bit (center) as well as the overlap of two (right) and three (left) “adjacent” set
bits.

use. For the key rotation, since the analyzed implementation processes h0 and h1 in parallel,
resulting in an overlap of the leakages, the differential trace actually recovers the key bits of
hΣ = h0 + h1.

In order to recover key bits, the characteristic shapes need to be detected. We propose a
generic shape detection algorithm that works as follows:

(1) Shape Definition From the differential leakage trace, one singular characteristic shape
can be identified and used as a template for set bits. The template is used to generate a
shape threshold as shown in Figure 5.7 for the key rotation leakage and Figure 5.5 for the
syndrome computation leakage. The threshold is defined by the value of features in this
shape such as edges, slopes and pulses.

(2) Shape Detection For each key bit in the differential leakage trace, we check if this key
bit together with the neighboring key bits can form a characteristic shape. This is done
by checking if there are features that are beyond the threshold. If more than two features
exist, it is highly probable that this key bit is set. If no feature exists, then it is highly
probable that this key bit is 0. Otherwise, we mark this key bit as undetermined.

Note that the shapes will overlap if two set key bits are close to each other. Furthermore,
the leakage traces are noisy, hence we can only recover parts of the key bits, leaving the other
key bits undetermined. By choosing the thresholds for shape detection carefully, the number
of detected bits can be maximized while keeping the number of false positive errors as low as
needed.
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5.4.3 Measurement Setup and Results

We ported our lightweight QC-MDPC McEliece FPGA implementation (cf. Section 5.3) to a
Xilinx Virtex-5 LX50 FPGA which is mounted on a Sasebo-GII side-channel attack evaluation
board. The implementation is clocked at 3 MHz by default. Measurements were performed using
a Tektronix DPO 5104 oscilloscope at a sampling rate of 100 MS/s. Since our attack focuses
on the syndrome computation, only the syndrome computation was recorded. The syndrome
computation takes 245 ms, resulting in long traces. For the ease of analysis, a peak extraction
was performed. In each clock cycle only the point of maximum power consumption is retained.
The peak extraction prevents potential alignment issues and makes data handling much faster.

As mentioned in Section 5.4.2, key rotation and syndrome computation run in parallel which
leads to a mixed leakage. To fully exploit the leakages, measurements were obtained in three
different scenarios:
� Known Ciphertext In this scenario we assume the adversary to only observe ciphertext-

leakage pairs. Hence, the ciphertexts x are chosen uniformly at random. While this can
result in invalid ciphertexts, the attacker could also just generate valid ciphertexts by
choosing plaintexts at will. In this scenario, a mixed leakage of key rotation and syndrome
computation is obtained.

� All-Zero Ciphertext In order to minimize the impact of the syndrome computation and
storage on the leakage, we recorded the power consumption for an all-0 ciphertext. The
syndrome is never updated when the ciphertext is 0, while key rotation is always executed.
Note that the all-zero word is a valid codeword without any errors. This corresponds to
a chosen ciphertext side-channel attack, without the need to observe the corresponding
plaintext.

� Single-One Ciphertext As mentioned in Section 5.4.2, the ciphertext weight is chosen
to be one in this scenario, i. e., only a single bit of the ciphertext is set. This is done
by adding a one bit error in each position of the all-0 ciphertext. There are 9602 such
ciphertexts since both message and the redundant part have 4801 bit positions.

Results of the Vertical Attack

To extract key leakage from the syndrome computation, the single-1 ciphertexts give the main
contribution. In fact, they provide the leakages of the Lj,syn(l) term in Equation (5.3). The
syndrome-storage independent leakage Lj,const(l) can either be derived by an average of several
all-0 leakage traces or the average of all used single-1 measurements. The latter approach
has the advantage of not requiring additional measurements. We chose the former approach,
as it is slightly less noisy. By subtraction of the two leakage terms, we derive the leakage
of the syndrome computation only. Figure 5.4 shows the differential trace of the syndrome
computation with respect to h0.

The magnification of the differential trace in Figure 5.5 highlights the observed characteristic
shapes imprinted by set key bits h0,j = 1. The shape on the left is caused by a single set key
bit h0,118 with neighboring key bits set as 0. The second shape from the left is the result of two
overlapping shapes of set bits in position 267 and 306, i. e., h0,267 = h0,306 = 1.
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Table 5.6: Key bit recovery rates (#rec) and bit error rates (#error) for h0 based on the leakage
of the syndrome computation for various thresholds and number of traces. Numbers
in parentheses are error occurrences that are not close to a true set bit.

Key bit Total # of Threshold: 16 Threshold: 20 Threshold: 24 Threshold: 28
value traces #rec #error #rec #error #rec #error #rec #error

0

1 · 4801 2636 0 3281 4 4089 12 4702 34
2 · 4801 2672 0 3143 2 3749 6 4463 17
5 · 4801 2681 1 3063 3 3573 6 4133 10

10 · 4801 2703 0 3035 3 3439 6 3931 8

1

1 · 4801 14 12 (0) 10 7 (0) 3 2 (0) 0 0(0)
2 · 4801 32 25 (1) 17 13 (0) 11 8 (0) 3 2(0)
5 · 4801 137 118 (13) 74 59 (2) 30 21 (1) 8 5(0)

10 · 4801 248 225 (1) 166 145 (0) 76 60 (2) 26 15(0)

Key Extraction To actually recover the key bits from the differential trace ∆syn(j), the
recovery algorithm described in Section 5.4.2 is applied. The first step is to build the threshold
based on features in the shape. As shown in Figure 5.5, the set key bit h0,j = 1 for j = 118
caused a characteristic shape where there are two strong features. One is a rising slope from
h0,j−64 to h0,j−32 and the other one is a falling slope from h0,j to h0,j+32.

An easy way to detect slopes is by computing the backward difference of ∆syn(j) as ∆′syn(j) =
∆syn(j)−∆syn(j − 1), which is strictly positive for rising slopes and strictly negative for falling
slopes. The number of values for which ∆′syn(j − 64) to ∆′syn(j − 32) is positive and for which
∆′syn(j) to ∆′syn(j + 32) is negative are counted separately. If both of the features exist, h0,j
is taken as 1. If none of the features exist, h0,j is taken as 0. Otherwise, it is taken as
undetermined. As discussed in Section 5.4.2, due to the overlapping and noise in the differential
trace, there are false positive errors in the recovered key bits. The detection works very well
for set key bits that are surrounded by zeros, and less well for set bits that are located close
to each other. A partial improvement can be achieved by removing (subtracting) the leakage
of detected bits from the leakage trace and thereby decomposing an area of overlapping shapes
into its components. However, this process turned out to be quite error-prone in itself, so that
we did not further explore that direction. As we show in Section 5.4.4, such improvements to
the detection algorithms are not necessary, as the recovered information is already plenty to
recover the correct key.

Table 5.6 shows the results using this recovery algorithm. For each experiment, a multiple of
4801 single-1 ciphertexts are used for computing ∆syn(j). As expected, a lower threshold reduces
the number of detected zeros, while it increases the number of detected ones. However, with
a higher number of detections, the number of false positives usually increases as well. Finally,
observing a higher number of traces reduces noise and helps a cleaner shape detection. This
is directly obvious from the zero recovery results, where the number of errors declines for an
increased number of used measurements. For the recovery of set bits, the obvious improvement
for more observations is the higher number of recovered bits. However, the number of false
positives also tends to go up quickly with more measurements. This is due to the correlation
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effect for closely located bits described in Section 5.4.2. The described detection based on
thresholds favors the detection of correlated bits close to true one bits as well. This means that
the detected errors are bits located close to a true set bit. In fact, for lower thresholds, the
method returns sequences of ones, of which only one (of the center ones) is a true positive. This
means that for each set key bit there will be a few false positives in the neighboring bits as well.
One could say that the ones are correctly detected, but that there is remaining uncertainty of
the exact location. The number in the parentheses shows the number of false positives that
cannot be explained by this, i. e., false positives that are not due to the choice of the threshold.
We will later show that the remaining errors in the leakage can be fixed in the final full key
recovery phase in Section 5.4.4.

Results of the Horizontal Attack

Since the key rotation is independent of the ciphertext, the choice of the ciphertext could be
arbitrary. However, key rotation and syndrome computation run in parallel, leading to a mixed
leakage. To determine the influence of the syndrome computation, two different ciphertext
scenarios are studied. One is the all-0 ciphertext to minimize the influence of the syndrome
computation. In this scenario the syndrome remains all-0 throughout the entire computation.
Hence, this scenario represents a chosen-ciphertext attack, just as the previously described
vertical attack. The other scenario assumes random ciphertexts for each decryption, where each
bit in x is set with a 50% probability. This scenario is representative of a known-ciphertext
attack. For each scenario we took 256 measurements.

Next, we averaged over all considered traces in both scenarios. From the resulting average
trace, 4801 · 150 peaks are extracted and used to construct the differential leakage traces ∆carry
as explained in Section 5.4.2. Note that averaging explicitly before the computation of ∆carry or
implicitly during the computation of ∆carry does not influence the result. Figure 5.8 shows the
differential leakage traces for the key rotation, showing the key bit position (horizontal axis)
vs. the bit leakage (vertical axis) for all key bits. The blue (black) line indicates the result
for the all-0 ciphertext scenario while the green (gray) line indicates the results for the random
ciphertext. The latter one is slightly noisier, but nevertheless provides a well-exploitable leakage
for a low number of observations. Figure 5.7 shows magnifications of the differential leakage
trace to highlight the characteristic shapes, particularly the one generated by setting the key
bit hi,2900 as 1 and the neighboring key bits as 0.

The other shapes in Figure 5.7 result from the overlapping of characteristic shapes that occur
when set key bits of h are close to each other. We noticed that set key bits for h0 result in a
slightly different shape than those of h1. Since this difference cannot be distinguished as easily,
we did not further try to exploit this information.

Key Extraction To extract keys from ∆carry, we used the algorithm described in Sec-
tion 5.4.2. The first step is to define the characteristic shape. Distinguishable features such as
the rising edge, the pulse in the center and the falling edge are clearly visible in Figure 5.7 and
are used to detect the shape. These features are quantified using a threshold vector. Then, for
each key bit hi,j in ∆carry, we check if there is a pulse at hi,j , a rising edge at hi,j−32 and a falling
edge at hi,j+32. If more than one feature exists for hi,j , we take hi,j as 1. If no feature exists,
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Figure 5.8: Normalized differential leakage trace ∆carry for the key rotation for the bits of hΣ,j =
h0 +h1. Whether the ciphertext is known (green/gray line) or all-0 (blue/black line)
has only marginal influence on the observed leakage.

hi,j is taken as 0. If only one feature exists, hi,j is left as undetermined key bit. Depending on
the number of traces used for generating ∆carry, it can be noisy and there will be false positive
errors in recovered key bits. Errors can also be introduced by unfavorable overlapping of shapes.

Figure 5.9 shows how the chosen threshold affects the key recovery. Three different thresholds
are used. The first one (◦) is exactly the value extracted from the characteristic shape in ∆carry.
The other two (4 and then ∗) are increased based on the first one. In Figure 5.9a, as the number
of traces used to generate the differential leakage trace increases, the number of recovered 0
key bits increases and the number of false positive errors decreases for all three thresholds.
However, the less aggressive the threshold is, the lower is the number of false positive errors. In
contrast, Figure 5.9b shows that with the least aggressive threshold (◦), more key bits of 1 can
be recovered with a few more false positive errors. Hence, to recover more key bits of 0 with
least false positive errors, the less aggressive threshold should be used. In contrast, to recover
key bits of 1 with least false positive errors, the more aggressive threshold should be used. Note
that we repeated our experiments for five different randomly generated keys to ensure the result
is not key dependent. The figures show the average result for those experiments.

Figure 5.10a shows a comparison of the number of recovered key bits and false positive errors
between the all-0 ciphertext and random ciphertext. As the number of traces used to generate
the differential leakage trace increases, the number of recovered key bits of 0 increases and the
number of false positive errors decreases for both cases. However, with the all-0 ciphertext, there
are fewer positive errors. In conclusion, the all-0 ciphertext is more advantageous to the DPA
of key rotation. Hence, we use the traces with the all-0 ciphertext in the other experiments.

Modern electronic devices run faster than 3 MHz which is the default clock rate for the
SASEBO board and widely used in power analysis experiments. In order to validate our attack
on faster platforms, the performance of the attack was measured for the same design clocked at
8 MHz and 16 MHz. The sampling rate was accordingly increased to 200 MS/s and 250 MS/s,
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(a) Recovered 0 bits vs. false positives.
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(b) Recovered 1 bits vs. false positives.

Figure 5.9: Key bit recovery rates for a range of detection thresholds for recovering 0 key bits
(Figure 5.9a) and 1 key bits (Figure 5.9b). Solid line indicates the number of recov-
ered bits (out of 90 ones and 4711 zeroes, scale on left), the dashed line indicates the
number of false positives (scale on right). Markers ◦, then 4, and then ∗ indicate
the increasing values for the threshold.

respectively. For each case, 256 traces were obtained using the all-0 ciphertext, followed by peak
extraction. Figure 5.10b shows the degradation of the leakage over the increasing clock rate by
comparing the number of recovered 0 key bits and false positive errors. In all three cases, the
number of recovered 0 key bits increases and the number of false positive errors decreases, as
the number of analyzed traces increases. However, the lower the clock rate is, the better the
key bits extraction works. With a 3 MHz clock rate (◦), almost 4500 of the 0 key bits can be
recovered with about 1 false positive error when using all 256 traces while 4000 of the 0 bits are
recovered with about 3 false positive errors at a clock rate of 16 MHz (∗).

Overall, it can be seen that with as little as 10 measurements, more than half the key bits
can be recovered with a remaining number of errors that is small enough to allow for efficient
error correction. With 100 measurements and a careful choice of thresholds, the determined bits
are entirely error-free at lower clock rates. This strong leakage is partially due to the fact that
150 leakages are extracted from each measurement, strongly amplifying the amount of leakage
gained from each individual trace. So, in conclusion, the horizontal attack outperforms the
vertical attack on the targeted unprotected implementation, but can only recover a combined
leakage of h0 and h1.

5.4.4 Full Key Recovery

Next we analyze how to recover the full key of QC-MDPC McEliece if the adversary has knowl-
edge of several set bits of the key as well as several zero bits of the key, possibly with few errors.
We show that the structure of the key can be used to recover the remaining uncertain bits
efficiently, or to detect remaining errors.
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(a) Random vs. all-0 input.
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(b) Varying clock rates.

Figure 5.10: Key bit recovery rates for recovering 0 key bits. Solid line indicates the number
of recovered bits (out of 4711 zeroes, scale on left), the dashed line indicates the
number of false positives (scale on right). Figure 5.10a compares known random
(◦) vs. chosen all-0 (4) ciphertext inputs. Figure 5.10b compares the experiments
for varying clock rates: ◦ 3 MHz, 4 8 MHz, and ∗ 16 MHz.

Exploiting a Connection between Private Key and Public Key

The private key consists of two related parts, h0 and h1. Due to the relation between the secret
h0, h1 and the public matrix Q, we can express h0 as:

h0 = h1 ·QT (5.4)

Likewise, given h0, one can compute h1, since Q is invertible. This means that once the first
half of the private key is recovered, the second half can be computed using the public key. More
interestingly, this relationship can be used for error detection for each hi independently: since
Q is of high weight (each bit has approximately a 50% chance of being 1), even a single bit error
in h∗i will result in a high weight of a consequently derived h∗

ī
, i. e., wt(h∗

ī
) ≈ r/2. A correct hi,

however, will result in an hī of low weight, in our case wt(hī) = 45. We are currently not aware
how slightly faulty or noisy information of h0 and h1 can be combined more efficiently without
a trial and error approach using the aforementioned relationship.

If the adversary observes a combined leakage of h0 and h1 as is the case for the horizontal
attack described in Section 5.4.2, key recovery is still possible. Adding h1 on both sides of
Equation (5.4) we obtain

h0 ⊕ h1 = h1 · (QT ⊕ I4801). (5.5)

If side-channel leakage allows us to obtain the combined leakage h0 ⊕ h1 and the rank of
QT ⊕ I4801 is high, we can solve this linear system of equations for h1 with a computer algebra
system like Magma [BCP97]—and then derive h0 from Equation (5.4). In our experiments, the
rank observed for QT ⊕ I4801 was 4800, resulting in two candidate solutions with only one of
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them having the correct Hamming weight. So in cases where all ones can be correctly identified,
Equations (5.4) and (5.5) enable a practical key recovery.

Due to noise observed in both attacks and leakage overlapping observed in the analysis of
the key rotation, there are probably false positive errors in the recovered bits. Hence, error
correction would be essential to correct positions that are slightly off. Guessing error positions
becomes infeasible quickly, even with small improvements over an exhaustive search of

(4801
l

)
possibilities for l errors. We did not try to devise elaborate error-correction strategies, as a
different attack strategy which relies on exploiting only key bits detected with a high confidence
turned out to be quite effective. We explain this strategy next.

Efficient Key Recovery from Partial Information

After having identified several bits of the private key correctly with either attack strategy, we
aim at an efficient way to recover remaining unknown or uncertain key bits. The following
description assumes the combined leakage of h0 and h1, as observed in the horizontal analysis
of the key rotation. For cases where the leakages of h0 and h1 occur separately, as is the case
in the vertical analysis of the syndrome computation, the described strategy naturally carries
over when Equation (5.4) (instead of Equation (5.5)) is used as starting point.

We define B0, B1 and Bu as index sets indicating the locations of definite zeroes, definite ones
and positions of undetermined bits in h0 ⊕ h1 such that

B0 ∪̇B1 ∪̇Bu = {0, 1, . . . , 4800} . (5.6)

Positions in B0 indicate that both h0 and h1 are zero in that position, while positions in B1
will mean a one in either h0 or h1.3 Hence, the uncertain positions for h1 are B1

u = B1 ∪̇Bu,
and with Iverson’s convention [Knu92] we can summarize our knowledge of h0 ⊕ h1 and h1 as
h0 ⊕ h1 = 〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 and h1 =

〈
u · [i ∈ B1

u]
〉

0≤i≤4800, where u indicates
unknown bits (“erasures”). So Equation (5.5) yields

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800

=
〈
u · [i ∈ B1

u]
〉

0≤i≤4800
· (QT ⊕ I4801).

As the indices in B0 indicate definite zeroes in h0⊕ h1 and h1, the corresponding rows in the
matrix QT ⊕ I4801 will always be multiplied with a zero coefficient. We remove these |B0| rows
and the corresponding known 0-entries in h1, obtaining an updated equation system

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800

=
〈
u · [i ∈ B1

u]
〉
i 6∈B0

·Q′.
(5.7)

with a (smaller) matrix Q′ ∈ F(4801−|B0|)×4801
2 . There are 4801 − |B0| − |B1| unknown bits on

the left- and 4801−|B0| unknown bits on the right-hand side of Equation (5.7). As we are only
3The (rare) case of h0 and h1 having a one in the same position is not considered here, as this situation is

quite apparent from the side-channel leakage.
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interested in finding h1, we can try to eliminate unknown values in h0⊕h1 by dropping columns
from Q′. One may hope that |Bu| columns can be eliminated without Q′ dropping in rank, so
that we end up with a linear system of equations

〈1 · [i ∈ B1]〉i 6∈Bu
=
〈
u · [i ∈ B1

u]
〉
i 6∈B0

·Q′′ (5.8)

in 4801 − |B0| unknowns and a matrix Q′′ ∈ F(4801−|B0|)×(4801−|Bu|)
2 . If |Bu| ≤ |B0| one may

hope that this linear system of equations can be solved and yields a unique candidate for h1.
To check the practical feasibility of this approach, we ran several experiments in Magma

[BCP97], solving the equation system given in Equation (5.8) for several different vectors B0
and B1. We were particularly interested in the situation where knowledge of 1-positions in
h0 ⊕ h1 is ignored (i. e., B1 = ∅), because in our measurements the 0-detection was more
reliable. With B1 = ∅, the resulting system of equations is homogeneous and thus in addition
to h1 also has the trivial solution. From Equation (5.6) we see that the condition |Bu| ≤ |B0|
now implies that |B0| ≥ d4801/2e. Staying above this threshold, in our experiments we obtained
no more than 8 candidates for h1, and the weight condition identified the correct private key
uniquely.

For |B0| < 2400, the kernel of the matrix Q′′ in Equation (5.8) gets larger quickly and we
obtain additional candidates for h1, but finding the correct h1 may still be feasible by looking at
the Hamming weight of the candidates as long as the number of candidates is not overwhelming.
The results in Section 5.4.3 show that for the target implementation the attacker can expect to
recover more information from the side-channel than necessary for recovering the private key.
Having |B0| comfortably above the threshold of 2400, a few false positives in B0 can be dealt
with efficiently: Instead of using all of these bit positions, one can select subsets of size 2401
at random. Assuming a hypergeometric distribution, with f false positive errors among the
|B0| indices, the probability of guessing 2401 error-free positions is

(|B0|−f
2401

)
/
( |B0|
2401

)
. E. g., with

|B0| = 3281 and f = 4, this probability is still ≈ 2−7.6. In summary, as long as more than
half the bits of the key can be recovered with a low error rate, the remaining key bits can
be determined using the above-described algebraic methods. Knowledge of additional bits of
h0 ⊕ h1 facilitates the handling of possibly remaining errors. Not being able to recover more
than half the number of key bits can make the search infeasible, although—due to the highly
biased key—guessing a few additional zeroes may still be an option.

5.4.5 Preventing the Attacks

The described attacks, especially the highly efficient horizontal attack, are somewhat specific
to the implementation choices of the target, but can be adjusted to other implementation
parameters as well. For example, an implementation that does not process h0 and h1 in parallel
would simplify the horizontal attack and amplify the leakage. Implementations that use a
different word size (the targeted implementation processes 32-bit words due to the BRAM
structure of the FPGAs) will influence the described attack as well. The smaller the word
size, the more leakages per target bit, most likely facilitating both attacks further. However,
a massively parallelized implementation such as the one described in Section 5.2 could impede
the described attack, since all bits would always be leaking in parallel. One might still be able
to exploit resource-specific leakages, e. g., leakage from a carry register.

85



Chapter 5. QC-MDPC McEliece for Reconfigurable Hardware

A more reliable way to prevent this attack is provided by side-channel countermeasures. A
good overview of standard DPA countermeasures is available in [MOP07]. Countermeasures
are typically classified as masking or hiding countermeasures. Both classes can be applied to
an implementation of (QC-)MDPC McEliece and, if done correctly, should prevent the above-
mentioned attack. These countermeasure techniques can be directly applied at the logic style
level, allowing the digital design to remain unchanged, or can be applied at the algorithmic level,
as described next. Masking needs to be applied to the syndrome and the key, since both leakage
sources can be targeted separately, as shown by this work. In fact, a first masked version of the
analyzed core has been implemented in [CEvMS16b]. The implementation applies a threshold
implementation inspired masking with two to three shares to key and syndrome during syndrome
computation and decoding to achieve a protection against first-order side-channel attacks. The
resulting overhead is a factor of ∼ 4 on both size and performance reduction. While being quite
costly, such overheads are not uncommon for reliable side-channel protection mechanisms.

Another plausible solution strategy that should impede side-channel analysis while main-
taining a much lower footprint than the masking countermeasure can be based on shuffling.
Shuffling is a hiding-based countermeasure that randomizes the execution order. It has been
discussed in detail, e. g., in [TH08]. Shuffling can be applied to the order in which the ciphertext
bits are processed during syndrome computation (and the order of processing syndrome in the
decoding step) or the order in which the key is processed. Both described attacks take advan-
tage of the knowledge of when a specific key bit is processed. This advantage only holds for
deterministic execution orders. By shuffling the syndrome computation the horizontal attack
is completely prevented: Ciphertext bits and key bits would be processed in a random order,
requiring the implementation to be able to rotate the private key by various offsets. As a result,
all key bits would leak at random points in time. Common counterattacks such as combing (cf.
again to [TH08]) would not be helpful in this scenario, since it would require a summation over
all clock cycles, making all key bits leak in parallel and thereby making them indistinguishable.
The situation is slightly more complex for the vertical attack on the syndrome computation,
since in the chosen single-1 ciphertext attack, the occurrence of a non-zero leakage would indi-
cate the processing of the set ciphertext bit. Hence, to also prevent the vertical attack, the order
in which the bits within key and syndrome are processed would also need to be randomized,
which hinders the attacker from distinguishing the key bits.

Note that such a countermeasure would require the implementation to be able to rotate the
ciphertext, the private key and the syndrome by various offsets while ensuring that these offsets
are not detectable by the adversary. Implementing shuffling in such a way that no additional
leakages are introduced is not a trivial task, as discussed in [VCMKS12], for instance. However,
such an implementation can be realized with comparably low area overhead, since no new
arithmetic units nor additional storage, e. g., for masks, would be required.

5.5 Conclusion

This chapter presented high-performance implementations of the McEliece cryptosystem instan-
tiated with QC-MDPC codes for Xilinx Virtex-6 FPGAs and lightweight designs of the scheme
for Xilinx Spartan-6 FPGAs. Our first FPGA design primarily aims for high throughput and
achieves competitive results by basing on the results of the decoder evaluations from Chapter 4
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and by directly implementing the design in FPGA logic without using BRAMs. We showed
that it is indeed possible to realize a code-based public-key cryptosystem with moderate key
sizes and high performance in reconfigurable hardware. Our second FPGA design shows that
it is possible to implement the same cryptosystem in a very lightweight way. In addition to
considerably reducing the resource requirements by using embedded block memories that are
offered in Xilinx FPGAs, we achieved reasonable performance for both encryption and decryp-
tion. Furthermore, the key sizes remain at a level that is much more appropriate for real-world
usage than the key sizes of previous code-based schemes, which is an important metric for
lightweight platforms. By demonstrating the excellent properties of this novel construction for
embedded applications, we hope to have provided another incentive for further cryptanalytical
investigation of QC-MDPC codes in the context of code-based cryptography.

Furthermore, we presented horizontal and vertical side-channel analysis techniques for QC-
MDPC McEliece. Two different leakages which occur during the syndrome computation step
of the decryption are exploited. The leakage of the syndrome register gives information on the
two private key halves h0 and h1 separately and can be exploited by a fairly generic vertical
attack. Thousands of chosen ciphertext traces are necessary for a successful key recovery. The
leakage of a key rotation operation which occurs during the syndrome computation step of
the decryption can be exploited by a horizontal side-channel attack that recovers a combined
leakage of h0 and h1. The resulting attack is independent of the ciphertext and succeeds with
tens of traces. A significant part of the key recovery stems from the relation between the private
key and public key, which can be exploited to ease key recovery. In fact, recovering only half the
bits of the (highly biased) private key with a low error rate is sufficient for a full key recovery.
This work inspired a follow-up masked implementation of QC-MDPC McEliece [CEvMS16b]
with masking applied to the syndrome and the key. The implementation applies a threshold
inspired masking with two to three shares to key and syndrome during syndrome computation
and during decoding to achieve a protection against first-order side-channel attacks at the cost
of a 4x area increase and a 4x performance degradation.
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Chapter 6

QC-MDPC McEliece for
Embedded Microcontrollers and

General-Purpose Processors

This chapter presents QC-MDPC McEliece for embedded microcontrollers and for
general-purpose processors with a focus on ARM’s Cortex-M4 and Intel’s Haswell
architecture. Besides practical issues such as random error generation, we demon-
strate side-channel attacks on straightforward implementations of this scheme on
embedded microcontrollers. Timing- and instruction-invariant coding strategies are
proposed as countermeasures to strengthen QC-MDPC McEliece against timing at-
tacks and simple power analysis attacks. Furthermore, we provide two implemen-
tations targeting general-purpose CPUs, a reference C implementation as well as
a highly optimized implementation that makes use of vector instructions to achieve
maximum performance.

This research was presented at PQCrypto’14 and appeared in the ACM Transac-
tions on Embedded Computing Systems [vMG14b, vMOG15]. It is a joint work with
Tobias Oder and Tim Güneysu.
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6.1 Introduction

Besides their susceptibility to quantum computing attacks, the standard public-key encryp-
tion algorithms RSA and ECC usually do not perform well when implemented on embedded
microcontrollers, especially when written purely in software. Dedicated processors are avail-
able in specialized devices to allow for accelerated RSA and ECC computations which however
also drive the cost of such microcontrollers since more chip area is required to realize those
co-processors.

The first microcontroller implementation of QC-MDPC McEliece scheme was proposed for
AVR microcontrollers in [HvMG13]. The results indicate that it seems to be challenging
to provide a reasonably fast implementation of QC-MDPC codes on low-cost 8-bit AVR
ATxmega256A3 microcontrollers. Encryption and decryption take 830 ms and 2.7 s on this plat-
form, based on the former 80-bit secure parameter set from [MTSB12] (n0 = 2, n = 9600, r =
4800, w = 90, t = 84). In particular, decryption is too slow to be of practical interest for many
real-world applications.

Cyclo-symmetric (CS-)MDPC codes in combination with the Niederreiter cryptosystem were
proposed in [BBMR14], including an implementation for a small PIC microcontroller. As for
the first QC-MDPC microcontroller implementation, its largest drawback is the decryption
performance of 2.8 s. Furthermore, the CS-MDPC parameters as proposed in [BBMR14] do not
reach the claimed security levels as shown by Perlner [Per14].

Despite sufficient performance, other highly relevant properties need further investigation as
well to enable the deployment of QC-MDPC McEliece in practical systems. First, QC-MDPC
on-chip key-generation has never been implemented on constrained devices. Second, McEliece
as a probabilistic scheme requires a secure random number generator capable of producing
error vectors of a certain Hamming weight during the encryption operation which has not been
considered yet. Third, the QC-MDPC parameter sets were slightly updated by [MTSB13]
compared to [MTSB12]. Fourth, the timing and the instruction flow of all previously presented
implementations of the encryption and decryption operations depend on secret data. Fifth,
microcontroller implementations of QC-MDPC McEliece encryption reported have not been
investigated with regard to side-channel attacks so far.

Side-channel attacks on the McEliece cryptosystem have mostly targeted Goppa codes and
exploited differences in the timing behavior [SSMS10, Str10, STM+08]. Improved timing attacks
and corresponding countermeasures were presented in [AHPT11]. First practical power analysis
attacks on Goppa-code McEliece implementations for 8-bit microcontrollers were presented
in [HMP10]. Recent work investigated differential side-channel attacks on a lightweight QC-
MDPC FPGA implementation [CEvMS15, CEvMS16a, CEvMS16b] (cf. Section 5.4).

Contribution In this chapter we present an implementation of QC-MDPC McEliece encryp-
tion providing 80 bits equivalent symmetric security on a low-cost ARM Cortex-M4 microcon-
troller with a reasonable performance of 42 ms for encryption and 251-558 ms for decryption.
The parameter set we considered for implementation takes latest advances in cryptanalysis into
account and we briefly discuss how to employ true random number generation for McEliece en-
cryption. Side-channel attacks on a straightforward implementation of this scheme are demon-
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strated followed by coding strategies and countermeasures to harden against timing attacks
and simple power analysis. Finally, we present a vectorized implementation of QC-MDPC
McEliece for modern general-purpose processors with multiple parameter sets and security lev-
els to demonstrate the scheme’s efficiency also on non-embedded platforms.

Outline We present our implementations and their improvements compared to previous work
on embedded microcontrollers in Section 6.2. Side-channel attacks on QC-MDPC McEliece are
demonstrated on two microcontroller platforms in Section 6.3. We propose countermeasures
to strengthen our microcontroller implementations against these attacks and provide results in
Section 6.4. A vectorized implementation of QC-MDPC McEliece for state-of-the-art CPUs is
presented in Section 6.5 and a conclusion is drawn in Section 6.6.

6.2 Implementing QC-MDPC McEliece for ARM Cortex-M

The STM32F4 Discovery board is equipped with a STM32F407 microcontroller which features a
32-bit ARM Cortex-M4F CPU with 1 Mbyte flash memory, 192 Kbytes SRAM and a maximum
clock frequency of 168 MHz. It sells at roughly the same price of USD 5-10 as the popular 8-bit
AVR microcontroller ATxmega256A3, depending on the ordered quantity. Instead of 8-bit the
STM32F407 offers a 32-bit architecture, can be clocked at higher frequencies, offers more flash
and SRAM storage, comes with DSP and floating point instructions, provides communication
interfaces such as CAN-, USB-/ and Ethernet controllers, and has a built-in true random number
generator (TRNG).

Our implementations of QC-MDPC McEliece for the STM32F407 microcontroller cover key
generation, encryption, and decryption with the main goal of achieving a reasonable time/mem-
ory trade-off.

Key Generation

Private-key generation starts by selecting a first row candidate for Hn0−1 with w/n0 set bits.
The indexes at which bits are set are generated using the microcontroller’s TRNG in the range
of 0 ≤ i ≤ r − 1 . Since r = 4801 is not a power of two, we sample error indexes ei with
dlog2(r)e = 13 bits from the TRNG and use them only if ei ≤ r − 1 (i.e., rejection sampling).

The public-key computation requires that H−1
n0−1 exists. Hence, we apply the extended Eu-

clidean algorithm to the first row candidate and xr − 1. If the inverse does not exist, we select
a new first row candidate for Hn0−1 and repeat. If the inverse exists, the first row of Hn0−1
is converted into a sparse representation where w/n0 indexes point to the positions of set bits.
These indexes are stored as part of the private-key.

Next, we generate random first rows for H0, . . . ,Hn0−2 with w/n0 set bits as described for
Hn0−1, convert and store them in their sparse representation, and compute (H−1

n0−1Hi)ᵀ, 0 ≤ i ≤
n0 − 2. Note that since the involved matrices are quasi-cyclic, the result is quasi-cyclic as well.
The computed generator matrix is not sparse and hence its first row is stored in full length.
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Figure 6.1: Example of an 8-bit register with two set bits in sparse and full length representation.
Both values are rotated one bit to the right (>>> 1), twice. The second rotation
demonstrates how a carry/overflow is handled in both representations.

Encryption

Encryption is divided into encoding a message and adding an error of weight t to the resulting
codeword. To compute the redundant part of the codeword, set bits in message m select
rows of the generator matrix G that have to be XORed. Starting from the first row of the
generator matrix, we parse m bit-by-bit and decide whether or not to XOR the current row to
the redundant part. For the next message bit the following row is generated by rotating it one
bit to the right. This implementation approach was originally introduced in [HvMG13].

After computing the redundant part of the codeword, it is appended to the message and t
random indexes are generated at which the codeword bits are inverted to transform the codeword
into a ciphertext (i.e., the error addition). We retrieve the indexes from the microcontroller’s
internal TRNG and again use rejection sampling, this time with dlog2(n)e = 14-bit random
numbers, to achieve a uniform distribution of the error positions. In Section 6.3.2 we describe
the shortcomings of this implementation approach with regard to side-channel attacks and
present corresponding countermeasures in Section 6.4.1.

Decryption

We implement decoder D1 as described in Chapter 4 to decrypt ciphertexts. First, the syndrome
is computed, which is a similar operation to encoding a message, except that the private-key
is stored in a sparse representation. Each of the n0 rows of the private-key is stored using a
series of counters that point to the positions of set bits (here: 2 × 45 counters). To generate
the next row, all counters are incremented by one. If a counter exceeds r, it overflowed and has
to be reset to zero which in the full length representation is equal to the carry bit of a rotated
row. As an example imagine a sparse 8-bit value with two set bits. Its corresponding sparse
representation requires two counters cnt0 and cnt1 to store the positions of set bits. Figure 6.1
illustrates this example and shows how rotation is performed in both representations using 8-bit
registers.
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The ciphertext is split into n0 parts which correspond to the n0 blocks of the parity-check
matrix. The ciphertext blocks are processed in parallel bit-by-bit. If a ciphertext bit is set, the
corresponding row of the parity-check matrix is added to the syndrome otherwise the syndrome
remains unchanged. The following rows of the parity-check matrix blocks are generated directly
in the sparse representation by incrementing the counters. If a counter overflows, i.e., the counter
value equals r, the counter is reset to zero.

If the computed syndrome s 6= 0r, we proceed by counting how many parity-check equations
are violated by a ciphertext bit. This is given by the number of bits that are set in both the
syndrome and the row of the parity-check matrix block which corresponds to the ciphertext bit.
If the number of unsatisfied parity-check equations exceeds a precomputed threshold bi, the
ciphertext bit is flipped and the row of the parity-check matrix block is added to the syndrome.

If the syndrome is zero after a decoding iteration, decoding was successful. Otherwise we
continue with further iterations until we either reach successful decoding or a fixed maximum of
iterations upon which a decoding error is returned. In Section 6.3.3 we describe the shortcomings
of this implementation approach with regard to side-channel attacks and present corresponding
countermeasures in Section 6.4.2.

6.3 Side-Channel Attacks

In the following we present power analysis attacks on the QC-MDPC McEliece encryption
and decryption implementations and describe how two development boards were modified to
allow meaningful power measurements. We attack our implementations for the STM32F407
and compiled the source code from [HvMG13] for the Atmel AVR XMEGA-A1 Xplained board
which we attack as well. The AVR Xplained board features an 8-bit Atmel ATxmega128A1
microcontroller which can be clocked at a maximum frequency of 32 MHz. Its internals are
equivalent to the ATxmega256A3 used in [HvMG13] except for less flash and SRAM memory.

Power analysis attacks exploit the fact that when cryptographic operations are executed on
a physical device, information about the processed data and the executed instructions may be
recovered from the consumed electrical energy at different points in time. Simple power analysis
(SPA) attacks [KJJ99] are based on the idea that certain operations can be distinguished from
each other by visual inspection or automated pattern recognition.

In this work we develop two side-channel attack (SCA) scenarios: first, a message recovery
attack demonstrates that on-chip generated secret messages, e.g., symmetric secret-keys for
hybrid encryption, can be obtained using significant single-trace leakage during encryption.
Second, we present an SPA attack on the decryption operation which identifies the private-key.

6.3.1 Preparing the Evaluation Boards

Since our goal is to observe power traces from two microcontroller development boards, we
modify the boards to allow clean power measurements as explained below. We only modify
external components on the board, leaving the microcontrollers untouched.
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R UR

VCC

 Target

Figure 6.2: A measurement resistor R is inserted into the VCC path of the target device to
measure the target’s power consumption by measuring voltage UR.

For our measurements we use a PicoScope 5203 with two channels that can obtain 500 MS/s
for each channel sampling a bandwidth of 250 MHz. One probe measures the power consump-
tions at an inserted measurement resistor in the VCC path (cf. Figure 6.2), the other probe
is used to signal the beginning and end of the cryptographic operation via an I/O pin of the
respective microcontroller (i.e., a trigger signal).

Atmel AVR XMEGA-A1 Xplained Board

We removed all capacitors1 connected between the microcontroller’s VCC and GND and we
placed a 2.7 Ω resistor onto the power supply measurement header that connects the board’s
3.3 V to the VCC pins of the microcontroller. Furthermore, we added three capacitors in parallel
(100µF, 100 nF, 10 nF) right before our measurement resistor between the board’s 3.3 V and
GND to account for the removed capacitors. The modified AVR board is shown in Figure 6.3a.

STM32F4 Discovery Board

Again, we removed all capacitors and coils2 between the microcontroller’s VDD pins and GND
and placed a 2.7 Ω resistor onto the power supply measurement header (IDD) that connects the
board’s 3 V to the VDD pins of the microcontroller. Similarly, we added three capacitors in
parallel (100µF, 100 nF, 10 nF) right before our measurement resistor between the board’s 3 V
and GND. The modified STM32 board is shown in Figure 6.3b.

6.3.2 Message Recovery Attack

Imagine an implementation in which the microcontroller generates a symmetric key to encrypt
bulk data. The symmetric key is encrypted under the public-key of the intended receiver using

1A total of ten 100nF capacitors (C102-C111) were removed, cf. [Atm10].
2One coil (L1) and 16 capacitors (C21-C26,C28-C37) were removed, cf. [STM14].
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(a) Modified Atmel AVR XMEGA-A1 Xplained
board with connected probes.

(b) Modified STM32F4 Discovery board with con-
nected probes.

Figure 6.3: Measurement setups for our side-channel attacks.

public-key encryption. After exchanging the symmetric key, the communication is encrypted
using a symmetric encryption scheme for performance reasons.

If an attacker is able to perform a message recovery attack on the public-key encryption, he
is in possession of the symmetric (session-)key which allows to decrypt and forge ciphertexts
until the symmetric key is updated. Although this attack is often not considered in SCA-related
works, it is of practical relevance.

General Considerations

Recall that when encrypting a message m using QC-MDPC McEliece, the message is multiplied
with the generator matrix G and an error e is added to the result.

x = m ·G+ e

Message m selects rows of G which are accumulated to compute the redundant part of the
codeword. A message recovery attack is successful if it is possible to detect if a certain row of
G is accumulated or not, since each accumulation can be directly mapped to a specific message
bit. Another approach would be to recover the error indexes when they are generated or when
the error is added to the codeword. The recovered error together with the ciphertext could then
be used to remove the error from the codeword.

The devices under test perform QC-MDPC McEliece encryptions as follows: if a message
bit is set, the corresponding row of G is added to the redundant part, otherwise this step is
skipped. Afterwards, the next row of G is generated and the process is repeated for the following
message bit. The addition of one row of G to the redundant part involves hundreds of load, xor,
and store operations on both platforms. Hence, our goal is to detect if this memory-intense
operation is being executed or not by inspection of the power trace.
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(a) Plain power trace. (b) Power trace with marked message bits.

Figure 6.4: Power trace of the encryption of a message starting with 0x8F402... on an
ATxmega128A1 microcontroller.

Experiments with the ATxmega Microcontroller

We recorded a power trace while encrypting a randomly selected message starting with
0x8F402... under a valid public-key on the ATxmega128A1 microcontroller clocked at 8 MHz.
The power trace shown in Figure 6.4a allows to distinguish three reoccurring patterns. Two of
these patterns can be attributed to the performed or skipped row accumulation from G, the
third pattern corresponds to the generation of the next row of G. Since the addition of a row
of G corresponds to a set message bit, the message that is encrypted can be read more or less
directly from a single power trace. We highlight the different patterns and message bits in
Figure 6.4b. The attack is independent of the public-key under which the message is encrypted.

Experiments with the STM32 Microcontroller

We repeated the attack on the STM32F407 microcontroller with the same message and public-
key as before. The power trace is shown in Figure 6.5a, the device was clocked at 42 MHz. The
patterns cannot be identified as clearly as on the ATxmega, but still an observable difference
in the power trace exists when a row of G is added to the redundant part of the codeword. We
highlight the repeating pattern in Figure 6.5b and map the corresponding message bits to the
power trace. Since in this case no visible pattern for a message bit being zero exists, we use
the distance between two set message bits to determine how many zeros lie in-between. This
is done by cross-correlating the ”one”-pattern with the recorded power trace and then dividing
the distance from peak to peak by the time it takes to skip one accumulation and generate the
next row of G. The exact duration of skipping one accumulation is obtained in a profiling phase
which only has to be done once when setting up the attack.

6.3.3 Private-Key Recovery Attack

For the private-key recovery attack we assume that we are given a device which decrypts some
known ciphertext. Knowledge of the corresponding plaintext is not required. The goal is to
recover the private-key from the observed power consumption of the device during decryption.
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(a) Plain power trace. (b) Power trace with marked message bits.

Figure 6.5: Power trace of the encryption of a message starting with 0x8F402... on an
STM32F407 microcontroller.

General Considerations

Recall that the syndrome s of the received ciphertext x is computed by multiplying the private
parity-check matrix H with xᵀ at the beginning of a QC-MDPC McEliece decryption.

s = H · xᵀ

Since we are in a quasi-cyclic setting with n0 = 2, the first rows of the two parity-check matrix
blocks define the parity-check matrix. Further recall that the rows of the parity-check matrix
are stored in a sparse representation using counters (cf. Figure 6.1).

Using SPA, at least two things should be observable from a power trace that is recorded
during syndrome computation:

(1) A set ciphertext bit determines if a row of the private-key is being added to the syndrome
or not (similar to the message recovery attack described in Section 6.3.2). Since the
ciphertext usually is assumed to be known to an attacker, recovering the ciphertext bits
from a power trace does not yield a meaningful attack.

(2) Incrementing the counters that resemble parts of the private-key must include an overflow
check such that the counters are reset to zero if a carry occurs. If it is possible to detect
an overflow, this might reveal the positions of set bits in the private-key which in turn
could be used to build a full key recovery attack.

The AVR and the ARM implementations store the position of the private-key bits in counters
which are incremented to generate the next rows of the quasi-cyclic parity-check matrix blocks.
The counters are ordered such that the last counter stores the position of the most significant
bit in the private-key. When rotating a row of the private-key there are conditional branches
depending on whether the last counter overflowed or not. If an overflow occurred, all counter
values are moved to the next counter and the first counter is reset. This reduces the overall
complexity to test only the last counter on the overflow condition. Figure 6.6 depicts an example
of this rotation technique for small parameters.

We set the ciphertext to the all-zero vector in our experiments to remove the influence of
additions of private-key rows to the syndrome from the power traces. Our attack still works
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Figure 6.6: Example of the implemented rotation of vectors stored in sparse representations.
Length r is set to 17 in this example. Counter cnt3 always holds the most significant
bit. If cnt3 is equal to r after being incremented, the counter values are moved to
the next counter (cnt3 is overwritten first) and cnt0 is reset to zero.

if any other ciphertext is used and only requires to profile the time it takes to add a row of
the private-key to the syndrome once. Another option would be to only set bits at the end of
the ciphertext, extract the private-key up to this point and then find the remaining private-key
bits by smart brute-force which takes the relation between private- and public-key into account
(cf. [CEvMS15]). Note that our attacks are independent of the implemented decoding algorithm
since we attack the syndrome computation which all bit-flipping decoders execute as their first
step.

Experiments with the ATxmega Microcontroller

A power trace of the first few rounds of the syndrome computation is shown in Figure 6.7a for a
private-key starting with (1101000 . . . )2 on the ATxmega128A1 microcontroller. Two different
repeating patterns can be distinguished in the power trace. Our experiments show that the first
pattern occurs when the device is checking whether the current ciphertext bit is set (which is
never the case since we set the ciphertext to the all-zero vector) and all counters are incremented
by one. The second pattern only occurs in the power trace if the highest counter overflowed.
Hence, we can distinguish an overflow which represents a carry bit in the private-key. In case
both patterns appear after each other, the highest counter overflowed. If only the first pattern
appears, the highest counter did not overflow.

An overflow means that the most significant bit of the private-key was set. Since the private-
key is rotated bit-by-bit, every bit of the private-key will be the most-significant bit at some
point during the syndrome computation. Hence, it is possible to recover the private-key from
a power trace as shown in Figure 6.7b in which we highlight the two patterns and mark the
corresponding private-key bits.
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(a) Plain power trace. (b) Power trace with marked private-key bits.

Figure 6.7: Power traces recorded during syndrome computation on an ATxmega128A1 mi-
crocontroller. The first part of the private-key in this example starts with
(1101000 . . . )2.

(a) Plain power trace. (b) Power trace with marked private-key bits.

Figure 6.8: Power traces recorded during syndrome computation on a STM32F407 microcon-
troller. The first part of the private-key starts with set bits at positions 4790 and
4741.

Experiments with the STM32 Microcontroller

Figure 6.8a shows the beginning of a power trace that was recorded during syndrome compu-
tation of some ciphertext on the STM32F407 microcontroller. The first part of the private-key
in this example has the first two set bits at positions 4790 and 4741.

Again, two different patterns can be distinguished. Both patterns are negative peaks in the
power trace which differ in length compared to reoccurring shorter peaks. Our experiments
show that the short peaks appear if there is no counter overflow and the long peaks appear if
there is a counter overflow. Thus, it is again possible to map the power trace to bits of the
private-key. We highlight the two set bits at positions 4790 and 4741 in Figure 6.8b. In between
the two set bits there are 49 small peaks, which translate to 49 zeros in the private-key.
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6.4 Countermeasures and Implementation Results

In this section we describe countermeasures that mitigate the attacks presented in Section 6.3
and take other potential information leaks into account as well. The countermeasures are
implemented for the STM32F4 microcontroller using the ARM Thumb-2 assembly language to
allow full control over the timings and the instruction flow.

6.4.1 Protecting the Encryption

As shown in Section 6.3.2, the encrypted message can be recovered from a single power trace
if it is possible to decide whether a row of G is being accumulated or not. Our proposed
countermeasure is always to perform an addition to the redundant part, independent of whether
the corresponding message bit is set. Of course we cannot simply accumulate all rows of the
generator matrix, as this would map all messages to the same codeword.

Since the addition of a row of G to the redundant part is done in 32-bit steps on the ARM
microcontroller, we use the current message bit mi to compute a 32-bit mask (0−mi). If mi = 0,
then the mask is zero, otherwise all 32 bits of the mask are set. Before the 32-bit blocks of the
current row of G are XORed to the redundant part, we compute the logical AND of them with
the mask. This either results in the current row being added if the message bit is set, or in zero
being added if the message bit is not set.

This countermeasure leads to a runtime that is independent of the message and the public-
key. Furthermore, as the same instructions are executed for set and cleared message bits, a
constant program flow is achieved. Hence, it is not possible to extract the message bits from
timing information and also not by distinguishing different instruction flows (cf. Fig 6.9a).

6.4.2 Protecting the Decryption

As shown in Section 6.3.3, the private-key leaks while it is being rotated in an unprotected
implementation. A possible countermeasure would be to simply refrain from rotating the rows
of the private-key and instead to store the full parity-check matrix in memory. However, storing
H would require 2 × (4801 × 4801) bits = 5.5 Mbytes. Since this is infeasible on the platform
under investigation, we are protecting the rotation of a row of the private-key.

The protected private-key rotation still uses counters that point to set private-key bits, but the
concept of having ordered counters is removed and thus we eliminate the need to move counter
values after an overflow. We check for an overflow by comparing the incremented counter
values to the maximum r. We load the negative flag N from the program status register, use it
to compute a 32-bit mask (0− N), and store the logical AND of the counter value and the mask
back to the counter. If the counter value is smaller than r, the N flag is set and the incremented
counter value is stored. Otherwise the N flag is zero and the counter is reset to zero.

This countermeasure removes timing dependencies based on overflowed counters and executes
the same program flow independent of whether a counter is reset or not. Figure 6.9b shows the
same part of the syndrome computation as was shown for the unprotected version in Figure 6.8b.
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(a) Power trace of the protected encryption on the
STM32F407 microcontroller. The message starts
with 0x8F402, the first bits are given as refer-
ence.

(b) Power trace of the protected syndrome compu-
tation on the STM32F407 microcontroller. The
private-key starts with set bits at positions 4790
and 4741.

Figure 6.9: Power traces recorded during encryption and decryption with enabled countermea-
sures.

With the leakage mitigation of the private-key rotation one important step towards SPA-
resistant implementations is achieved. However, there are more dependencies on secret data
when decoding. Even though we are currently not aware of how these dependencies could be
exploited, we avoid them in order to harden the implementation against future attacks.

After syndrome computation and after every decoding iteration the syndrome is compared
to zero to check whether decoding succeeded. This comparison should be constant-time, as an
early abort of the comparison could leak information about the current state of the syndrome
(e.g., about the first non-zero position). We implemented the comparison by computing the OR
of all 32-bit blocks of the syndrome and then check whether the result is zero or not.

Counting unsatisfied parity-check equations for a ciphertext bit is the same as counting how
many bits are set at the same positions in the current row of the private-key and in the syndrome.
Since we know the position of set bits in the private-key from the counters that represent the
current row of the private-key, we extract the bits of the syndrome at the same positions and
accumulate them. This is done by loading the 32-bit part of the syndrome which holds the
bit the counter is pointing to and by shifting and masking the 32-bit part such that the bit in
question is singled out and moved to the least significant bit position. We accumulate the result
which is either 0 or 1. Since we use 16-bit counters for the private-key and operate on a 32-bit
architecture, the upper 11 bits can be used to address a 32-bit memory cell of the syndrome.
The remaining 5 bits point to the bit position within the cell. This approach computes the
number of unsatisfied parity-check equations with an instruction flow and hence a timing that
is independent of the syndrome and the current row of the private-key.

Comparing the number of unsatisfied parity-check equations to the threshold for the current
decoding iteration is implemented as

ge u32(x, y) = (1⊕ ((x⊕ ((x⊕ y)|((x− y)⊕ y))) >> 31))

which returns 1 if x is greater or equal to y and 0 otherwise in constant time (x and y are
assumed to be unsigned 32-bit integers). The result of this comparison decides whether we have
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to invert a ciphertext bit and to update the syndrome with the current row of the private-key
or not. If an attacker would be able to trace the points in time when these operations are
executed, he likely would be able to recover the error that was added to the codeword and
hence reconstruct the plaintext from the ciphertext. To circumvent this leakage, we always
XOR the ciphertext bit at the current position with the comparison result which is either 1 or
0. In addition, we always perform the syndrome update by XORing the bit that resulted from
the comparison to the positions of the syndrome which are stored in the private-key counters.
Since an XOR of a value with zero results in the same value, we actually do not change the
ciphertext and the syndrome in case the number of unsatisfied parity-check equations is below
the decoding threshold but still execute the same instructions.

Last but not least, the decoding algorithm lasts a variable number of iterations before it
terminates. In most cases decoding is finished after two or three decoding iterations (on average
2.4 iterations, cf. Chapter 4) and in rare cases it requires up to a fixed maximum of five
iterations. We remark that it is unclear yet if secret data can be recovered only from the
number of decoding iterations. This needs to be investigated in future work. To be on the safe
side we propose an implementation where we simply do not test the syndrome for zero after a
decoding iteration. The decoding algorithm always performs the specified maximum number of
iterations. It automatically stops modifying the ciphertext once the syndrome becomes zero.
In combination with the techniques introduced above this leads to a fully constant-time and
instruction-invariant implementation of the bit-flipping decoder.

6.4.3 Implementation Results

The results of our implementations are listed in Table 6.1. Encrypting a message takes 42 ms and
decrypting a ciphertext takes 558 ms in a fully constant-time implementation. Key-generation
takes 884 ms on average, but usually key-generation performance is not an issue on small em-
bedded devices since they generate few (if more than one) key-pairs in their lifetime. The
combined code of key-generation, encryption, and decryption requires 5.7 Kbytes (0.6%) flash
memory and 2.7 Kbytes (1.4%) SRAM, including the public- and private-key. Since w << r for
all QC-MDPC parameter sets, storing the private-key in a sparse representation saves memory
and at the same time allows fast row rotations. For the 80-bit parameter set with n0 = 2 we
only need w = 90 16-bit counters to store the private-key (1440 bits instead of 9602 bits).

Compared to the vulnerable C implementation of the encryption, we are able to achieve a
speed up of 50%, to achieve an execution time and an instruction flow which is independent of
secret data, and to generate and add true random error vectors.

Our hardened implementations of the decoder are between 1.1-2.5 times slower than the
vulnerable C implementation but mitigate the side-channel attacks from Section 6.3 and take
further possible information leaks into account. Version ct3 is completely constant-time and
independent of the ciphertext and private-key. Version ct2 accelerates the first syndrome com-
putation by skipping accumulations if ciphertext bits are not set. As discussed in Section 6.3.3,
the computation only depends on set bits in the ciphertext (selecting which rows of the parity-
check matrix are XORed) which is usually assumed to be known to an attacker anyways. Version
ct1 of the decoder tests the syndrome for zero after each decoding iteration and exits if decoding
was successful before reaching the maximum iterations. Since it is unknown so far if leaking
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the number of decoding iterations helps to recover secret information, we advise against using
decoder version ct1 despite its performance advantage.

Compared to the QC-MDPC McEliece implementation in [HvMG13], our encryption function
is 20 times faster and includes true random error additions. Decryption performance is improved
to a much more realistic 251-558 ms instead of 2.7 s. Furthermore, our implementations are pro-
tected against timing attacks and simple power analysis attacks. Other McEliece microcontroller
implementations based on Goppa codes [EGHP09, Hey11] and Srivastava codes [CHP12] have
much higher memory requirements and all need more time per operation.

An instantiation of the Niederreiter cryptosystem with CS-MDPC codes was presented
in [BBMR14] along with a microcontroller implementation targeting a PIC24FJ32 microcon-
troller clocked at 32 MHz. Their memory requirements are similar to our implementation,
key generation and encryption perform similar as well. With 2.8 s their decryption routine is
around five times slower. Two important remarks have to be made regarding this implemen-
tation. First, it is not designed to run in constant-time or with an invariant instruction flow
and is hence not protected against timing and simple power analysis attacks. Second, as re-
cently shown in [Per14], the CS-MDPC parameters as proposed in [BBMR14] do not reach the
claimed security levels. For an 80-bit security level the former 128-bit CS-MDPC parameter
set has to be used which expands the CS-MDPC public-key from 3,072 to 7,232 bits (4,801 bits
for QC-MDPC) and the ciphertext from 9,216 bits to 21,696 bits (9,602 bits for QC-MDPC).
Due to this fact, CS-MDPC codes lose their advantage in terms of public-key and ciphertext
size to QC-MDPC codes. Furthermore, the performance of key-generation, encryption, and de-
cryption implementations with adjusted parameters will be much lower compared to the results
presented in [BBMR14].

Microcontroller implementations of the pre-quantum cryptosystems RSA and ECC were pre-
sented for an ATmega128 microcontroller by [LGK10, LWG14]. ECC is somewhat competitive
in terms of cycles, but takes more time due to the slower platform. RSA is clearly beaten by
QC-MDPC McEliece in terms of performance.

Note that the microarchitecture of the STM32F407 used in this work and the ATxmega256
in [HvMG13] are completely different – but similarly expensive in terms of cost which is usually
the most relevant factor for practical applications. The implementations are made available
online to allow independent verification and refinement of our results3.

6.5 QC-MDPC McEliece on General-Purpose Processors

Next we present a vectorized implementation of the QC-MDPC McEliece encryption scheme
for general-purpose processors. The target platform is an Intel Core i7-4770 CPU running at
3.40 GHz. The CPU is based on the Haswell architecture and provides a true random number
generator (TRNG) which complies to the standards NIST SP800-90A, B, and C, as well as
FIPS-140-2 and ANSI X9.82 [Int14]. We employ the TRNG to provide randomness for the key-
and error-generation.

3http://www.sha.rub.de/research/projects/code/
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Our vectorized implementation targets modern processors that support the Streaming SIMD
Extensions 4 (SSE4). We also develop an unvectorized implementation that can be run systems
which do not offer SSE4. In addition, the unvectorized implementation serves as a baseline to
evaluate the achieved speed-ups using vector instructions. Our implementations are written in
C and we make use of several intrinsic functions to access SSE4 instructions in the vectorized
implementation. The software implementations support multiple parameter sets, which allows
to easily switch from the 80-bit security parameters to parameter sets that are designed for
128-bit or 256-bit security levels (cf. Section 3.5). The following description mainly focuses on
the vectorization of QC-MDPC McEliece.

6.5.1 Vectorized Implementation of QC-MDPC McEliece

While SSE4 features 128-bit integer vectors, Haswell processors also support the AVX2 in-
struction set which is capable of handling 256-bit integer vectors. However, to ensure a wider
compatibility of our vectorized implementation, we decided to apply SSE4. Additionally, we
exploit the carry-less multiplication instruction CLMUL to accelerate the implementation. This
instruction operates on 128-bit vectors and hence would imply expensive conversions if our
implementation would be based on 256-bit vectors.

The CPU-internal TRNG has a hardware entropy source that samples thermal noise. The
output of this entropy source is used as input for an AES-CBC-MAC that generates the seed for
a deterministic random bit generator (DRBG). The DRBG then provides 16, 32 or 64 random
bits when calling the corresponding RDRAND instruction.

Key Generation

Keys are generated similarly as for the microcontroller implementations with n0 = 2. We
generate a random, invertible first row of Hn0−1 = H1 with w/n0 = w/2 set bits, a similarly
random first row of H0 and compute the corresponding first row of G. Since the Intel CPU
has access to much more memory than the microcontrollers, we do not use a compressed sparse
representation for the private-key. All polynomials are stored in full length and we generate the
complete matrix H to avoid polynomial shifts during decryption. Since the public matrix G has
to be transmitted between communication partners and possibly several different public-keys
have to be stored, we do not expand G yet.

Encryption

Encryption of a message starts by first expanding public-key G. This speeds up the actual
encryption and is done only once per public-key. All following encryptions under the same
public-key reuse the already expanded matrix. In contrast to our other implementations, we
rotate the first row by 64 positions and store the result. We repeat this step dN/64e times and
end up with a matrix 64 times smaller than a fully expanded generator matrix.

When multiplying the message by the public-key, the omitted intermediate rotations are per-
formed implicitly using the CLMUL instruction that performs a carry-less multiplication of two
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64-bit values and returns the 128-bit result. By replacing the bit-by-bit checks with this instruc-
tion and working with 128-bit vectors, we are able to accelerate the vector-matrix multiplication
by 25 times compared to the unvectorized implementation of this subroutine. Additionally, us-
ing the CLMUL instruction avoids the previously discussed timing dependency on secret data as
the carry-less multiplication is always executed and has a constant reciprocal throughput.

Afterwards, we append the computed redundant part to the message and add a random error
vector of weight t. We generate a 64-bit random number using the RDRAND instruction and
derive four 14-bit, four 15-bit or three 17-bit indexes for the 80/128/256-bit parameter sets,
respectively (cf. Section 3.5). If a resulting index i is in the range 0 ≤ i < n, we invert the
codeword bit at index i and repeat until t bits are flipped (i.e., rejection sampling).

Decryption

Decoder D2 is used in this implementation (cf. Section 4.4.1). We first compute the syndrome
of the ciphertext. Similar to the multiplication of the plaintext by the public-key, we employ the
CLMUL instruction to avoid bit-by-bit checks. Since the private-key matrix has been generated
by rotating two independent polynomials, the two halves of H are stored separately. Therefore,
we have to pay attention to the center element of the ciphertext. As we are processing 64 bits
of the ciphertext at once, the center element has to be multiplied with H0 and H1. While
multiplying the center element by H0, the bits of the center element that will be multiplied by
H1 have to be set to zero, and vice versa. Compared to the unvectorized implementation of the
syndrome computation we achieve a 44 times improved performance with this approach. This
even exceeds the speed-up with respect to the multiplication during encryption, since the unvec-
torized implementation computes the syndrome using a sparse and compressed representation
of H.

The plaintext is recovered similarly to the microcontroller implementation. We check whether
the syndrome is zero or not. If not, then we identify the number of violated parity-check
equations for each ciphertext bit. For this purpose, we employ the POPCNT instruction that
returns the Hamming weight of a 64-bit word. The number of violated equations is compared
to a precomputed threshold. If it exceeds the threshold, we flip the responsible bit and the
corresponding row of the private-key matrix is added to the syndrome. In case the syndrome
is not zero after reaching the maximum number of decoding iterations, we slightly increase the
decoding thresholds and start another decryption attempt. Note, there are no table look-ups
depending on secret data in our implementation to reduce the risk of cache timing attacks.

6.5.2 Implementation Results

Table 6.2 lists the cycle counts of our vectorized and non-vectorized implementations for pa-
rameter sets designed for 80/128/256-bit equivalent symmetric security. Using vectorization
turns out to be significantly faster than using a non-vectorized implementation. Key generation
is accelerated by a factor of 2; encryption is nearly 10 times faster; and decryption is 3 times
faster. The vectorization speeds up almost all subroutines, except for the error addition which
is slower since it uses true random number generation.
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The cycle counts naturally rise for higher security levels. Increasing the security level from
80 to 128 bits incurs a performance penalty of a factor of 3-6. The cycle counts for the 256-bit
security level are about 10 times higher compared to the 128-bit security level.

Table 6.3 compares our work with implementations of other public-key cryptosystems on
similar platforms. The eBACS benchmarking project [eBA15a] contains a McEliece implemen-
tation by [BS08] (mceliece), RSA implementations (ronald1024, ronald3072) and an NTRU
implementation (ntruees787ep1). Compared to the binary Goppa code McEliece implemen-
tation by [BS08], our implementation operates twice as fast for encryption and around three
times slower for decryption. With respect to the cycles per byte metric, QC-MDPC McEliece
benefits from its larger block sizes although encrypting large data using public-key schemes is a
rare use case. Again, public-keys are considerably larger than for QC-MDPC codes. The NTRU
implementation is only reported for a 256-bit security level and requires less cycles for one oper-
ation at this security level. The optimized implementation of the KEM/DEM scheme based on
the Niederreiter cryptosystem with Goppa codes by [BCS13] is able to decrypt faster compared
to our QC-MDPC implementation. Unfortunately, their cycle counts for key generation and
encryption are not reported. For real-world applications, public-key sizes still play an important
role since they need to be transferred to remote parties and are stored in embedded devices.
At a security level of 128-bit, QC-MDPC McEliece has public-keys of size 1.2 Kbytes while the
Goppa code-based Niederreiter implemented by [BCS13] has a public-key of 221 Kbytes.

6.6 Conclusion

In this chapter we presented implementations of QC-MDPC McEliece key-generation, encryp-
tion, and decryption providing 80 bits of equivalent symmetric security on low-cost ARM
Cortex-M4-based microcontrollers with a reasonable performance for encryption and decryp-
tion, respectively. We demonstrated side-channel attacks on a straightforward implementation
of this scheme and proposed timing- and instruction-invariant coding strategies and counter-
measures to strengthen it against timing attacks and simple power analysis. Furthermore, we
presented implementations of QC-MDPC McEliece on general-purpose CPUs and showed how
SSE4 vector instruction can be employed to speed-up the computations significantly. Future
work includes investigations with respect to fault-injection attacks and with respect to deriving
private-key information from only knowing how many iterations are required to decode known
or choosable ciphertexts.
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Table 6.1: Results of our microcontroller implementations of the QC-MDPC McEliece (McE)
cryptosystem. The compiler optimization level was set to -O2 which gave the best
code-size/performance trade-off. 1Flash and SRAM memory requirements are re-
ported for a combined implementation of key generation, encryption, and decryption.
Our constant-time (ct) decoder ct3 runs completely in constant-time. Decoder ct2
skips row accumulations during syndrome computation if ciphertext bits are not set.
Decoder ct1 tests the syndrome for zero after each decoding iteration.

Scheme Platform SRAM Flash Cycles/Op Time/Op

This work [enc] STM32F407 2.7 Kbytes1 4,1 Kbytes1 16,771,239 100 ms
This work [dec] STM32F407 2.7 Kbytes1 4,1 Kbytes1 37,171,833 221 ms
This work [enc, ct] STM32F407 2.7 Kbytes1 5.7 Kbytes1 7,018,493 42 ms
This work [dec, ct1] STM32F407 2.7 Kbytes1 5.7 Kbytes1 42,129,589 251 ms
This work [dec, ct2] STM32F407 2.7 Kbytes1 5.7 Kbytes1 85,571,555 509 ms
This work [dec, ct3] STM32F407 2.7 Kbytes1 5.7 Kbytes1 93,745,754 558 ms
This work [keygen] STM32F407 2.7 Kbytes1 5.7 Kbytes1 148,576,008 884 ms
McE [enc] [HvMG13] ATxmega256 606 Bytes 5.5 Kbytes 26,767,463 836 ms
McE [dec] [HvMG13] ATxmega256 198 Bytes 2.2 Kbytes 86,874,388 2.71 s
McE [enc] [EGHP09] ATxmega256 512 Bytes 438 Kbytes 14,406,080 450 ms
McE [dec] [EGHP09] ATxmega256 12 Kbytes 130.4 Kbytes 19,751,094 617 ms
McE [enc] [Hey11] ATxmega256 3.5 Kbytes 11 Kbytes 6,358,400 199 ms
McE [dec] [Hey11] ATxmega256 8.6 Kbytes 156 Kbytes 33,536,000 1.1 s
McE [enc] [CHP12] ATxmega256 - - 4,171,734 130 ms
McE [dec] [CHP12] ATxmega256 - - 14,497,587 453 ms
Nie [enc] [BBMR14] PIC24FJ32 2.6 Kbytes1 5.6 Kbytes1 7,200,000 900 ms
Nie [enc] [BBMR14] PIC24FJ32 2.6 Kbytes1 5.6 Kbytes1 200,000 25 ms
Nie [dec] [BBMR14] PIC24FJ32 2.6 Kbytes1 5.6 Kbytes1 22,400,000 2,800 ms
ECC-P160 [LWG14] ATmega128 556 Bytes 14.7 Kbytes 9,044,084 1,220 ms
RSA-1024 [LGK10] ATmega128 - - 75,680,000 10.3 s
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Table 6.2: Cycle counts of our QC-MDPC McEliece implementations on an Intel Core i7-4770
CPU for 100,000 runs en-/decryption and 1,000 runs for the key generation. The com-
piler optimization level was set to -O3 since we aim to optimize our implementation
for speed. TurboBoost and hyper-threading were disabled during measurements.

Operation 80-bit 80-bit 128-bit 256-bit
non-vectorized SSE4 SSE4 SSE4

Key Generation 32,139,668 14,234,347 54,379,733 526,096,652
Encryption 292,432 34,123 106,871 971,605
Decryption 10,114,096 3,104,624 18,825,103 193,922,410
Multiply by public-key 267,913 10,742 44,114 478,152
Add Error 2,528 11,761 18,837 50,114
Compute Syndrome 1,178,512 26,654 95,144 959,382
Rotate left by one position 586 115 196 562
Rotate left sparse 288 - - -
AND+Hamming weight 3,723 123 233 735

Table 6.3: Comparison of our QC-MDPC McEliece PC implementation with other McEliece,
RSA, and NTRU implementations. We list the required cycles to en-/decrypt one
block as well as the required cycles/byte. ∗eBACS reports cycles for en-/decrypting
59 bytes. We scaled the cycles/byte metric to the full block size.

Implementation Platform Sec. Enc. Dec. Enc. Dec. Blocks
[bits] [cycles] [cycles] [cyc./byte] [cyc./byte] [bits]

This work Haswell 80 34,123 3,104,624 56.86 5,173 4801
This work Haswell 128 106,871 18,825,103 86.74 15,278 9857
This work Haswell 256 971,605 193,922,410 237.19 47,340 32771
McBits [BCS13] Ivy Bridge 81 - 24,051 - 109.88 1751
McBits [BCS13] Ivy Bridge 129 - 60,493 - 134.27 3604
McBits [BCS13] Ivy Bridge 263 - 306,102 - 452.40 5413
mceliece [eBA15a] Haswell 83 63,522 1,139,808 300∗ 5,376∗ 1696
ronald1024 [eBA15a] Haswell 80 45,452 1,288,172 355∗ 10,064∗ 1024
ronald3072 [eBA15a] Haswell 128 165,832 15,181,669 432∗ 39,536∗ 3072
ntruees787ep1 [eBA15a] Haswell 256 322,240 513,852 4,958∗ 7,905∗ 520
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Chapter 7

IND-CCA Secure
Hybrid Encryption from
QC-MDPC Niederreiter

Although QC-MDPC McEliece is a promising alternative public-key encryption
scheme with practical key sizes and good performance on constrained platforms
such as embedded microcontrollers and FPGAs, so far none of the QC-MDPC
McEliece/Niederreiter implementations provide indistinguishability under chosen
plaintext or chosen ciphertext attacks. In this chapter we close this gap by presenting
(1) an efficient implementation of QC-MDPC Niederreiter for ARM Cortex-M4 mi-
crocontrollers, and (2) the first implementation of Persichetti’s IND-CCA hybrid en-
cryption scheme instantiated with QC-MDPC Niederreiter for key encapsulation and
AES-CBC/AES-CMAC for data encapsulation. Our implementations achieve prac-
tical performance: at 80/128-bit security hybrid encryption takes 16.5 ms/83.2 ms,
decryption takes 111 ms/477.5 ms and key-generation takes 386.4 ms/1511.8 ms.

This research was presented at PQCrypto’16 [vMHG16] and is a joint work with
Lukas Heberle and Tim Güneysu.
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7.1 Introduction

The previous chapters provided novel insights into achieving efficiency when using new codes in
the McEliece cryptosystem with improved decoding techniques and optimized implementations.
This chapter highlights another important aspect of public-key encryption schemes which is
indistinguishability under chosen-plaintext attacks (IND-CPA) and indistinguishability under
adaptive chosen-ciphertext attacks (IND-CCA). These attack models describe the capabilities of
different adversaries and allow to formulate and proof security features of public-key encryption
schemes.

Our previous implementations of the plain McEliece and Niederreiter cryptosystems do not
provide IND-CCA security on their own, using QC-MDPC codes does not change this fact.
However, McEliece/Niederreiter can be integrated into existing frameworks which provide IND-
CPA or IND-CCA security, e.g., [KI01, NIKM08]. Another approach is to plug Niederreiter
into an IND-CCA secure hybrid encryption scheme as recently proposed by Persichetti [Per13].
It is the first hybrid encryption scheme with assumptions from coding theory, and it was proven
to provide IND-CCA security and indistinguishability of keys under adaptive chosen-ciphertext
attacks (IK-CCA) in the random oracle model in [Per13].

Using QC-MDPC codes in code-based cryptography was proposed in [MTSB13] for the
McEliece cryptosystem; a corresponding description of QC-MDPC Niederreiter was published
in [BBMR14]. Commonly the Niederreiter cryptosystem has the drawback of requiring message
transformations into error vectors of fixed weight using constant weight encoding (e.g., [Sen05])
before encryption. However, in a hybrid encryption scheme the public-key encryption scheme
just transmits a random symmetric key, hence constant weight encoding can be omitted without
affecting security.

Using a hybrid encryption scheme furthermore allows efficient encryption of large plaintexts
without the need to share a symmetric secret-key beforehand. Still it is not clear how efficient
Persichetti’s scheme is in practice, especially when implemented for constrained processors of
embedded devices.

Contribution This work provides the first implementation of QC-MDPC Niederreiter for
ARM Cortex-M4 microcontrollers for which we also deploy Persichetti’s recently proposed hy-
brid encryption scheme. We base Persichetti’s hybrid encryption scheme on QC-MDPC Nieder-
reiter and extend it with standard symmetric components to handle arbitrary plaintext lengths.
Our implementations provide 80-bit and 128-bit security levels and we give an outlook on how
to achieve a 256-bit security level.

Outline We summarize the background on QC-MDPC Niederreiter in Section 7.2. Security
definitions are given in Section 7.3. Hybrid encryption with Niederreiter based on [Per13] is
presented in Section 7.4. Our implementation of QC-MDPC Niederreiter for ARM Cortex-
M4 microcontrollers is detailed in Section 7.5 followed by our implementation of Persichetti’s
hybrid encryption scheme in Section 7.6. Results and comparisons are given in Section 7.7. We
conclude in Section 7.8.
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7.2 The QC-MDPC Niederreiter Cryptosystem

We introduce the Niederreiter cryptosystem’s key-generation, encryption and decryption based
on t-error correcting (n, r, w)-QC-MDPC codes as proposed in [BBMR14] (cf. Section 3.3.3) and
provide an overview of how to efficiently decode QC-MDPC codes in the Niederreiter setting.

QC-MDPC Niederreiter Key-Generation

Key-generation requires to generate a (n, r, w)-QC-MDPC code C with n = n0r. The private-key
is a composed parity-check matrix of the form

H = [H0 | . . . |Hn0−1]

which exposes a decoding trapdoor. The public-key is a systematic parity-check matrix

H ′ = [H−1
n0−1 ·H] = [H−1

n0−1 ·H0 | . . . |H−1
n0−1 ·Hn0−2 | I]

which hides the trapdoor but allows to compute syndromes of the public code.

In order to generate a (n, r, w)-QC-MDPC code with n = n0r, select the first rows
h0, . . . , hn0−1 of the n0 parity-check matrix blocks H0, . . . ,Hn0−1 at random with Hamming
weight ∑n0−1

i=0 wt(hi) = w and check that Hn0−1 is invertible (which is only possible if the
row weight dv is odd). The parity-check matrix blocks H0, . . . ,Hn0−1 are generated by r − 1
quasi-cyclic shifts of the first rows h0, . . . , hn0−1. Their concatenation yields the private parity-
check matrix H. The public systematic parity-check matrix H ′ is computed by multiplication
of H−1

n0−1 with all blocks Hi. Since the public and private parity-check matrices H ′ and H are
quasi-cyclic, it suffices to store their first rows or columns instead of the full matrices. The
identity part I of the public-key is usually not stored.

QC-MDPC Niederreiter Encryption

Given a public-key H ′ and a message m ∈ Z/
(n
t

)
Z, encode m into an error vector e ∈ Fn2 with

wt(e) = t. The ciphertext is the public syndrome

s′ = Heᵀ ∈ Fr2.

QC-MDPC Niederreiter Decryption

Given a public syndrome s′ ∈ Fr2, recover its error vector using a t-error correcting (QC-)MDPC
decoder ΨH with private-key H. If

e = ΨH(s′)

succeeds, return e and transform it back to message m. On failure of ΨH return ⊥.
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Parameters

We use the following parameters in our QC-MDPC Niederreiter implementations as proposed
in [MTSB13] for QC-MDPC McEliece. The parameters offer the same security levels for QC-
MDPC Niederreiter as explained in [BBMR14]. For an 80-bit security level we use

n0 = 2, n = 9602, r = 4801, w = 90, t = 84.
For a 128-bit security level the parameters are

n0 = 2, n = 19714, r = 9857, w = 142, t = 134.

By dv = w/n0 we denote the Hamming weight of each row of the n0 private parity-check
matrix blocks1. With these parameters the private parity-check matrix H consists of n0 = 2
circulant blocks, each with constant row weight dv. The public parity-check matrix H ′ consists
of n0−1 = 1 circulant block concatenated with the identity matrix. The public-key has a size of
r bits and the private-key has a size of n bits which can be compressed since w � n. Plaintexts
are encoded into vectors of length n and Hamming weight t; ciphertexts have length r.

7.2.1 Decoding for QC-MDPC Niederreiter

Several decoders were evaluated to efficiently decode (QC-)MDPC codes in the McEliece cryp-
tosystem in Chapter 4. We found that bit-flipping decoders as introduced by Gallager in [Gal63]
in combination with our proposed improvements are the most suitable decoders for constrained
devices. Hence, we transfer the decoder D2 and several optimizations from QC-MDPC McEliece
to the QC-MDPC Niederreiter setting. The Niederreiter decoder is presented in Algorithm 2.

In QC-MDPC Niederreiter the decoder receives a private parity-check matrix H and a public
syndrome s′ as input and computes the private syndrome s = Hn0−1s

′ᵀ. Decoding runs in
several iterations which are summarized as follows: the inner loop iterates over all columns
of a block of the private parity-check matrix and counts the number of unsatisfied parity-
checks #upc by counting the number of shared set bits of each column Hi[j] and the private
syndrome s. If #upc exceeds a certain threshold2, the decoder likely has found an error position
and inverts the corresponding bit in a zero-initialized error candidate ecand ∈ Fn2 , thus the
name bit-flipping decoder. In addition, we include the optimization of directly updating the
syndrome s through an addition of Hi[j] to the syndrome in case of a bit-flip as proposed in
Chapter 4. This modification improves the decoding behavior to take less decoding iterations
and reduces the probability of decoding failures. Furthermore, decoding is accelerated since
syndrome recomputations after decoding iterations are avoided.

The inner loop is repeated for every block Hi of H until all blocks have been processed.
Afterwards, the public syndrome of the error candidate is computed and compared to the
initial public syndrome s′. On a match, the correct error vector was found and is returned.
Otherwise the decoder continues with the next iteration. After a fixed maximum of iterations,
decoding is restarted with incremented thresholds as proposed for QC-MDPC McEliece. The
failure symbol ⊥ is returned if even after δmax threshold adaptations the correct error vector is
not found.

180-bit: dv = 45, 128-bit: dv = 71. Note that n0 = 2 and w is even for the parameters used in this chapter.
2The bit-flipping thresholds used in Algorithm 2 are precomputed as proposed in [Gal63], cf. Section 4.3.
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Algorithm 2 Syndrome Decoder for QC-MDPC codes. Returns Error Vector e or Failure ⊥.
Input: H, s′, iterationsmax, δmax, threshold
Output: e

Compute the private syndrome s← Hn0−1s
′ᵀ

δ ← 0, ecand ← 0n
while δ < δmax do

iterations ← 0
while iterations < iterationsmax do

for i in n0 do
for j in r do
hw ← HammingWeight(Hi[j] & s)
if hw ≥ (threshold[iterations] + δ) then
ecand[i · r + j]← ecand[i · r + j]⊕ 1
s← Hi[j]⊕ s

end if
end for

end for
s′cand ← H ′eᵀcand
if s′ = s′cand then

return e← ecand
end if
iterations ← iterations + 1

end while
δ ← δ + 1
s← Hn0−1s

′ᵀ

end while
return ⊥

7.3 Background

We present necessary definitions to construct the IND-CCA and IK-CCA secure hybrid encryp-
tion scheme of [Per13] on the basis of Niederreiter public-key encryption. Assumptions about the
security of the Niederreiter framework and definitions of properties of the plaintext, ciphertext
and key indistinguishability for public-key encryption schemes (IND-CPA, IND-CCA, IK-CCA)
are introduced. Furthermore, we introduce and define key derivation functions (KDF) and mes-
sage authentication codes (MAC) together with their desired security property of providing
existential unforgeability under chosen message attacks (EUF-CMA).

7.3.1 Niederreiter Security Assumptions

The security of the Niederreiter cryptosystem is based on two assumptions, the indistinguisha-
bility of scrambled matrices from random matrices and the hardness of the syndrome decoding
problem. Note: we will name probabilistic polynomial time algorithms in short as ppt algo-
rithms and negligible functions as negl().
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Assumption 7.3.1. (Indistinguishability, based on Assumption 1 in [Per13])
Let (H,w) be a public-key of the Niederreiter cryptosystem and H be the scrambled (n − k) ×
n parity-check matrix of a [n, k] linear code over Fq. Then, H is computationally indistin-
guishable from a uniformly chosen (n − k) × n matrix R. The advantage of a ppt attacker A
is

Advind
A,H(k) =

∣∣∣Pr[A(R,w) = 1]− Pr[A((H,w)← GenNR(1k)) = 1]
∣∣∣ ≤ negl(k)

for a sufficiently large k.

Assumption 7.3.2. (Syndrome Decoding Problem, based on Assumption 2 in [Per13])
Let H be the (n− k)× n parity-check matrix of a [n, k] linear code over Fq and s ∈R F(n−k)

q be
chosen uniformly at random. Then, it is hard to find a vector e ∈ Fnq with wt(e) ≤ w such that
Heᵀ = s. The advantage of a ppt attacker A is

AdvSDP
A,SDw

(k) = Pr[A(H,w, s) = e,wt(e) ≤ w] ≤ negl(k)

for a sufficiently large k.

The hardness of the syndrome decoding problem (SDP) was proven to be NP-complete
in [BMv78]. Next, we define the IND-CCA and IK-CCA security goals and the corresponding
security games in Section 7.3.3 and Section 7.3.4, respectively. We also include the definition
of the weaker model of IND-CPA security in Section 7.3.2.

7.3.2 IND-CPA Security

Indistinguishability under chosen-plaintext attacks (IND-CPA) is a property of public-key en-
cryption schemes which aim to provide semantic security. The task for an attacker is to pick
two plaintexts, send them to an encryption oracle which randomly encrypts one of the two
plaintexts, and then to distinguish which plaintext was encrypted given only the corresponding
ciphertext. If there exists no attacker capable of winning this game with a considerably higher
probability than the guessing probability of 1/2, the encryption scheme provides IND-CPA se-
curity. We formally define IND-CPA security for public-key encryption schemes in the following
Definition 7.3.3.

Definition 7.3.3. (IND-CPA Security)
A public-key cryptosystem π = (Genπ,Encπ,Decπ) is IND-CPA secure if the advantage
AdvIND-CPA

A,π (n) of any ppt attacker A is

AdvIND-CPA
A,π (n) =

∣∣∣Pr[PubKIND-CPA
A,π (n) = 1]− 1

2

∣∣∣ ≤ negl(n)

for a sufficiently large security parameter n.
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The security game PubKIND-CPA
A,π (n) used in the definition of IND-CPA security is modeled

in Figure 7.1. Attacker A receives the security parameter 1n and a valid public-key pk from the
challenger, picks two messages m0 and m1 from the message space M , and sends them back to
the challenger. The challenger randomly picks a bit b ∈R {0, 1}, encrypts message mb under pk
to c = Encpk(mb) and sends the result to A. The attacker has to decide which plaintext mb′

was encrypted by the challenger. Attacker A wins the game if he returns bit b′ = b; the game is
lost if b′ 6= b. This step can be repeated several times by the attacker; the number of repetitions
and the computational power of A is only bound to be polynomial in the size of the security
parameter. If the attacker’s advantage of winning this game is negligible compared to guessing,
the encryption scheme provides semantic security.

Note that encryption oracles are inherently available to all attackers who target public-key
cryptosystems since encryption can be performed by anyone who has access to public-key pk.

PubKIND-CPA
A,π (n) Attacker A

(pk, sk)← Gen(1n) −
(1n, pk)

−−−−−−−−−−−−−→

b ∈R {0, 1} ←−
(m0,m1)

−−−−−−−−−−−−− m0,m1 ∈M
c = Encpk(mb) −

c
−−−−−−−−−−−−−→

Output: ←−
b′

−−−−−−−−−−−−− b′ ∈ {0, 1}

=
{

1 b = b′

0 else

Figure 7.1: The IND-CPA security game PubKIND-CPA
A,π (n).

7.3.3 IND-CCA Security

Indistinguishability under adaptive chosen-ciphertext attacks (IND-CCA) is a stronger property
of public-key encryption schemes compared to IND-CPA. Its definition extends the IND-CPA
security game by providing attacker A with access to a decryption oracle before and after
receiving the challenge ciphertext. The decryption oracle returns the plaintexts of adaptively
chosen ciphertexts to the attacker, except the plaintext of the challenge ciphertext. If there
exists no ppt attacker capable of winning this game with considerably higher probability than
the guessing probability of 1/2, the encryption scheme provides IND-CCA. We formally define
IND-CCA security for public-key encryption schemes in Definition 7.3.4.

Definition 7.3.4. (IND-CCA Security)
A public-key cryptosystem π = (Genπ,Encπ,Decπ) is IND-CCA secure if the advantage
AdvIND-CCA

A,π (n) of any ppt attacker A is

AdvIND-CCA
A,π (n) =

∣∣∣Pr[PubKIND-CCA
A,π (n) = 1]− 1

2

∣∣∣ ≤ negl(n)

for a sufficiently large security parameter n.
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The security game PubKIND-CCA
A,π (n) used in the definition of IND-CCA security is modeled

in Figure 7.2. Compared to the IND-CPA security game (cf. Figure 7.1), attacker A can send
arbitrary ciphertexts c′i from the ciphertext space C to the challenger who decrypts them and
returns the corresponding plaintexts m′i before and after receiving the challenge ciphertext c.
The trivial exception is that the challenge ciphertext c is not allowed to be queried to the
decryption oracle. The number of ciphertexts that can be queried is bound in the security
parameter n by polynomials p(n) and q(n). Similar to the IND-CPA security game, the attacker
has to decide whether message m0 or m1 was encrypted by sending b′ ∈ {0, 1}. The game is
won if b′ = b and lost if b′ 6= b. If the attacker’s advantage of winning this game is negligible
compared to guessing, the encryption scheme provides IND-CCA security.

PubKIND-CCA
A,π (n) Attacker A

(pk, sk)← Gen(1n) −
(1n,pk)

−−−−−−−−−−−−−→

←−
c′i

−−−−−−−−−−−−− c′i ∈ C, 0 ≤ i ≤ p(n)

m′i = Decsk(c′i) −
m′i

−−−−−−−−−−−−−→

b ∈R {0, 1} ←−
(m0,m1)

−−−−−−−−−−−−− m0,m1 ∈M
c = Encpk(mb) −

c
−−−−−−−−−−−−−→

←−
c′i

−−−−−−−−−−−−− c′i ∈ C\{c}, p(n) < i ≤ q(n)

m′i = Decsk(c′i) −
m′i

−−−−−−−−−−−−−→
Output: ←−

b′
−−−−−−−−−−−−− b′ ∈ {0, 1}

=
{

1 b = b′

0 else

Figure 7.2: The IND-CCA security game PubKIND-CCA
A,π (n).

7.3.4 IK-CCA Security

Indistinguishability of keys under adaptive chosen-ciphertext attacks (IK-CCA) is a property
of public-key encryption schemes which aim to provide key privacy, i.e., a ppt attacker is not
able to distinguish which public-key out of a set of known public-keys was used to encrypt
a message chosen by the adversary. The modeled attacker is similar to the attacker of the
IND-CCA security game. Attacker A can perform arbitrary encryptions and is provided with
a decryption oracle for two distinct public-key/private-key pairs before and after receiving the
challenge ciphertext. We formally define IK-CCA security for public-key encryption schemes in
Definition 7.3.5.
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Definition 7.3.5. (IK-CCA Security)
A public-key cryptosystem π = (Genπ,Encπ,Decπ) provides IK-CCA security if the advantage
AdvIK-CCA

A,π (n) of any ppt attacker A is

AdvIK-CCA
A,π (n) =

∣∣∣Pr[PubKIK-CCA
A,π (n) = 1]− 1

2

∣∣∣ ≤ negl(n)

for a sufficiently large security parameter n.

The security game PubKIK-CCA
A,π (n) used in the definition of IK-CCA security is modeled in

Figure 7.3. Compared to the IND-CCA security game (cf. Figure 7.2), the challenger generates
two public-key/private-key pairs ((pk0, sk0), (pk1, sk1)) in the security parameter 1n and sends
both public-keys to the attacker. The attacker is able to encrypt arbitrary plaintexts under both
provided public-keys and in addition can query a decryption oracle with arbitrary ciphertexts
c′i ∈ C, where C is the set of all valid ciphertexts. Furthermore, the attacker can select which
private-key sksi , si ∈ {0, 1} shall be used by the decryption oracle to decrypt c′i to m′i.

PubKIK-CCA
A,π (n) Attacker A

(pk0, sk0)← Gen(1n)

(pk1, sk1)← Gen(1n) −
(1n,pk0,pk1)
−−−−−−−−−−−−−→

si ∈ {0, 1}

←−
(c′i, si)

−−−−−−−−−−−−− c′i ∈ C, 0 ≤ i ≤ p(n)

m′i = Decsksi
(c′i) −

m′i
−−−−−−−−−−−−−→

b ∈R {0, 1} ←−
m

−−−−−−−−−−−−− m ∈M
c = Encpkb

(m) −
c

−−−−−−−−−−−−−→

si ∈ {0, 1}

←−
(c′i, si)

−−−−−−−−−−−−− c′i ∈ C\{c}, p(n) < i ≤ q(n)

m′i = Decsksi
(c′i) −

m′i
−−−−−−−−−−−−−→

Output: ←−
b′

−−−−−−−−−−−−− b′ ∈ {0, 1}

=
{

1 b = b′

0 else

Figure 7.3: The IK-CCA security game PubKIK-CCA
A,π (n).

The challenge for the attacker in this security game is slightly different from the previous
games. This time the attacker selects a specific message m in the message space M to be
encrypted by the challenger. The challenger decides by fair coin toss b ∈R {0, 1} under which
public-key pkb message m is encrypted. The results c = Encpkb

(m) is returned to A who
continues querying ciphertexts c′i 6= c to the decryption oracle. Again, attacker A is bound in
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the security parameter n by polynomials p(n) and q(n). Finally, A has to decide whether pk0
or pk1 was used to encrypt m. If the attacker returns b′ = b the game is won, otherwise if b′ 6= b
the game is lost. If the attacker’s advantage of winning this game is negligible compared to
guessing, the encryption scheme provides IK-CCA security.

7.3.5 EUF-CMA Security

Existential unforgeability under adaptive chosen-message attacks (EUF-CMA) is a property of
cryptographic signature schemes which was introduced in [GMR88]. A forger is given a public-
key and access to a signing oracle Sigsk(·). The forger’s task is to output a signature σ for
a message m which has not been queried to the oracle and which successfully verifies with
Verpk(m,σ) = 1. We formally define EUF-CMA security in Definition 7.3.6.

Definition 7.3.6. (EUF-CMA Security)
A signature scheme π = (Genπ,Sigπ,Verπ) is EUF-CMA secure if the advantage AdvEUF-CMA

F,π (n)
of any ppt forger F is

AdvEUF-CMA
F,π (n) = Pr[SigEUF-CMA

F,π (n) = 1] ≤ negl(n)

for a sufficiently large security parameter n.

The security game SigEUF-CMA
F,π (n) used in the definition of EUF-CMA security is modeled in

Figure 7.4. After the challenger generates a key-pair (pk, sk), he sends the public-key and the
security parameter to the forger. Afterwards, F selects arbitrary messages mi from the message
space M and queries the signature oracle to provide valid signatures for the messages mi. The
number of queries is bound in the security parameter by polynomial p(n). In the end, F has to
return a message m together with a forged signature σ which was not queried to the signature
oracle. The game is won if the verification of the forged signature σ succeeds under public-key
pk for message m, i.e., Verpk(m,σ) = 1, otherwise the game is lost. If the forger’s advantage of
winning this game is negligible, the signature scheme is EUF-CMA secure.

7.3.6 Key Derivation Functions

In addition to the security properties, we define key derivation functions (KDF) which will be
used to compute symmetric keys in the hybrid encryption scheme.

Definition 7.3.7. (Key Derivation Function, based on Definition 3 in [Per13])
Let x be a string of arbitrary length and l be a positive integer. A function KDF(x,l) is a key
derivation function which outputs a bit string y of length l that is computationally indistin-
guishable from a random bit string r of the same length l. The advantage of a ppt attacker A
is

AdvKDF
A,KDF(n) = |Pr[A(x, l, y) = 1]− Pr[A(x, l, r) = 1]| ≤ negl(n)

for a sufficiently large security parameter n.
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SigEUF-CMA
F,π (n) Forger F

(pk, sk)← Gen(1n) −
(1n,pk)

−−−−−−−−−−−−−→

←−
mi

−−−−−−−−−−−−− mi ∈M, 0 ≤ i ≤ p(n)
σi = Sigsk(mi) −

σi
−−−−−−−−−−−−−→

Output: ←−
(m,σ)

−−−−−−−−−−−−− m ∈M,m 6= mi, ∀mi

=
{

1 if Verpk(m,σ) = 1
0 else

Figure 7.4: The EUF-CMA security game SigEUF-CMA
F,π (n).

7.3.7 Message Authentication Codes

Furthermore, we define message authentication codes (MAC) to authenticate the symmetric
ciphertexts in the hybrid encryption scheme. Message authentication codes are desired to
provide existential unforgeability against chosen message attacks (cf. Figure 7.4).
Definition 7.3.8. (Message Authentication Code, based on Definition 4 in [Per13])
An algorithm that authenticates a message by a short tag is called a message authentication
code. It is defined by a function Ev(k, T ) that takes as input a key k of length lMAC and a
string T of arbitrary length. Function Ev(k, T ) returns an authentication tag τ of length lTAG
which is appended to the message.
Definition 7.3.9. (EUF-CMA MAC Security)
A message authentication scheme π = (Evπ) provides EUF-CMA security if the advantage
AdvEUF-CMA

F,π (n) of any ppt forger F is

AdvEUF-CMA
F,π (n) = Pr[SigEUF-CMA

F,π (n) = 1] ≤ negl(n)

for a sufficiently large security parameter n.

7.4 Niederreiter Hybrid Encryption

Hybrid encryption schemes were introduced in [CS03]. They are divided into two independent
components: a key encapsulation mechanism (KEM) and a data encapsulation mechanism
(DEM). The KEM is a public-key encryption scheme which encrypts randomly generated session
keys under the public-key of the intended receiver. The DEM then encrypts the plaintexts under
the randomly generated session keys using a symmetric encryption scheme. Hybrid encryption
is beneficial in practice since symmetric encryption is orders of magnitude more efficient than
public-key encryption, especially for large plaintexts. On the other hand symmetric schemes
alone are not practical due to their key distribution problem. Hybrid encryption benefits from
efficient symmetric encryption and asymmetric key distribution.
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7.4.1 Key and Data Encapsulation Mechanisms

A general hybrid encryption scheme consists of a key encapsulation mechanism combined with
a data encapsulation mechanism. The KEM generates and encrypts a symmetric key which is
used by the DEM to encrypt a message. The KEM is a public-key encryption scheme, while a
symmetric encryption scheme is used for the DEM.
Definition 7.4.1. (Hybrid Encryption Scheme, based on [Per13])
A hybrid encryption scheme πHY = (πKEM, πDEM) consists of a KEM
πKEM = (GenKEM,EncKEM,DecKEM) and a DEM πDEM = (EncDEM,DecDEM) defined as fol-
lows:
� GenKEM is a probabilistic key generation algorithm that generates a public-key key pair

(pk, sk) from the security parameter 1n.
� EncKEM is a probabilistic public-key encryption algorithm that generates a random sym-

metric key k of length lk and encrypts this key under public-key pk. It returns the sym-
metric key and the ciphertext (k, c).

� DecKEM is a deterministic public-key decryption algorithm that decrypts ciphertext c with
private-key sk. It either returns the decrypted symmetric key k or failure symbol ⊥.

� EncDEM is a deterministic symmetric encryption algorithm that encrypts a plaintext m
under symmetric key k and returns its ciphertext c∗.

� DecDEM is a deterministic symmetric decryption algorithm that decrypts plaintext m from
ciphertext c∗ using key k. It either outputs the plaintext or failure symbol ⊥.

A hybrid scheme πHY = (GenHY,EncHY,DecHY) then is a combination of the aforementioned
algorithms of πKEM and πDEM.
� GenHY invokes GenKEM and returns the resulting key-pair.
� EncHY receives the public-key pk and a plaintext m as input. First, the algorithm invokes

EncKEM,pk() and obtains a secret-key and its ciphertext (k, c). Then, plaintext m is en-
crypted by invoking EncDEM,k(m). The resulting ciphertext c∗ is concatenated with c and
is output as c̃ = (c || c∗).

� DecHY receives ciphertext c̃ and the private-key sk. It divides c̃ into c and c∗ and recovers
the symmetric key k by invoking DecKEM,sk(c). If the failure symbol ⊥ is returned, DecHY
returns ⊥ as well. Afterwards, the plaintext m is decrypted by invoking DecDEM,k(c∗).
The output is either the decrypted plaintext or failure symbol ⊥.

In summary, a hybrid encryption scheme consists of:
� Key generation: (pk, sk)← GenHY(1n), returning (pk, sk).
� Encryption: (k, c)← EncKEM,pk(), c∗ ← EncDEM,k(m), returning (c || c∗).
� Decryption: k = DecKEM,sk(c), m = DecDEM,k(c∗), returning m or ⊥.

It was proven in [CS03] that the advantage of any ppt attacker on the IND-CCA security of
the hybrid scheme is at most the sum of the advantages of two ppt attackers A1 and A2 on the
IND-CCA security of the KEM and DEM, respectively (see Theorem 7.4.2). The hybrid scheme
can be proven IND-CCA secure in the random oracle model even if the public-key encryption
scheme used as KEM itself is not IND-CCA secure.
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Theorem 7.4.2. (Security of Hybrid Encryption Schemes, based on [CS03])
A hybrid encryption scheme πHY = (πKEM, πDEM) is IND-CCA secure if πKEM and πDEM are
IND-CCA secure. For any ppt attacker A, there exist two attackers A1 and A2 such that

AdvIND-CCA
A,πHY (n) ≤ AdvIND-CCA

A1,πKEM (n) + AdvIND-CCA
A2,πDEM (n).

The advantages AdvIND-CCA
A1,πKEM (n) and AdvIND-CCA

A2,πDEM (n) of attackers A1 and A2 on the IND-CCA
security of the KEM and DEM are defined next.

Definition 7.4.3. (IND-CCA Security of KEMs)
A public-key KEM πKEM = (GenKEM,EncKEM,DecKEM) is IND-CCA secure if the advantage
of any ppt attacker A1 is

AdvIND-CCA
A1,πKEM (n) =

∣∣∣Pr[KEMIND-CCA
A1,πKEM (n) = 1]− 1

2

∣∣∣ ≤ negl(n)

for a sufficiently large security parameter n.

Definition 7.4.4. (IND-CCA Security of DEMs)
A symmetric DEM πDEM = (EncDEM,DecDEM) is IND-CCA secure if the advantage of any
ppt attacker A2 is

AdvIND-CCA
A2,πDEM (n) =

∣∣∣Pr[DEMIND-CCA
A2,πDEM (n) = 1]− 1

2

∣∣∣ ≤ negl(n)

for a sufficiently large security parameter n.

The security game KEMIND-CCA
A1,πKEM used in the definition of the IND-CCA security of KEMs is

modeled in Figure 7.5. The challenger generates a key-pair (pk, sk) and provides the attacker
with the security parameter and the public-key. As in earlier IND-CCA security games, the
attacker is allowed to send arbitrary ciphertexts c′i from the ciphertext space C to a decryption
oracle Decsk(·) before and after receiving the challenge. The number is again bound in the
security parameter by polynomials p(n) and q(n). To generate the challenge of this game,
the challenger invokes the KEM’s encryption algorithm Encpk() and receives (k, c). Then he
generates b ∈R {0, 1} by fair coin toss. If b = 1 he sets k∗ = k, else k∗ is set to a uniform
random string of the same length as k. The challenge (k∗, c) is sent to the attacker who has to
decide whether k∗ is the correct plaintext for ciphertext c or if k∗ is simply a random string.
The game is won by A1 if b′ = b, otherwise the game is lost. A KEM is IND-CCA secure if there
exists no ppt attacker A1 with a considerably higher probability of winning this game than the
guessing probability 1/2.

The security game DEMIND-CCA
A2,πDEM used in the definition of the IND-CCA security of a DEM

is equivalent to the security game PrivKIND-CCA
A,π of the IND-CCA security of symmetric en-

cryption schemes which in turn is similar to the security game PubKIND-CCA
A,π of the IND-CCA

security of public-key encryption schemes (cf. Figure 7.2). The only difference is the addition
of a second oracle that provides arbitrary encryptions of adaptively chosen messages to the at-
tacker. This addition is necessary because the attacker cannot perform symmetric encryptions
without knowing the symmetric key. In the public-key setting encryptions can be performed by
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anyone using the public-key. Otherwise the security games are the same and thus a symmetric
encryption schemes is IND-CCA secure if there exists no ppt attacker A2 with a considerably
higher probability of winning PrivKIND-CCA

A2,π
than the guessing probability of 1/2. Hence, a

DEM provides IND-CCA if the symmetric encryption scheme provides IND-CCA. In addition,
[CS03] showed that it is possible to construct an IND-CCA symmetric encryption scheme from
an IND-CPA symmetric encryption scheme by combination with a secure one-time MAC.

KEMIND-CCA
A1,πKEM

(n) Attacker A1

(pk, sk)← Gen(1n) −
(1n,pk)

−−−−−−−−−−−−−→

←−
c′i

−−−−−−−−−−−−− c′i ∈ C, 0 ≤ i ≤ p(n)

k′i = Decsk(c′i) −
k′i

−−−−−−−−−−−−−→

b ∈R {0, 1}
(k, c)← Encpk()

k∗ =
{
k b = 1
∈R {0, 1}lk b = 0 −

(k∗, c)
−−−−−−−−−−−−−→

←−
c′i

−−−−−−−−−−−−− c′i ∈ C\{c}, p(n) < i ≤ q(n)

k′i = Decsk(c′i) −
k′i

−−−−−−−−−−−−−→
Output: ←−

b′
−−−−−−−−−−−−− b′ ∈ {0, 1}

=
{

1 b = b′

0 else

Figure 7.5: The KEM IND-CCA security game KEMIND-CCA
A1,πKEM

(n).

7.4.2 Constructing Hybrid Encryption from Niederreiter

We introduce the Niederreiter hybrid encryption scheme as proposed in [Per13] in which Per-
sichetti focuses on the realization of an IND-CCA secure KEM and assumes being provided
with an IND-CCA symmetric encryption scheme for the DEM.

The Niederreiter KEM

Let F be the family of t-error correcting [n, k]-linear codes over Fq and let n, k, q, t be fixed
system parameters. The Niederreiter KEM πNR KEM = (GenNR KEM,EncNR KEM,DecNR KEM)
follows the definition of a generic Niederreiter scheme.

� GenNR KEM Pick a random code C ∈ F with parity-check matrix H ′ = (M | In−k).
Output H ′ (or M) as public-key and the code description ∆ as private-key.
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� EncNR KEM Given a public-key H ′, generate a random error e ∈R Fnq of weight wt(e) = t
and compute its public syndrome s′ = H ′eᵀ. The symmetric key k of length lk is generated
from e by a key-derivation function as k = (k1 || k2) = KDF(e, lk). The output is (k, s′).

� DecNR KEM Decode ciphertext s′ to e = Ψ∆(s′) using the code description ∆ and decod-
ing algorithm Ψ. Derive symmetric key k = KDF(e, lk) if decoding succeeds. Otherwise,
k is set to a pseudorandom string of length lk, [Per13] suggests to set k = KDF(s′, lk).

The Standard DEM

Let EncSE
k1 (·) and DecSE

k1 (·) denote the en-/decryption operations of a symmetric encryption
scheme under key k1 and let Evk2(·) denote the evaluation of a keyed message authentication
code under key k2 which returns a fixed length message authentication tag τ . The standard
DEM πDEM = (EncDEM,DecDEM) is the combination of a symmetric encryption scheme with a
message authentication code3.
� EncDEM Given a plaintext m and key k = (k1 || k2), encrypt m to T = EncSE

k1 (m) and
compute the message authentication tag τ = Evk2(T ) of ciphertext T under k2. The
output is c∗ = (T || τ).

� DecDEM Given a ciphertext c∗ and key k, split c∗ into T, τ and k into k1, k2. Verify
the correctness of the MAC by evaluating Evk2(T ) ?= τ . If the MAC is correct, plaintext
m = DecSE

k1 (T ) is decrypted and returned. In case of a MAC mismatch, ⊥ is returned.

The Niederreiter Hybrid Encryption Scheme

The Niederreiter hybrid encryption scheme πHY = (GenHY,EncHY,DecHY) is a combination of
the Niederreiter KEM πNR KEM with the DEM πDEM.

� GenHY invokes GenNR KEM() and returns the generated key-pair.
� EncHY receives plaintext m and public-key H ′ and first invokes s′ = EncNR KEM(H ′).

The returned symmetric keys k1 and k2 are used to encrypt the message to T = EncSE
k1 (m)

and to compute the authentication tag τ = Evk2(T ). The overall ciphertext is (s′ ||T || τ).
� DecHY receives ciphertext (s′ ||T || τ) and invokes DecNR KEM(s′) to decrypt the symmet-

ric key k = (k1 || k2). Then it verifies the correctness of the MAC by evaluating if Evk2(T )
matches τ . If the MAC is correct, plaintext m = DecSE

k1 (T ) is decrypted and returned. In
case of a MAC mismatch, ⊥ is returned.

7.4.3 QC-MDPC Niederreiter Hybrid Encryption

Our instantiation of the Niederreiter hybrid encryption scheme of [Per13] realizes the KEM
using QC-MDPC Niederreiter as defined in Section 7.2. We construct the DEM based on
the AES symmetric encryption standard [NIS01] which enables the DEM to handle arbitrary

3In [Per13], the DEM is assumed as a fixed length one-time pad of the size of m combined with a standard
MAC. Hence, EncSE

k1 (m) = m ⊕ k1 and DecSE
k1 (T ) = T ⊕ k1 with m,T, k1 having the same fixed length.
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plaintext lengths compared to the impractical one-time pad DEM used in [Per13]. We target
80-bit and 128-bit security levels in this work. Our DEM uses AES-128 in CBC-mode for
message en-/decryptions and AES-128 in CMAC-mode for MAC computations hereby following
the encrypt-then-MAC paradigm. Furthermore, we employ SHA-256 for the key derivation
of k1 and k2 from s′. For an overall 256-bit security level, appropriate parameters for QC-
MDPC Niederreiter should be used (cf. [MTSB13], Section 3.5) combined with AES-256-CBC
for encryption, AES-256-CMAC for MAC computations, and SHA-512 for key derivation.

Hybrid Key-Generation

Hybrid key-generation uses QC-MDPC Niederreiter key-generation (cf. Section 7.2).

Hybrid Encryption

Hybrid encryption generates a random error vector e ∈R Fn2 with Hamming weight t, encrypts e
using QC-MDPC Niederreiter encryption to s′ and derives two 128-bit symmetric sessions keys
k = (k1 || k2) = SHA-256(e). Message m is encrypted under k1 by AES-128 in CBC-mode to T
starting from a random initialization vector IV . A MAC tag τ is computed over T under k2
using AES-128 CMAC. The ciphertext is (s′ ||T || τ || IV ).

Hybrid Decryption

Hybrid decryption extracts the symmetric session keys k1 and k2 from the QC-MDPC Niederre-
iter cryptogram, verifies the provided AES-128 CMAC authentication tag under k2 and finally
decrypts the symmetric ciphertext using k1 with AES-128 in CBC-mode. The scheme is illus-
trated in Figure 7.6.

Security

Proof for the IND-CCA security of the hybrid scheme is given in [Per13] assuming IND-CCA
secure symmetric encryption. Furthermore, [CS03] showed that it is possible to construct IND-
CCA symmetric encryption from IND-CPA symmetric encryption (AES-CBC with random
IVs [BDJR97]) by combining it with a standard MAC (AES-CMAC).

7.5 QC-MDPC Niederreiter on ARM Cortex-M4

The following implementation of QC-MDPC Niederreiter targets ARM Cortex-M4 microcon-
trollers since they are a modern wide-spread representative of embedded computing platforms.
Our implementation covers key-generation, encryption, and decryption. Details on the imple-
mentations of the hybrid encryption scheme based on QC-MDPC Niederreiter are presented in
Section 7.6.

We use the same microcontroller that was used to implement QC-MDPC McEliece in Chap-
ter 6 to allow fair comparison with previous work. The STM32F417VG microcontroller features
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Alice Bob
e ∈R Fn2
s′ = H ′Bobe

ᵀ s′ if Dec∆(s′) :
k = (k1 || k2) = SHA-256(e) k = (k1 || k2) = SHA-256(e)

else:
k = (k1 || k2) = SHA-256(s′)

T = AES128-CBCenc,k1(IV,m)
τ = AES128-CMACk2(T )
c∗ = (T || τ || IV ) c∗ (T || τ || IV ) = c∗

if AES128-CMACk2(T ) = τ :
m = AES128-CBCdec,k1(IV, T )
return m

else:
return ⊥

Figure 7.6: Alice encrypts plaintext m for Bob using QC-MDPC Niederreiter hybrid encryption
with public-key H ′Bob. We split the transfer of s′ and c∗ for illustration purposes.

an ARM Cortex-M4 CPU with a maximum clock frequency of 168 MHz, 1 MB of flash memory
and 192 kB of SRAM. The microcontroller is based on a 32-bit architecture and offers hardware
co-processors for acceleration of AES, 3DES, MD5, SHA-1, and true random number genera-
tion. Our implementations are written in Ansi-C with partial use of Thumb-2 assembly for
critical functions. The primary optimization goal is performance; the secondary goal is memory
consumption, e.g., we make limited use of unrolling only when it has high performance impacts.

7.5.1 Polynomial Representations

Our implementations use three different polynomial representations. Each representation has
advantages which we utilize in different parts of our implementations.

� poly t: is the näıve way to store a polynomial. It simply stores each bit of the polynomial
after each other. Its size depends on the polynomial’s length and is independent of the
weight of the polynomial.

� sparse t: stores the positions of the polynomial’s set bits. This representation requires
less memory than poly t if few bits are set. Furthermore, it allows fast iterations of set
bits in the polynomial without having to test all its positions.

� sparse double t: stores the polynomial similarly to the sparse t representation but allo-
cates twice the size of the actually required memory. The yet unused memory is prepended.
In addition, it holds a pointer indicating the start of the polynomial. This representation
is beneficial when rotating sparse polynomials compared to the sparse t representation.
Its benefits will be explained in more detail when we explain efficient decoding in Sec-
tion 7.5.4.
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7.5.2 QC-MDPC Niederreiter Key-Generation

Generating a random first row candidate hn0−1 for block Hn0−1 of length r and Hamming
weight dv is done using the microcontroller’s TRNG as source of entropy. Its outputs are used
as indexes at which we set bits in the polynomial. Since r is prime and hence not a power of
two, we use rejection sampling to ensure a uniform distribution of the sampled indexes. The
TRNG provides 32 random bits per call but only dlog2(r)e random bits (13 bits at an 80-bit
security level, 14 bits at an 128-bit security level) are needed to determine an index in the range
of 0 ≤ i ≤ r−1. Hence we derive two random indexes per TRNG call. As stated in Section 7.2,
we have to ensure that Hn0−1 is invertible. We therefore apply the extended Euclidean algorithm
to generated first row candidates until an invertible hn0−1 is found.

We generate the remaining first rows hi similar to hn0−1 but skip the inverse checking as
only Hn0−1 has to be invertible. After private-key generation, we compute the corresponding
public-key which is the systematic parity-check matrix H ′ = H−1

n0−1 · H = [H−1
n0−1 · H0| . . . |I].

All we need to do is to compute H−1
1 · H0 and append the identity matrix since the selected

parameter sets always have n0 = 2. The private-key has few set bits (dv � r), hence we store it
in sparse representation. The public-key is stored in polynomial representation due to its high
density. Since the code is quasi-cyclic, we only store the first columns of both matrices. The
different representations ease and accelerate later usage of the polynomials.

7.5.3 QC-MDPC Niederreiter Encryption

Given a public-key H ′ and an error vector4 e ∈ Fn2 of weight wt(e) = t, we compute the
public syndrome s′ = H ′eᵀ. Computing s′ is done by iterating over set bits in the error vector
and accumulating the corresponding columns of H ′. Since the error vector is stored in sparse
representation, the index of each bit in the error vector specifies the number of cyclic shifts of
the first column of H ′. To avoid repeated shifting, we reuse the previous shifted column and
shift it only by the difference to the next bit index. Multiplication of eᵀ by the identity part of
H ′ is skipped. As the public syndrome has high density, we store it in poly t representation.

7.5.4 QC-MDPC Niederreiter Decryption

For decryption we implement two decoder variants: Dec1 and Dec2. They differ in their im-
plementation; the decoding behavior of both remains as explained in Section 7.2.1. We start
with Dec1 and subsequently explain the improvements made in Dec2 to accelerate decryption.
Furthermore, we discuss general implementation optimizations.

Dec1 Decoder Dec1 starts by computing the private syndrome s = Hn0−1s
′ᵀ from the public

syndrome s′ and the private-key H. This is the same operation as encryption, however we use
the sparse t representation for the private-key. Recovery of the error vector e starts from a zero-
initialized error candidate ecand of length n. For each column of the private parity-check matrix

4We do not implement constant weight encoding since it is not needed in the hybrid encryption scheme.
Encrypting a message m ∈ Z/

(
n
t

)
Z requires to encode it into an error-vector e ∈ Fn

2 of weight wt(e) = t and to
reverse the encoding after decryption.
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blocks we observe the number of positions which are different from the private syndrome s,
i.e., counting unsatisfied parity-checks. We implement this step by computing the binary AND
of the current column of the private parity-check matrix block with s followed by a Hamming
weight computation of the result.

If the Hamming weight exceeds the decoding threshold biteration, we invert the corresponding
bit in ecand. The position is determined by the current column i and block j with pos = j ∗r+ i.
Additionally, we XOR the current column onto the private syndrome for a direct update every
time a bit is flipped in ecand. Updating the syndrome while decoding was shown to drastically
increase decoding performance in Chapter 4 for QC-MDPC McEliece; the results similarly apply
to QC-MDPC Niederreiter.

We iterate over the private-key column by column from the first block to the last by taking
the first column of each block and performing successive cyclic shifts. The sparse t represen-
tation allows efficient shifting as we only have to increment dv indexes to effectively shift the
polynomial. However, we have to check for overflows of incremented indexes which translate
to carry transfers in the regular poly t representation. An overflow results in additional effort,
as we have to transfer every value in memory so that the position of the highest bit is always
stored in the highest counter.

After iterating over all columns of the private-key, we compute the public syndrome of the
current error candidate, i.e., we encrypt ecand to s′cand = H ′eᵀcand and compare s′cand to the
initial public syndrome s′. On a match, the error vector was found and decryption finishes
by returning e. On a mismatch, we continue with the next decoding iteration. After a fixed
number of iterations5, we abort and restart decoding with the original private syndrome and
increased decoding thresholds similar to the optimized QC-MDPC McEliece decoder D2 (cf.
Section 4.4.1).

Dec2 The Dec1 decoding approach has two downsides. First, the public-key has to be known
during decryption which diverges from standard crypto APIs. Second, costly encryptions have
to be performed after each decoding iteration to check whether the current error candidate
is the correct error vector. Our Dec2 decoder addresses these drawbacks as described in the
following.

The first optimization is to transform the private-key from sparse t to sparse double t poly-
nomial representation. This structure allows efficient handling of overflows during column ro-
tations. A cyclic shift without carry is equivalent to the sparse t representation in which we
increment every bit index of the polynomial. In case of a carry, we pop the last value of the
array (with value r), move all array elements by one position, and insert a new value in the
beginning (with value 0). We illustrate this operation in Figure 7.7.

Using sparse double t we avoid direct manipulation of the array in case of a carry which is
the costly part of the sparse t representation. Instead, we decrement the pointer by one and
insert a zero at the first element. The last element is ignored since the polynomial has known
fixed weight dv and thereby known length. While the previous approach needs dv operations,
this approach breaks it down to two operations, independent of the polynomial’s length. We
illustrate the carry handling in sparse double t representation in Figure 7.8.

5We found the number of iterations experimentally and set it to five, cf. Section 4.5
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Figure 7.7: Carry handling during cyclic polynomial rotation in sparse t representation.
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Figure 7.8: Carry handling during cyclic polynomial rotation in sparse double t representation.
The pointer position is indicated by the black arrow.

Our second optimization checks if the Hamming weight of the error candidate matches the
expected Hamming weight wt(e) = t instead of encrypting ecand after every decoding iteration.
If the Hamming weights do not match, we continue with the next decoding iteration immediately.
Since Hamming weight computation of a vector is a much cheaper operation than vector matrix
multiplication, decryption performance improves.

The third optimization completely eliminates the need to encrypt the error candidates to
determine whether the correct error vector was found. Instead we test the private syndrome for
zero at the end of each decoding iteration. Since the private syndrome is updated every time a
bit-flip occurs, it becomes zero once the correct error vector was recovered.

Other general optimizations include writing hot code of the decryption routine in ARM
Thumb-2 assembly giving us full control of the executed instructions and allowing us to pay close
attention to the instruction execution order to avoid pipeline stalls by interleaving instructions
which decreases the number of wasted clock cycles. Furthermore, we store two 16-bit indexes
in one 32-bit field of the sparse double t type6. As we indicate the start by a pointer, we do not
need to actually shift the values in memory in case of an overflow. A shift by 16 bits would be
expensive on a 32-bit architecture. Furthermore, this allows us to increment two values with
one ADD instruction, and we process twice the data with each load and store instruction. To
benefit from the burst mode of the load and store instructions (LDMIA and STMIA), i.e., loading
and storing multiple words from and to SRAM, we have to ensure that the memory pointers are
32-bit word aligned. This however is not the case at every second overflow since we decrement
the sparse double t pointer in 16-bit steps. A flag variable is used to deal with this issue. If the
flag is set, we temporarily decrease the pointer for alignment.

616 bits are sufficient to store the position for the 80-bit and 128-bit security levels.
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7.6 Hybrid Encryption on ARM Cortex-M4

This section details our implementation of the IND-CCA secure QC-MDPC Niederreiter hy-
brid encryption scheme for ARM Cortex-M4 microcontrollers as introduced in Section 7.4.3.
We describe hybrid key-generation, hybrid encryption, and hybrid decryption based on our
implementation of QC-MDPC Niederreiter (cf. Section 7.5).

7.6.1 Hybrid Key-Generation

The hybrid encryption scheme requires an asymmetric key-pair for the KEM and two symmetric
keys for the DEM. One symmetric key is used to ensure confidentiality through encryption; the
other key is used to ensure message authentication. However, only the asymmetric key pair
is permanent. The symmetric keys are randomly generated during encryption. Thus, the
implementation of the hybrid key-generation is equal to QC-MDPC Niederreiter key-generation
(cf. Section 7.5.2).

7.6.2 Hybrid Encryption

On input of a plaintext m ∈ F∗2 and a QC-MDPC Niederreiter public-key H ′, we generate a
random error vector e ∈R Fn2 with wt(e) = t using the microcontroller’s TRNG and encrypt e
under H ′ using QC-MDPC Niederreiter encryption (cf. Section 7.5.3). Additionally, a SHA-256
hash is derived from e and is split into two 128-bit keys k = (k1 || k2) = SHA-256(e).

After generation of k1 and k2 the key encapsulation is finished, and we continue with data
encapsulation. We generate a random 16-byte IV using the microcontroller’s TRNG and en-
crypt message m under k1 to T = AES-128-CBCenc,k1(IV,m). Ciphertext T is then fed into
AES-128-CMAC, generating a 16-byte tag τ under key k2. Finally, we concatenate the outputs
to x = (s′ ||T || τ || IV ).

To accelerate AES operations we make use of the AES crypto co-processor offered by the
STM32F417 microcontroller for encryption and MAC generation. Unfortunately, the crypto co-
processor only offers SHA-1 acceleration which we refrain from to not lower the overall security
level. Thus we created a software implementation of SHA-256 for hashing.

7.6.3 Hybrid Decryption

Hybrid decryption receives ciphertext x = (s′ ||T || τ || IV ) and decrypts the public syndrome
s′ using QC-MDPC Niederreiter decryption with the KEM private-key to recover the error
vector e (cf. Section 7.5.4). After successful decryption of e, we derive sessions keys k1 and
k2 by hashing the error vector with SHA-256. We compute the AES-128-CMAC tag τ∗ of the
symmetric ciphertext T under k2. If τ∗ 6= τ we abort decryption; otherwise we decrypt T under
k1 using AES-128-CBC to recover plaintext m.

We make use of the microcontroller’s AES crypto co-processor to accelerate decryption and
MAC computation. For SHA-256 we use the same software implementation as during encryp-
tion.
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7.7 Implementation Results

Below we present our implementation results of QC-MDPC Niederreiter and of the hybrid en-
cryption scheme from [Per13] instantiated with QC-MDPC Niederreiter. Both implementations
target ARM Cortex-M4 embedded microcontrollers. We list code size as well as execution time,
evaluate the impact of our optimizations, and compare the results with previous work. Our
code was built with GCC for embedded ARM (arm-eabi v.4.9.3) at optimization level -O2.

7.7.1 QC-MDPC Niederreiter Results

In order to measure the performance of QC-MDPC Niederreiter key-generation, encryption
and decryption, we use randomly chosen instances throughout the measurements. We generate
500 random key-pairs and measure for each key-pair 500 en-/decryptions of randomly chosen
plaintexts of n-bit length and Hamming weight t, resulting in 250,000 executions over which
we average the execution time. Furthermore, we measure cyclic shifting in poly t compared to
the sparse polynomial representations to verify our optimizations in more detail. The execution
times are listed for 80-bit security. The results for 128-bit security are given in parenthesis.

QC-MDPC Niederreiter key-generation takes 376.1 ms (1495.8 ms); encryption takes 15.6 ms
(81.7 ms), and decryption takes 109.6 ms (477.7 ms) with decoder Dec2 on average. With de-
coder Dec1, decryption takes 697.9 ms (3830.2 ms) on average. Both decoders require 2.35 (3.25)
decoding iterations on average until decoding succeeds. As embedded microcontrollers usually
generate few key pairs in their lifespan; key-generation performance is of less practical relevance.

Generating the full private parity-check matrix from its first column in the straightforward
poly t representation takes 83.4 ms (345.8 ms). Our sparse t representation accelerates this to
11.6 ms (34.0 ms), and the sparse double t representation allows even faster rotations with 7.9 ms
(21.2 ms) for the same task. By storing private-keys in sparse representation with two 16-bit
counters in one 32-bit word we reduce the required memory per private-key by 85% (88.5%)
from 9602 bits (19714 bits) to 1440 bits (2272 bits) compared to storing the polynomials in their
full length.

The code size of 80-bit QC-MDPC Niederreiter including key-generation, encryption and
decryption with Dec1 requires 14 KiB flash memory (1.3%) and additional 4 KiB SRAM (2.0%).
For the 128-bit parameter set we need 19 KiB flash memory (1.9%) and 4 KiB SRAM (2.0%).
The same implementation with decoder Dec2 requires 16 KiB flash (1.6%) and 3 KiB SRAM
(1.5%). For 128-bit security we measure 20 KiB flash memory (2.0%) and 3 KiB SRAM (1.5%)
with Dec2. Table 7.1 lists the code size of each function separately. Note that the sum of the
separate code sizes is greater than the combined implementation due to code reuse.

7.7.2 QC-MDPC Niederreiter Hybrid Encryption Results

The execution time of hybrid encryption schemes is dominated by the public-key cryptosystem
which is used for key en-/decapsulation. Hence, we employ QC-MDPC decoder Dec2 for key
decapsulation as it operates much faster than Dec1. We generate 500 random key pairs and en-
/decrypt 500 randomly chosen 32-byte plaintexts for each key pair with the hybrid encryption

130



7.7. Implementation Results

scheme. We measure short plaintexts for worst-case cycles/byte performance. Longer plaintexts
marginally affect performance since they are only processed by symmetric components. Below
we list our results for 80-bit security and 128-bit security (in parenthesis).

Key-generation of the hybrid encryption scheme requires 386.4 ms (1511.8 ms); hybrid en-
cryption takes 16.5 ms (83.2 ms), and hybrid decryption takes 111.0 ms (477.5 ms) on average.
Compared to pure QC-MDPC Niederreiter, the symmetric operations (en-/decryption, MAC-
ing, hashing) add very little to the overall execution time (< 5%) although the hybrid encryption
scheme seems more complex at first. The AES computations are hardware accelerated which re-
sults in a further speedup but even if a Cortex-M4 microcontroller without an AES co-processor
would be used we would see only a slight increase in the overall execution time. The required
code size of the complete hybrid encryption scheme (QC-MDPC Niederreiter, AES-128-CBC,
AES-128-CMAC, SHA-256) is 25 KiB flash (2.4%) and 4 KiB SRAM (2.0%) at 80-bit security
and 30 KiB flash (2.8%) and 4 KiB SRAM (2.0%) at 128-bit security.

7.7.3 Comparison with Related Work

Implementation results reported in related work are listed in Table 7.1. A direct comparison of
QC-MDPC McEliece (cf. Chapter 6, [vMG14b]) with our hybrid QC-MDPC Niederreiter imple-
mented on a similar ARM Cortex-M4 microcontroller shows that hybrid QC-MDPC Niederreiter
is around 2.5 times faster at the same security level. In addition it provides IND-CCA security
and the possibility to efficiently handle large plaintexts. However, the QC-MDPC McEliece
implementation features constant runtime which adds to its execution time. Compared to QC-
MDPC McEliece implemented on an ATxmega256, our encryption runs 50 times faster, and
decryption runs 25 times faster. In addition we provide IND-CCA security through hybrid en-
cryption. Comparing implementations on ATxmega256 with implementations on STM32F417
is not a fair comparison, however both microcontrollers come at a similar price which makes
the comparisons relevant for practical applications. Publication of our work [vMHG16] led to a
follow-up work by Chou [Cho16] who uses a bit-sliced implementation to provide constant-time
key generation, encryption, and decryption for 80-bit security parameters in a similar hybrid en-
cryption scenario. The bit-sliced implementation achieves 15% higher encryption performance
and 20% higher decryption performance at the cost of a code-size of 62 Kbytes compared to our
16 Kbytes on a similar Cortex-M4 microcontroller. The key generation is 2.3 times slower but
offers constant-time computations.

We refrain from comparing our work to the CS-MDPC Niederreiter implementation on a
PIC24FJ32GA002 microcontroller as presented in [BBMR14]. It was shown in [Per14] that the
proposed CS-MDPC parameters do not reach the proclaimed security levels and need adap-
tation. McEliece implementations based on binary Goppa codes targeting the ATxmega256
microcontroller were presented in [EGHP09] and [Hey11]. Again, our implementations out-
perform both by factors of 5-28. In addition, binary Goppa code public-keys are much larger
(64 Kbytes vs. 4801 bits) and impractical for devices with constraint memory. The CCA2-
secure McEliece implementation based on Srivastava codes presented in [CHP12] also targets
the ATxmega256 and is just 4-8 times slower than our hybrid QC-MDPC Niederreiter which
appears as good competitor if implemented on the same microcontroller.

131



Chapter 7. IND-CCA Secure Hybrid Encryption from QC-MDPC Niederreiter

Table 7.1: Performance and code size of our implementations of QC-MDPC Niederreiter using
Dec2 compared to other implementations of similar public-key encryption schemes on
embedded microcontrollers. We abbreviate Niederreiter (NR) and McEliece (McE).
1Flash and SRAM memory requirements are reported for a combined implementation
of key generation, encryption, and decryption. 2Flash requirements are reported for
a combined implementation of key generation, encryption, and decryption, SRAM
memory requirements are not available. Without symmetric primitives the imple-
mentation is reported at 38 Kbytes of flash.

Scheme Platform SRAM Flash Cycles/Op Time/Op
[bytes] [bytes] [ms]

QC-MDPC NR80-bit,enc STM32F417 2,048 3,064 2,623,432 16
QC-MDPC NR80-bit,dec STM32F417 2,048 8,621 18,416,012 110
QC-MDPC NR80-bit,keygen STM32F417 3,136 8,784 63,185,108 376
QC-MDPC NR80-bit,combined STM32F417 3,136 16,124 - -
QC-MDPC NR128-bit,enc STM32F417 2,048 4,272 13,725,688 82
QC-MDPC NR128-bit,dec STM32F417 2,048 8,962 80,260,696 478
QC-MDPC NR128-bit,keygen STM32F417 3,136 12,096 251,288,544 1496
QC-MDPC NR128-bit,combined STM32F417 3,136 20,416 - -
QC-MDPC McE80-bit,enc STM32F407 2,7001 5,7001 7,018,493 42
QC-MDPC McE80-bit,dec STM32F407 2,7001 5,7001 42,129,589 251
QC-MDPC McE80-bit,keygen STM32F407 2,7001 5,7001 148,576,008 884
QC-MDPC NR80-bit,enc [Cho16] STM32F407 - 62,0002 2,244,489 13
QC-MDPC NR80-bit,dec [Cho16] STM32F407 - 62,0002 14,679,937 87
QC-MDPC NR80-bit,keygen [Cho16] STM32F407 - 62,0002 140,372,822 836
QC-MDPC McE80-bit,enc [HvMG13] ATxmega256 606 5,500 26,767,463 836
QC-MDPC McE80-bit,dec [HvMG13] ATxmega256 198 2,200 86,874,388 2,710
Goppa McEenc [EGHP09] ATxmega256 512 438,000 14,406,080 450
Goppa McEdec [EGHP09] ATxmega256 12,000 130,400 19,751,094 617
Goppa McEenc [Hey11] ATxmega256 3,500 11,000 6,358,400 199
Goppa McEdec [Hey11] ATxmega256 8,600 156,000 33,536,000 1,100
Srivastava McEenc [CHP12] ATxmega256 - - 4,171,734 130
Srivastava McEdec [CHP12] ATxmega256 - - 14,497,587 453
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7.8 Conclusion

This work presented the first implementations of QC-MDPC Niederreiter and of Persichetti’s
hybrid encryption scheme for ARM Cortex-M4 microcontrollers. We extended Persichetti’s hy-
brid encryption scheme by choosing well-known symmetric components for data encapsulation
in order to handle plaintexts of arbitrary length. We achieved reasonable performance us-
ing a combination of new implementation optimizations and transferred known techniques from
QC-MDPC McEliece. Furthermore, our implementations operate with practical key sizes which
addresses a long-standing drawback of code-based cryptography. IND-CCA security and perfor-
mance through hybrid encryption are important features for real-world applications. Resistance
against quantum computing attacks is an additional provided feature that will be required for
next-gen cryptographic applications. This work provides a possible solution which is feasible
even on constraint embedded microcontrollers.
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Chapter 8

Embedded Syndrome-Based Hashing

This chapter presents first implementations of the syndrome-based hash function
RFSB-509 on an Atmel ATxmega128A1 microcontroller and a low-cost Xilinx
Spartan-6 FPGA. We explore several trade-offs between size and speed on both plat-
forms and show that RFSB is extremely versatile with applications ranging from
lightweight to high performance. The lightweight microcontroller implementation
requires just 732 bytes of ROM while still achieving a competitive performance com-
pared to established hash functions. Our fastest FPGA implementation is based on
embedded block memories available in Xilinx Spartan-6 devices. It runs at 0.21 cy-
cles/byte and with a throughput of 5.35 Gbit/s. To the best of our knowledge, this is
the first time the RFSB hash function is implemented on either of these wide-spread
platforms.

This research was presented at Indocrypt’12 [vMG12] and is a joint work with Tim
Güneysu.
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8.1 Introduction

Cryptographic hash functions are used in a wide range of applications where a secure map-
ping of an arbitrary amount of data to a fixed-length bit string is required. Examples are
digital signatures, messages authentication codes, data integrity checks, and password protec-
tion. Prominent and widely deployed hash functions such as MD5 [Riv92], SHA-1 [NIS12],
the SHA-2 family [NIS12] and SHA-3 [NIS14] are used in various products and implementa-
tions whose security depends on the collision and pre-image resistance of those hash functions.
However, (chosen-prefix) collision attacks have been published for MD5 [SSA+09, XLF13] and
SHA-1 [WYY05] over the last years and are already exploited in the real-world. A major at-
tack based on MD5 collisions was performed by the Flame espionage malware which injects
itself into the Microsoft Windows operating system. The Flame malware code is signed by
a rogue Microsoft certificate and disguises itself as a Microsoft Windows update. The rogue
certificate was obtained using a previously unknown chosen-prefix collision attack on a Mi-
crosoft Terminal Server Licensing Service certificate which still used the outdated MD5 hashing
algorithm [Jon12].

Although the SHA-2 family withstands critical attacks so far, its similar structure to SHA-1
and ever improving attacks on round-reduced version of SHA-256/-512 (e.g., [MNS13, EMS14])
raise concerns about its long-term security. Therefore, the National Institute of Standards
and Technology (NIST) announced the public SHA-3 competition in the end of 2007 [NIS07].
A total of 64 candidates entered the competition out of which 14 advanced to the second
round; five candidates entered the final round, and Keccak [BDPv11] was selected as the SHA-3
standard [UN12, NIS14]. Apart from security, the main selection criteria were hardware and
software speeds as well as scalability. The announcement of the SHA-3 competition explicitly
demands efficiency in 8-bit microcontrollers as well as in FPGAs and in hardware to account
for the wide range of application in which hash functions are used.

Embedded 8-bit microcontrollers are a common representative of low-cost and energy efficient
computation units used in many real-world applications, e.g., in the automotive industry, digital
signature smart cards, and wireless sensor networks. Field-Programmable Gate Arrays (FPGA)
on the other hand allow reconfigurable implementations in hardware, usually yielding a much
better performance than achievable with 8-bit microcontrollers or PCs. FPGA device classes
range from low-cost (e.g., Xilinx Spartan family) to high-end/high-speed (e.g., Xilinx Virtex
family). Since microcontrollers and FPGAs are both used for applications handling sensitive
data, secure and efficient cryptographic primitives are essential on both platforms.

Code-based cryptography offers a variety of cryptographic primitives that are built upon the
hardness of well-known NP-complete problems in coding theory. Besides public-key encryption
and digital signatures, coding theory can also be applied to realize cryptographic hash functions.
The Fast Syndrome-Based (FSB) hash function [AFG+08] is such a code-based hash function.
FSB was one of the candidates in the SHA-3 competition but due to its inefficiency compared to
other candidates, FSB did not advance to the second round. The Really Fast Syndrome-Based
(RFSB) hash function [BLPS11] is an improved version of FSB that aims to be more efficient
and thus overcomes the main drawback of FSB.

136



8.2. Related Work

Contribution With code-based public-key encryption and digital signature schemes proven
to be feasible in hard- and software, it still is an open question how code-based hash functions
perform on these platforms. We set out to answer this question by evaluating the feasibility and
achievable performance of RFSB-509 in embedded systems. We explore different design choices
for embedded microcontrollers and reconfigurable hardware by targeting the wide-spread 8-bit
Atmel ATxmega microcontroller and Xilinx Spartan-6 FPGAs. We show that RFSB-509 can
be efficiently implemented on both platforms and that RFSB can, in contrast to its predecessor
FSB, keep up with the SHA-3 finalists and other hash standards. Source code for both platforms
is made publicly available to allow independent verification of our implementations and to inspire
future work1.

Outline This chapter is organized as follows. We present related work on code-based hash
functions and the history that led to the development of RFSB in Section 8.2. After briefly
introducing general specifications of the RFSB hash function, we detail on the concrete proposal
RFSB-509 and give an implementer’s view on RFSB-509 in Section 8.3. Next, our design consid-
erations for implementations targeting embedded microcontrollers and reconfigurable hardware
are presented in Section 8.4 and Section 8.5. We evaluate our results in Section 8.6 and draw a
conclusion in Section 8.7.

8.2 Related Work

Augot, Finiasz, Gaborit, Manuel, and Sendrier entered the SHA-3 competition with the Fast
Syndrome Based (FSB) hash function [AFG+08] that relies on the syndrome decoding problem
for linear codes. Previous attempts to build such a hash function by Augot, Finiasz, and
Sendrier [AFS03, AFS05], and Finiasz, Gaborit, and Sendrier [FGS07] turned out to be flawed
and were broken by Coron and Joux [CJ04], Saarinen [Saa07], and Fouque and Leurent [FL08].
Hence, FSB was adjusted to withstand these attacks for the SHA-3 submission and to date the
updated version remains unbroken. However, FSB did not advance to the second round of the
SHA-3 competition mainly because it lacks in efficiency compared to other candidates.

Meziani, Dagdelen, Cayrel, and El Yousfi Alaoui used the ideas of FSB and combined them
with a sponge construction instead of the Merkle-Damg̊ard principle [Dam90] to construct the
S-FSB hash function [MDCE11]. Their main goal was to improve the performance compared to
FSB, and they reported a C implementation of S-FSB-256 on an Intel Core 2 Duo CPU running
at 183 cycles/byte. Compared to FSB requiring 264 cycles/byte on the same CPU, S-FSB is
about 30% faster, but when looking at the overall picture, S-FSB is still an order of magnitude
slower than the current hash standard SHA-256 which runs at 15.49 cycles/byte on a similar
CPU according to eBASH2 [eBA15b]. Optimized implementations that make use of SSE CPU
extensions have been reported for FSB and S-FSB in [CMNS14]. Although the authors were
able achieve better cycle/byte ratios for both hash functions, 204 cycles/byte for FSB-256 and
172 cycles/byte for S-FSB-256 still remains an order of magnitude slower than SHA-256.

1http://www.sha.rub.de/research/projects/code/
2(6fd); 2007 Intel Core 2 Duo E4600; 2 x 2400MHz; cobra, supercop-20111120
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Bernstein, Lange, Peters, and Schwabe introduced the Really Fast Syndrome-Based (RFSB)
hash function as an improved version of FSB and proposed concrete parameters (RFSB-509)
in [BLPS11]. The authors report an implementation of RFSB-509 that outperforms the current
hash standard SHA-256 on Intel Core 2 Quad Q9550 CPUs at 13.62 vs. 15.26 cycles/byte.
According to measurements on eBASH3, an updated implementation by the same authors com-
putes RFSB-509 even faster at 10.64 cycles/byte while SHA-256 remains at 15.31 cycles/byte
on the same CPU.

Another software implementation of RFSB in Java and C is reported by Rothamel and
Weiel [RW11] for x86 CPUs. In addition to RFSB-509, the authors suggest parameter sets
RFSB-227, RFSB-379, and RFSB-1019 and provide performance measurements for all four
variants. They report RFSB-509 to run at 120.5 cycles/byte on an Intel i7 CPU. A vectorized
implementation of RFSB-509 is reported in [CMNS14] to be running at 19.27 cycles/byte on an
AMD Phenom II X2 550 CPU. However, both results do not reach the performance reported
in the original RFSB publication. The implementation by Schwabe and Bernstein runs at 9.06
cycles/byte on an Intel Core i7-47704.

8.3 The RFSB Hash Function

The RFSB hash function is constructed similarly to the FSB hash function [AFG+08]. Both
are designed to be used inside a collision resistant hash function. A fixed length compression
function is combined with the Merkle-Damg̊ard domain extender [Dam90] to enable processing
data of arbitrary length. An initialization vector (IV) is compressed together with the first
message block. The output is used as a chaining value together with the second message block,
and is again fed into the compression function. This continues until the second to last message
block has been processed. The last block is padded by appending a single 1 bit followed by
sufficiently many zeros and a 64-bit message length counter. After all input blocks have been
processed, a final output filter (called final compression function in FSB terms) is applied. In
case of FSB, Whirlpool is used as final compression function. The authors of RFSB suggest to
use SHA-256 or an AES-based output filter. The basic hashing principle of FSB and RFSB is
illustrated in Figure 8.1.

8.3.1 The RFSB Compression Function

The RFSB compression function is defined by four parameters: an odd prime r, positive integers
b and w, and a compressed matrix of size 2b × r bits. The compression function takes a bw-bit
string as input which is interpreted as a sequence of dbw/8e bytes (m1,m2, . . . ,mw), where
each mi ∈ {0, 1, . . . , 2b − 1}. The output is a r-bit string that is interpreted as a sequence of
dr/8e bytes. Both input and output are interpreted in the little-endian format. The compressed
matrix consists of constants c [0] , c [1] , . . . , c[2b − 1], where each of the constant has a length of
r-bit.

3(10677); 2008 Intel Core 2 Quad Q9550; 4 x 2833MHz; berlekamp, supercop-20120704
4(306c3); 2013 Intel Core i7-4770; 4 x 3400MHz; wintermute, supercop-20140505
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Figure 8.1: Illustration of the basic hashing principle based on the Merkle-Damg̊ard domain
extender used by FSB and RFSB. The initialization vector (IV) is set to zero in
RFSB.

The uncompressed RFSB matrix is derived from these constants by defining

ci [j] = c [j]x128(w−i), 1 ≤ i ≤ w, 0 ≤ j ≤ 2b − 1

in the ring F2 [x] /(xr − 1) which essentially are rotations of the compressed matrix constants.
The input is mapped to the output using the message bytes mi as indices of the uncompressed

matrix constants ci. The constants are summed up by exclusive-or (XOR) addition to form the
output as follows:

(m1,m2, . . . ,mw) 7→ c1 [m1]⊕ c2 [m2]⊕ · · · ⊕ cw [mw] .

When using the compressed matrix notation, the mapping from input to output is given by:

(m1,m2, . . . ,mw) 7→ c [m1]x128(w−1) ⊕ c [m2]x128(w−2) ⊕ · · · ⊕ c [mw]

in F2 [x] /(xr − 1).

8.3.2 A Concrete Proposal: RFSB-509

RFSB-509 is a concrete parameter proposal by the designers of RFSB and has been shown to
allow for fast software implementations. The authors of RFSB-509 claim to provide a collision
resistance of more than 2128 and the proposed parameters are r = 509, b = 8, and w = 112.
Hence, the RFSB-509 message block size is 896 bits (112 bytes) and the output size is 509 bits.
The compressed matrix is of size 2b×r = 256×509 bits which roughly amounts to 16 Kbytes. A
recent result by Kirchner [Kir11] claims to lower the complexity to about 279 using an improved
generalized birthday attack. Thus, the parameters need to be adjusted if a collision resistance
of more than 79-bit is required.

Each element of the compressed matrix is generated using a concatenation of the ciphertexts
that result from four AES-128 [NIS01] encryptions using the fixed all-zero key and a plaintext
which is a function of the index of the constant. We denote AES encryption by y = AESk (x),
where y is a 16-byte ciphertext, k is a 16-byte key, and x is a 16-byte plaintext. The plaintext
is set to zero except for the last two bytes. The second to last byte is set to 0 ≤ j ≤ 255 which
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is the index of the constant. The last byte of the plaintext is a counter which is increased with
each AES-128 encryption from 0 to 3. In total this results in the 512-bit string

c′ [j] = AES0 (0, . . . , 0, j, 0) ||AES0 (0, . . . , 0, j, 1) || . . . ||AES0 (0, . . . , 0, j, 3)

which is reduced to
c [j] = c′ [j] mod (x509 − 1)

to remain in the ring F2 [x] /(x509 − 1). The 112-byte input block (m1,m2, . . . ,m112) with each
mi ∈ {0, 1, . . . , 255} is mapped to the 509-bit output by computing

(m1,m2, . . . ,m112) 7→ c [m1]x128(112−1) ⊕ c [m2]x128(112−2) ⊕ · · · ⊕ c [m111]x128 ⊕ c [m112]

in F2 [x] /(x509 − 1).

8.3.3 RFSB-509 from an Implementer’s Point of View

A few aspects have to be considered when designing RFSB-509 for embedded systems. Our
detailed considerations and optimizations of RFSB-509 for embedded devices follow below.

The constants’ matrix, albeit compressed, still has a size of 16 Kbytes. As memory usually
is a scarce resource in embedded systems, it might be challenging to store this matrix. Due to
the computability of the constants, one of two choices can be made. Either memory is spent
to store the matrix or each constant is, probably multiple times, generated on-the-fly when
needed. On-the-fly generation of each constant requires four AES-128 encryptions, thus a total
of 4× 112 = 448 AES encryptions are required for one RFSB-509 compression.

When compressing a message block, the rotations applied to each constant depend on
the position of the current message byte. For example, the first mapping in RFSB-509 is
c [m1]x128(112−1) = c [m1]x14208 which requires to rotate c [m1] by 14208 bit positions. When
using 512-bit wide registers, the amount of different rotations performed during RFSB compres-
sion can be reduced to just four since 128 (112− i) ≡ 384i mod 512 ∈ {384, 256, 128, 0}. Hence,
the RFSB compression s1 of the first four messages bytes (m1,m2,m3,m4) can be rewritten as

s1 = ROL384 (c [m1])⊕ ROL256 (c [m2])⊕ ROL128 (c [m3])⊕ c [m4]

where ROLj denotes a j-bit rotation to the left (towards the most significant bit) of a 512-
bit register. The four different rotations and their exclusive-or sum can be seen as the basic
compression unit of RFSB-509 which we generalized to

si = ROL384 (c [m4i+1])⊕ ROL256 (c [m4i+2])⊕ ROL128 (c [m4i+3])⊕ c [m4i+4] .

In order to process all 112 input message bytes, the basic compression unit is repeated 28
times. Accumulation of the intermediate results si then yields the output of the compression
function

compress509 (m1, . . . ,m112) =
28∑
i=1

si mod (x509 − 1)

=
27∑
i=0

4∑
j=1

ROL512−128j (c [m4i+j ]) mod (x509 − 1)
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Figure 8.2: The basic compression unit of RFSB-509 consists of looking up four constants, ro-
tating them according to their position by either 384, 256, 128, or 0 bits and xoring
the results. The fold unit represents the reduction modulo x509 − 1.

in which the sums are formed using exclusive-or addition. Figure 8.2 illustrates the tree-like
structure of the RFSB-509 compression function and shows multiple basic compression units.

One further important detail is the computation of the reduction modulo x509− 1 for 512-bit
registers. It is achieved by folding the three most significant bits onto the three least significant
bits and setting the three most significant bits to zero. Such a reduction does not pose a problem
on both platforms and can be realized at minimal cost.

8.4 Designing RFSB-509 for Embedded Microcontrollers

Our design of RFSB-509 for embedded microcontrollers targets the wide-spread 8-bit Atmel
ATxmega microcontroller family which are low-cost yet powerful enough for a wide range of
applications. Apart from the usual features offered by such devices (analog to digital conversion,
timers, counters, several communication interfaces, etc.) the ATxmega offers dedicated hardware
accelerators for the encryption standards DES [NIS99] and AES-128 [NIS01].

All following designs are split into three basic functions: init, update, and final. During init
we reset the internal state, the output and the counter to zero. The update function implements
the Merkle-Damg̊ard domain extender, processes new message blocks and updates the internal
state accordingly until the last message block is reached. The last message block is processed
by the finalization function which pads the message, appends the length counter, compresses
the last block and returns the overall output.

As detailed in Section 8.3.3, there are two ways of realizing the RFSB compression func-
tion. Either the constants are stored in a table or the constants are generated on-the-fly when
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needed. One could also think of a hybrid mode, in which the constants are not stored in the
program memory (ROM) but are generated once and stored in volatile SRAM when booting
the device. We explore these three possibilities and give details about the design approach
for each version in the following. The AES- and ROM-based implementations target the At-
mel ATxmega128A1 microcontroller, the SRAM-based implementation requires to use Atmel’s
ATxmega384C3 microcontroller as it provides more SRAM.

8.4.1 On-the-Fly Constant Generation

On-the-fly constant generation is required for a lightweight implementation of RFSB-509 since
the compressed constant matrix already consumes 16 Kbytes of program memory which renders
a lightweight implementation impossible. Especially the hardware accelerated AES-128 offered
in ATxmega devices is useful in this setting. The AES-128 crypto module runs concurrently to
the CPU and takes 375 clock cycles after loading the key and the plaintext block into the module
to en-/decrypt a 128-bit block. When taking loading and storing of key, plaintext and ciphertext
into account, an AES-128 encryption takes about 500 clock cycles or 31.25 cycles/byte. Thus,
when running at its maximum clock frequency of 32 MHz the ATxmega is able to achieve a plain
AES-128 encryption throughput of around 8 Mbit/s.

Our lightweight implementation of the RFSB-509 compression function is built around a
parameterizable constant generation function that is capable of providing rotation widths of
{384, 256, 128, 0} bits. During each iteration of the constant generation function, four AES
encryptions are computed. After each AES encryption the ciphertext is transferred to 16 general
purpose registers and immediately afterwards the next plaintext and key (which is the all-zero
key for all encryptions but has to be reloaded before every encryption nevertheless) are loaded
into the AES module and the next encryption is started. While waiting for the encryption to
finish, we concurrently process the previous ciphertext by accumulating it to the output and
reducing the computed constant modulo x509−1. Thus, we make use of otherwise wasted cycles
while the AES encryption is running in parallel. In order to maintain a reasonable performance,
parts of the code are unrolled, e.g., storing and loading data to and from the AES crypto module
are unrolled since these parts are critical for the overall runtime.

Optimization Proposal

If the constants would be generated using DES instead of AES-128, the performance of the on-
the-fly constant generation could be further improved. Since the output length of DES is half
the output length of AES-128, twice as many DES encryptions would be required. However, at
16 cycles per DES encryption after loading the key and plaintext to the corresponding registers,
this would still be an order of magnitude faster than AES-128 encryption on an ATxmega
microcontroller. Since the performance of the encryption function is the limiting factor in such
an implementation, the overall performance would greatly benefit from this modification.

Note, the short 56-bit keys of DES and its vulnerability to brute-force attacks do not pose
a threat to the security of RFSB-509 since all plaintexts and keys are public by definition in
RFSB. As stated in the original RFSB publication: “The full security of AES is certainly not
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required for RFSB: all that we need is a function generating a few elements of F2 [x] /(xr − 1)
without any obvious linear structure” [BLPS11].

8.4.2 ROM-Based Lookup Table

A total of 16 Kbytes of program memory is required when storing the precomputed constants in
the ROM of the microcontroller. Each of the 256 entries in the table consists of 64 bytes, thus
we multiply each message byte by 26 to compute the index of the required constant. Instead
of first reading out the constant and then rotating it according to the position of the current
message byte, we adjust the table pointer beforehand to directly read out the rotated constant.
This is possible since all rotation widths are a multiple of 8 and the basic addressable unit in
our 8-bit microcontroller is a byte. For example, if a constant has to be rotated by 384 bit, we
add 384/8 = 48 to the current index, read out 16 bytes, then subtract 64 from the index and
read out the remaining 48 bytes of the constant. Thus, we get nearly free rotations by pointer
arithmetic. We repeat this process for all message bytes and rotation widths. The result is
reduced modulo x509 − 1 after all constants have been read out and accumulated.

We explore two different approaches, a rolled and an unrolled version. The unrolled version
removes all loops inside the basic compression unit which computes the intermediate output of
four consecutive message bytes with four different rotation widths (cf. Figure 8.2).

8.4.3 RAM-Based Lookup Table

In order to estimate the maximum achievable performance, we move the constants from
the program memory to the faster SRAM. Accessing a byte in the program memory of the
ATxmega takes 3 clock cycles while accessing the internal SRAM takes 2 clock cycles. Since
112 × 64 = 7168 bytes have to be looked up when compressing one message block, this small
difference can have a larger impact on the overall runtime as one might expect on first sight.
The compression itself is constructed similarly to the previously described setup with some mi-
nor adjustments which account for the modified memory locations. For this evaluation we use
the Atmel ATxmega384C3 microcontroller since it offers 32 Kbytes SRAM. Devices offering 8
or 16 Kbytes SRAM do not suffice in this scenario since the current state and the next message
block have to be held in the SRAM in addition to the constants.

The remaining question is how to place the RFSB-509 constants into the SRAM. Since SRAM
is volatile memory, its content has to be reloaded after every power cycle. As designers we are left
with two choices. Either we store the constants in the program memory as done in Section 8.4.2
and copy them into SRAM at every power up, or we generate the constants once at every power
up and store them in the SRAM. The decision which of the proposed methods to choose depends
on two factors. On the one hand, it has to be considered how much time is available after a
power cycle before the compression function has to be used for the first time. Generating the
constants takes longer than just copying them from program memory. On the other hand, the
decision depends on the available program memory. The generation function takes up much
less program memory compared to a 16 Kbytes table. In our implementation, we generate the
constants after each power up and thus avoid redundant tables in SRAM and ROM. Again we
explore two approaches: a rolled and an unrolled version similarly to the ROM-table design.
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8.5 Designing RFSB-509 for Reconfigurable Hardware

Our evaluation of RFSB-509 in reconfigurable hardware targets the low-cost Xilinx Spartan-6
device family. Spartan-6 devices offer hundreds to (ten-)thousands of slices, where each slice
contains four 6-input/1-output look-up tables (LUT), eight flip-flops (FF), and surrounding
logic. In addition to the general purpose logic, embedded resources such as block memories
(BRAM) and digital signal processors (DSP) are available.

Our designs of RFSB-509 for reconfigurable hardware follow two different strategies to im-
plement the compressed matrix constants. In one architecture we generate the constants when
needed using on-the-fly AES computations, and in the other architecture we make use of the
embedded block memories to store precomputed matrix constants.

Since different choices for the constant look-ups only affect the compression function of RFSB-
509, all implementations share the same top-level component that takes care of handling the
input and output through FIFOs as well as controlling the Merkle-Damg̊ard construction which
is also shared across our FPGA designs. Hence, our design is a modular system in which the
compression function can be easily exchanged. We detail on the different compression function
implementations below.

8.5.1 Implementing RFSB-509 with Embedded Block Memories

Spartan-6 FPGAs feature dual-ported block memories (BRAM) each capable of storing up to
18 Kbits. The BRAMs can be configured to represent one out of five different memory types.
For our purpose we choose to configure the BRAMs as dual-port read-only memories since we
do not need to write new constants. Dual-ported BRAMs allow to read two separate values
from two different memory addresses in each clock cycle.

Minimal BRAM Consumption

Since the compressed constants’ matrix has a size of about 15.9 Kbytes, a minimum of 15.9·8
18 =

7.07 BRAMs is required. However, a wide-access port of 509 bits for each constant is not
supported by the BRAM primitives. The maximum native supported port width is 32-bit (36-
bit when using the parity bits) or when combining both ports 64-bit (72-bit when using the
parity bits). To achieve a minimal block memory usage, we use eight BRAMs to store the
constants as shown in Figure 8.3.

We configure the BRAMs to store 512 values of 32 bits each. The RFSB constants are divided
into eight 64-bit chunks and are distributed to the BRAMs. The 64-bit chunks are again split
and stored in two consecutive memory slots. Hence, BRAM1 holds the topmost 64 bits of all
256 RFSB constants, BRAM2 the following 64 bits of all RFSB constants and so forth.

The index into the table is the current message byte mi appended by a zero and a one bit to
address both memory slots. Because of the dual-port layout of the block memories, both 32-bit
memory slots can be read out simultaneously. This is done for all block memories at the same
time and the results are concatenated and rotated to form the constant ROLx (c [mi]). This
setup allows to read out a complete and already rotated RFSB-509 constant in one clock cycle.
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Figure 8.3: Our smallest BRAM-based FPGA implementation of RFSB-509 requires 8 block
memories configured as 512 × 32 bit dual-port ROM. Every BRAM holds a 64-bit
chunk of the 509-bit constants (prepended by three zero bits) which is split into two
32-bit parts. Since two memory cells of each BRAM can be read out in one clock
cycle, one constant can be read out in one clock cycle.

We sequentially iterate over all input message bytes, accumulate the corresponding constants,
and reduce the result after all message bytes have been processed.

Due to its tree-like structure, RFSB allows very scalable designs which can process multiple
message bytes in one clock cycle since the inputs to the block memories are independent of each
other. Below we explore designs that implement multiple constant look-ups per clock cycle.

Wide-Access Block Memories

This architecture uses block memories with wide-access ports to provide the matrix constants.
Creating a 256× 509-bit table using the Xilinx block memory generator results in 15 occupied
18-Kbit BRAMs. This architecture allows to read out two RFSB-509 constants in one clock
cycle, thus reducing the necessary cycles spent for table look-ups from 112 to 56 cycles.

The internal compression module handles two bytes at once and applies two different rotations
to the read-out constants depending on the position of the message byte in the input string. In
the first mode, the first constant is rotated by 384-bit, the second constant by 256-bit. In the
second mode the first constant is rotated by 128-bit and the second constant is not rotated at
all. Both constants are accumulated to the intermediate result. The rotation mode is switched
with every input message pair and after the complete input block has been processed, the result
is reduced modulo x509 − 1.
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Multiple Table Instances

For high-performance applications we explore architectures in which we duplicate the wide-
access block memories that contain the compressed matrix constants. We only go so far that
we remain within reasonable resource boundaries (i.e., realizable on Spartan-6 devices).

In the first setting we use two tables which allow to process four message bytes in one clock
cycle, essentially representing the basic compression unit introduced in Section 8.3.3 and Fig-
ure 8.2. Furthermore, it is now possible to hard-wire the rotations applied to the constants
because the output of each of the block memory ports only handles either c [m4i+1], c [m4i+2],
c [m4i+3], or c [m4i+4], 0 ≤ i ≤ 27. The two tables require 29 block memories and again halve
the required cycles to 28 clock cycles for the constant look-ups of a 112-byte input block.

In a second design we use four separate instances of the constant table, requiring 58 BRAMs.
This architecture allows to look up eight message bytes per clock cycle and finishes the look-ups
after 14 clock cycles.

The third design quadruples the amount of block memories and thus contains eight instances
of the constants table. This requires 116 BRAMs and allows to look-up 16 constants at the
same time which means all constants are retrieved after just 7 clock cycles.

8.5.2 Implementing RFSB-509 with AES-128

To complete our design exploration, we include an on-the-fly generation of the matrix constants
using an AES-128 FPGA implementation. Since the key is always fixed to the all-zero key, the
key-schedule does not have to be implemented as the round-keys can be precomputed. This
is only true if the AES core is not used for other applications which require the key to be
adjustable at run-time. The AES in use is a T-table based implementation that occupies eight
block memories for storing the tables.

The constant computation unit uses a straightforward approach. It receives a message byte
and starts four consecutive AES-128 encryptions with the respective input blocks as described in
Section 8.3.2. Each result is XORed to an internal output signal and after the fourth encryption
is finished, a modular reduction is performed, and the constant is returned. The higher level
unit receives the constant, rotates it according to the position of the current message byte and
passes the next message byte to the constant computation unit.

8.6 Results and Comparison

Our implementations are verified against test-vectors generated using the reference implemen-
tation of RFSB-509 by Schwabe which was submitted to the ECRYPT Benchmarking of Cryp-
tographic Systems (eBACS) [eBA15a]. The results for embedded microcontrollers are reported
based on Atmel’s AVR Studio 6. In addition to simulation, our implementations were tested
on a real device, namely on the AVR XPLAIN board equipped with an ATxmega128A1 micro-
controller. The FPGA results are post place-and-route results reported by Xilinx’ ISE Design
Suite 14.1, and the target device is a Spartan-6 FPGA XC6SLX100.
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We omit the output filter because a wide range of SHA-256 implementation is already avail-
able in hard- and software. The output filter arguably does not affect the performance measure-
ments when hashing long messages since it is only applied once to the output of the RFSB-509
compression function. In the following we present our microcontroller and FPGA results and
compare them to other hash function implementations on similar devices.

8.6.1 Embedded Microcontrollers

Table 8.1 shows the results of our implementations of RFSB-509 on the embedded microcon-
troller ATxmega128A1. The performance is measured in cycles/byte, the amount of clock cycles
required for calling the update function is divided by 48 bytes since only 48 message bytes en-
ter each compression function due to the Merkle-Damg̊ard construction. Thus, these figures
represent the realistic performance for hashing long messages.

Table 8.1: Implementation results of RFSB-509 on ATxmega128A1 microcontrollers. *Results
for the SRAM table based implementations are measured on an ATxmega384C3 since
it provides more SRAM.

Design ROM RAM Cycles/ Used Used
[bytes] [bytes] byte ROM RAM

HW-AES 732 232 4,753.1 0.5% 2.8%
ROM table 602+16384 232 1,573.9 12.2% 2.8%
ROM table unrolled 3,100+16384 232 1,114.9 14.0% 2.8%
RAM table∗ 996 232+16,384 1,424.5 4.2% 50.7%
RAM table unrolled∗ 3,494 232+16,384 965.6 4.9% 50.7%

All implementations require 232 bytes of SRAM, split into a 112-byte state, a 48-byte input,
a 64-byte output and an 8-byte counter. Additional 16 Kbytes of ROM/SRAM are used by the
ROM/SRAM-based table implementations to store the constants table. The fastest microcon-
troller implementation is running at 965.6 cycles/byte, but is so far only realizable on a few
8-bit AVR microcontrollers since at least the ATxmega384 device has to be used to meet the
RAM requirements. The fastest ROM-based implementation computes one RFSB-509 round at
1114.9 cycles/byte. The rolled version does not seem to be a good choice, since program memory
at this size is not a problem for current microcontrollers, and spending additional 2.5 Kbytes of
ROM (+1.6%) seems to be worth the 460 cycles/byte (30%) performance improvement.

Our smallest implementation, which is based on on-the-fly AES encryptions, only requires
732 bytes ROM and falls into the lightweight cryptography category. If ROM memory is scarce,
the current version could be implemented even smaller by removing unrolled loops which cur-
rently improve performance. Since for every constant the AES encryption is called four times,
448 AES encryptions are needed during each compression. Assuming 500 clock cycles for each
AES encryption we get a lower bound of 224,000 clock cycles or 4,666.7 cycles/byte for the
encryptions, not counting rotations, modular reductions and the combination of looked-up con-
stants to form the output. Our result of 4,753.1 cycles/byte comes very close to this lower
bound.

147



Chapter 8. Embedded Syndrome-Based Hashing

Table 8.2: Comparison of the lightweight RFSB-509 implementation with lightweight implemen-
tations of wide-spread hash functions as presented in [BEE+13].

Hash Platform ROM RAM Cycles/
[bytes] [bytes] byte

RFSB-509 ATxmega128 732 232 4,753
SHA-256 ATtiny45 1,090 143 532
BLAKE-256 ATtiny45 1,166 193 562
Grøstl-256 ATtiny45 1,400 201 686
JH-256 ATtiny45 1,020 234 5,062
Keccak ATtiny45 868 244 1,432
Skein-256 ATtiny45 988 232 4,788
PHOTON ATtiny45 1,244 78 6,210
SPONGENT ATtiny45 364 101 50,908

Although RFSB-509 fits well on current embedded microcontrollers and performs at a de-
cent speed, beating implementations of the SHA-3 candidates is not possible due to memory
requirements caused by the size of the constants’ matrix. When comparing the lightweight
AES-based implementation to the results of an ECRYPT initiative that aimed to provide a
comprehensive collection of lightweight implementations of hash functions [BEE+13], RFSB-
509 beats well known hash functions such as SHA-256, BLAKE-256, JH-256, and Skein-256 in
terms of code size and outperforms JH-256 and sponge-based construction such as PHOTON
and SPONGENT (cf. Table 8.2). However, it has to be noted that the other implementations
do not make use of crypto accelerators since they target the AVR ATtiny device family.

8.6.2 Reconfigurable Hardware

Table 8.3 shows our FPGA results taken from post place-and-route reports. The designs that
use BRAM tables are named RFSB-509x, where x denotes the amount of used block memories.
To measure the performance of our implementations we count the required clock cycles to load
new message bits into the Merkle-Damg̊ard state, compress the current state and update the
state accordingly. We divide the number of clock cycles by 48 since in the Merkle-Damg̊ard
construction only 48 new message bytes enter each 112-byte compression. In addition, we
compute the achieved throughput of each implementation as Tp = clock frequency×8

cycles/byte .
The amount of utilized block memories directly correlates with the achievable performance.

When using the minimum of 8 BRAMs we reach a throughput of 805.1 Mbit/s. Our fastest
implementation runs at 5.35 Gbit/s and consumes 116 block memories. A designer is thus left
with the decision of how many block memories to spend to reach a certain performance goal.

The required area on an FPGA is measured in terms of flip-flops, LUTs, and BRAMs. We
also include the number of occupied slices for comparison even though this number has to
be considered with care since the slice count itself does not reveal the actual degree of used
logic inside the slice and neglects the number of occupied embedded resources (e.g., DSPs and
BRAMs). The overall slice count stays on the same level for nearly all of our implementations.
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Table 8.3: Implementation results of different designs of RFSB-509 for Xilinx Spartan-6
XC6SLX100 FPGAs. We report the occupied slices, flip-flops (FF), 6-input look-
up tables (LUT), and the maximum clock frequency f . The performance is reported
in terms of cycles/byte, throughput (Tp), and throughput/area ratio (Tp/Area).

Design 18-Kbit f Cycles/ Tp Tp/Area
Slices FFs LUTs BRAM [MHz] byte [Mbit/s] [Mbit/s

Slices ]

AES-based 1,526 5,793 4,920 8 260.2 213.8 9.3 0.01
RFSB-5098 1,402 4,621 4,316 8 259.4 2.46 805.1 0.57
RFSB-50915 1,381 4,106 4,277 15 234.7 1.25 1,432.8 1.04
RFSB-50929 1,409 4,101 4,309 29 223.0 0.65 2,633.9 1.87
RFSB-50958 1,447 4,070 3,709 58 171.1 0.38 3,480.2 2.41
RFSB-509116 2,112 4,071 4,690 116 146.2 0.21 5,354.0 2.54

Only the fastest implementation occupies more slices, but the amount of used flip-flops and
LUTs does not increase on the same scale. This is due to fact that block memories are spread
out across the FPGA. Usually this leaves more freedom of where to place an implementation on
the FPGA, but when combining more than just a few BRAMs, the design is spread across the
FPGA which leads to partially used slices. This also increases the critical path which explains
the decreasing clock frequency for the 58 and 116 BRAM variants.

Note, the performance and size of the AES-based design is inherently depended on the under-
lying AES core. Nevertheless, using on-the-fly constant generation on an FPGA does not seem
to be a good choice since the required resources are nearly the same as in our smallest BRAM
implementation plus additional logic for the AES core (393 flip-flops, 326 LUTs, 130 slices, 8
BRAMs, and 21 clock cycles for one encryption). The performance is two orders of magnitude
lower. A possible scenario in which an AES-based implementation could be favorable is if no
block memories are available in the FPGA or if they are already occupied by other parts of the
application. This would of course require a none BRAM-based AES implementation as well.

We compare our results to an evaluation of the hardware performance of the five SHA-3
finalists [GHR+12] and a recent implementation of the lattice-based hash function SWIFFTX
[GCHB12] in Table 8.4. When comparing the numbers one has to keep in mind that our imple-
mentation results are achieved on low-cost Xilinx Spartan-6 devices while the other results are
measured on high-end Virtex-5 and Virtex-6 devices. Nevertheless, our implementations keep
up with most implementations and get clearly outperformed only by the Keccak-256 implemen-
tation.

8.7 Conclusion

We presented the first implementations of RFSB-509 for embedded microcontrollers and recon-
figurable hardware. Lightweight to high-performance designs have been evaluated and proven
feasible on both platforms with competitive results in code size/area and performance. Our
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Table 8.4: This table compares our results to other hash functions implemented in FPGAs.
The results of [GHR+12] are given for high-end Xilinx Virtex-6 devices, [GCHB12]
for Xilinx Virtex-5 and our results for the low-cost Xilinx Spartan-6.

Hash Function Tp Tp/Area Device
Slices [Gbit/s] [Mbit/s

Slices ] [Xilinx]

RFSB-50958 1,447 3.48 2.41 Spartan-6
RFSB-509116 2,112 5.34 2.54 Spartan-6
SWIFFTX [GCHB12] 16,645 4.85 0.29 Virtex-5
SHA-256 [GHR+12] 239 1.63 6.83 Virtex-6
Helion Fast SHA-256 [Hel15b] 214 1.5 7.01 Spartan-6
BLAKE-256 [GHR+12] 2,530 8.06 3.18 Virtex-6
Grøstl-256 [GHR+12] 898 4.20 4.68 Virtex-6
JH-256 [GHR+12] 849 5.41 6.37 Virtex-6
Keccak-256 [GHR+12] 1,474 18.80 12.76 Virtex-6
Skein-256 [GHR+12] 1,628 6.21 3.82 Virtex-6

result show that code-based hash functions are practical and suitable candidates even for ap-
plications involving embedded systems.

In light of NIST’s decision to select Keccak as SHA-3, one of the most important selection
criteria seems to have been to pick a hash function which is not based on previous SHA-1/-2
structures and neither on an AES-inspired design. Presumably the selection was made to spread
risk across a larger variety of cryptographic functions so that a successful attack on one of the
cryptographic primitives does not affect other NIST standards. Code-based hash functions could
add to this variety with RFSB-509. Furthermore, RFSB performance considerably improved
over the SHA-3 candidate FSB which was ruled out mainly due to its inefficiency.
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Chapter 9

Hash-Based Digital Signature
Schemes

This chapter introduces hash-based digital signature schemes with a focus on the
Merkle signature scheme in combination with Winternitz one-time signatures. Fur-
thermore, we explain efficient generation of one-time signing keys using PRNGs and
provide insights into the BDS algorithm for efficient authentication path computa-
tion. The chapter concludes with a survey of the security arguments for hash-based
signature schemes.
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9.1 Introduction to Hash-Based Signatures

The first part of this thesis focused on alternative public-key encryption based on coding theory.
In the second part we shift the focus to another important use-case of public-key cryptography:
digital signatures. With the increasing popularity of contactless smart cards and near field com-
munication, digital signature engines have become a key component of many embedded system
solutions. The applications of digital signatures are numerous, ranging from identification over
electronic payments to firmware updates and protection against product counterfeiting. Due
to the high computational requirements for public-key cryptography, providing efficient digital
signatures on embedded microprocessors with and without dedicated co-processors remains a
challenging task.
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Wide-spread digital signature schemes are RSA (e.g., PKCS#1 [RSA12]), the digital signature
algorithm DSA [NIS13], and its elliptic-curve equivalent ECDSA [NIS13]. A new contender are
Edwards-curve digital signatures EdDSA [BDL+12], which allow faster computations and easier
achievable secure software implementations compared to ECDSA. The underlying hard problems
of these digital signature schemes however are known to broken by quantum computers [Sho97].
Even if scalable quantum computers would never be built, and the hardness of the factorization
and discrete logarithm problems continue to hold, exploring alternative signatures schemes
is still worthwhile to identify schemes which provide stronger security arguments, are more
efficient, or offer inherent countermeasures against side-channel attacks.

Popular candidates for alternative digital signatures are grouped into different families sim-
ilarly as alternative public-key encryption schemes. An early example is Stern’s identification
scheme [Ste94] which bases its security on the syndrome decoding problem from coding theory.
The required interaction between prover and verifier in Stern’s scheme can be removed using
the Fiat-Shamir transform [FS87], but this leads to a somewhat inefficient signature scheme.

The first digital signature scheme from coding theory that could be considered practical is
CFS [CFS01]. CFS is based on the Niederreiter cryptosystem [Nie86] and its security stems
from the syndrome decoding problem and the indistinguishability of binary Goppa codes. An
unpublished attack by Bleichenbacher based on the Generalized Birthday Problem [Wag02]
reduced the assumed security level of the original CFS parameter set as it lowers the attack
complexity from 2r/2 to 2r/3. An adapted scheme (Parallel-CFS) was introduced [Fin11] since
CFS becomes impractical when adjusting the parameters to account for the attack due to
large keys in the range of gigabytes. CFS and Parallel-CFS were implemented on a desktop
PC in [LS12] followed by a bitsliced implementation whose signing time is independent of
secret data [BCS13]. The implementation results show that code-based signature schemes are
becoming more efficient but so far cannot compete with classical digital signature schemes,
especially regarding the public-key size and the signing time which are in the range of megabytes
and few signatures per second, even with highly optimized implementations on powerful CPUs.

Digital signature schemes based on hash function evaluations were introduced in [Mer90]. The
main idea of the Merkle Signature Scheme (MSS) is to sign messages with a One-Time Signature
Scheme (OTSS) and to authenticate the one-time verification keys using binary hash trees.
Several improvements to different parts of Merkle’s signature scheme were proposed over time,
recent proposals of hash-based signature schemes include XMSS [BDH11], XMSS+ [HBB13],
XMSSMT [HRB13], and SPHINCS [BHH+15].

In this work we explore hash-based digital signature scheme for mainly two reasons. First, it
was shown in [Hül13] that the security of hash-based signature schemes can be reduced to the
collision resistance or even to the second-preimage resistance of the underlying hash function
which arguably is a minimal assumption for digital signature schemes. Second, hash-based
signature schemes are usually built upon one-time signature schemes which inherently provides
the possibility of leakage-resilience since the signing keys are ever-changing.

An additional advantage of hash-based signature schemes is that they allow for low-effort
disaster recovery in the unlikely case that the employed hash function is broken by an attack.
The hash function can simply be replaced by any other cryptographically secure hash function
which provides at least the same output length. Other parts of the scheme remain unchanged
which is not as easily possible with classical signature schemes.
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The main goals of this work are to provide an efficient implementation of MSS with a focus on
the challenges when implementing on constrained embedded systems, to design the scheme such
that it offers protection against side-channel attacks, and to quantify and reduce the maximum
side-channel leakage of involved secrets.

In the following we introduce the foundations of hash-based digital signatures schemes. The
Merkle signature scheme, Winternitz one-time signatures, efficient private-key generation, and
the authentication path computation which is the main computational challenge when signing
a message are explained.

9.2 The Merkle Signature Scheme

The Merkle signature scheme is a popular hash-based signature scheme that was introduced
in [Mer90]. A detailed description of the Merkle signature scheme and its variants can be found
in [BDS09].

MSS is based on the availability of an at least second preimage resistant, undetectable n-bit
one-way function f and a cryptographic m-bit hash function g:

f : {0, 1}n → {0, 1}n , g : {0, 1}∗ → {0, 1}m .

The height of the Merkle tree H predetermines the number of signatures that are verifiable with
a MSS verification key (2H signatures). The number of signatures can be extended with the
concept of tree chaining which was introduced in [BGD+06] and extended to virtually unlimited
signatures in [BDK+07].

9.2.1 MSS Key Generation

Let the nodes of the Merkle tree be denoted by νh [s] with h ∈ {0, . . . ,H} being the height of
the node and s ∈ {0, . . . , 2H−h − 1} being the node index on height h.

First, 2H one-time signing key-pairs (Xi, Yi) are generated using KeyGenOTS(1n), the key-
generation algorithm of the underlying OTSS. The 2H leaves of the Merkle tree are defined to
be digests g (Yi) of one-time verification keys Yi which correspond to one-time signing keys Xi,
0 ≤ i < 2H . Starting from the leaves, the root of the Merkle tree νH [0] is generated as

νh+1 [i] = g (νh [2i] || νh [2i+ 1]) , 0 ≤ h < H, 0 ≤ i < 2H−h−1.

Hence, a parent node is generated by hashing the concatenation of its two child nodes. The
root of the tree is defined to be the MSS verification key. A Merkle tree of height H = 3 is
illustrated in Figure 9.1.

Even for small tree heights H storing all nodes of the tree quickly becomes costly, especially
in memory constraint environments such as embedded microcontrollers. The Treehash algo-
rithm [Mer90, Szy04] provides a memory efficient way of computing the root node and requires
to store at most H nodes at the same time. We list the Treehash algorithm in Algorithm 3.
The algorithm stores nodes on a stack and computes parent nodes as soon as both children
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Figure 9.1: A Merkle tree of height H = 3. The leaves ν0 [i] = g(Yi) are computed by hashing
the one-time verification keys Yi. Inner nodes are computed by hashing the concate-
nation of its two children, e.g., ν1 [0] = g(ν0 [0] || ν0 [1]). The MSS verification key
is the root node ν3 [0].

are available. The child nodes are removed from the stack if they are no longer required, i.e.,
after their parent was computed. Tree leaves are computed on-the-fly using the generic method
Leafcalc(i) which computes the i-th leaf of the Merkle tree. For now we can assume this to
be KeyGenOTS, more details on this topic will be provided in Section 9.4. For a Merkle tree of
height H, the Treehash algorithm calls the method Leafcalc in total 2H times to compute
all leaves. Hash function g is called 2H − 1 times to compute the root of the tree. Figure 9.2
illustrates the order in which nodes are generated by the Treehash algorithm for the same
Merkle tree of height H = 3 as in Figure 9.1.

Algorithm 3 Treehash [Mer90, Szy04]
Input: Tree height H ≥ 2
Output: Tree root νH [0]

for i = 0→ 2H − 1 do
ν0 [i]← Leafcalc(j)
while node1 has the same height as the top node on Stack do

Node2 ← Stack.pop()
Compute parent: Node1 ← g(Node2 ||Node1)

end while
Push parent to stack: Stack.push(Node1)

end for
return Stack.pop()
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Figure 9.2: Given a Merkle tree of height H = 3, the Treehash algorithm (Algorithm 3)
computes the nodes νh[i] of the tree in the listed order. The leaves are computed
using Leafcalc, all other nodes of the tree are the results of hashing its two child
nodes.

9.2.2 MSS Signature Generation

A Merkle signature σs of a message M is computed as follows. The signature σs (d) of a digest
d = g (M) consists of a signature index s, a one-time signature σOTS, a one-time verification
key Ys, and an authentication path (Auth0, . . . ,AuthH−1) that allows the verification of the
one-time signature with respect to the public MSS verification key, hence the signature σs (d)
is defined as

σs (d) = (s, σOTS, Ys, (Auth0, . . . ,AuthH−1)) .

The signature index s ∈ {0, . . . , 2H − 1} is incremented with every issued signature. The one-
time signature scheme is used to sign the digest under signing key Xs to generate the one-time
signature

σOTS = SignOTS(d,Xs)

of the message digest d. The authentication path for the s-th leaf are all sibling nodes Authh,
h ∈ {0, . . . ,H − 1} on the path from leaf ν0 [s] to the root node νH [0]. It enables the verifier
to recompute the root node of the Merkle tree and hence to verify the authenticity of the
current one-time signature even though the verifier has not seen the one-time verification key
Yi beforehand. An example is given in Figure 9.3 in which the authentication nodes for leaf
ν0[1] are marked.

We would like to stress that the signature generation reflects the structure of an online/offline
signature scheme. The authentication path only depends on the OTSS verification key Ys which
is known prior to the message. Hence, the authentication path can be precomputed. The online
phase can then be processed faster by only hashing the message and signing the hash with the
one-time signature scheme.

9.2.3 MSS Signature Verification

Given a digest d = g (M) and its signature σs (d) the verifier plugs the one-time signature σOTS
into the underlying one-time signature verification algorithm VerifyOTS (d, σs(d)) to verify the
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Figure 9.3: The authentication path for leaf ν0[1] = g(Y1) in a Merkle tree of height H = 3
is A1 = (Auth0,Auth1,Auth2) = (ν0 [0] , ν1 [1] , ν2 [1]). Given Y1 and A1, it is
possible to reconstruct the root node ν3[0] and to verify the authenticity of Y1.

validity of a provided signature. If the verification succeeds, the root node is reconstructed
using the provided authentication path.

φh+1 =
{
g (φh ||Authh) , if bs/2hc ≡ 0 mod 2
g (Authh ||φh) , if bs/2hc ≡ 1 mod 2

, φ0 = ν0 [s] , h = 0, . . . ,H − 1.

The MSS signature is accepted if the one-time signature σOTS is successfully verified and if the
root node of the Merkle tree was reconstructed, i.e., if φH is equal to the root node νH [0].

9.3 Winternitz One-Time Signatures

Winternitz one-time signatures (W-OTS) [DSS05] are a convenient choice for the one-time sig-
nature scheme in MSS as they reduce the overall signature size compared to, e.g., the Lamport-
Diffie one-time signature scheme [Lam79]. The Winternitz parameter w ≥ 2 determines how
many bits are signed simultaneously. Parameter t is defined as

t = t1 + t2, t1 =
⌈
n

w

⌉
, t2 =

⌈blog2 t1c+ 1 + w

w

⌉
and determines of how many random n-bit strings xi the Winternitz signing keys consist.

9.3.1 W-OTS Key Generation

A W-OTS signing key X = (x0, . . . , xt−1) is generated by selecting t random bit strings
xi ∈ {0, 1}n , 0 ≤ i < t. The W-OTS verification key Y = g (y0 || . . . || yt−1) is computed
from the signing key by applying f 2w − 1 times to each xi giving yi = f2w−1 (xi) , 0 ≤ i < t
and computing the hash of the concatenated yi. Hence, the verification key is computed as

Y = g (y0 || . . . || yt−1) = g
(
f2w−1 (x0) || . . . || f2w−1 (xt−1)

)
.

Note, the superscript denotes multiple executions of f , e.g., f2 (xi) = f (f (xi)) and f0 (xi) = xi.
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9.3.2 W-OTS Signature Generation

A signature for a message M is created by signing its digest d = g (M) under key X. Digest
d is divided into t1 blocks b0, . . . , bt1−1 of length w, and a checksum c = ∑t1−1

i=0 (2w − bi) is
computed. Checksum c is divided into t2 blocks bt1 , . . . , bt−1 of length w (zero-padding to the
left is applied if c or d are not multiples of w). The W-OTS signature σW-OTS = (σ0, . . . , σt−1)
is computed with σi = f bi (xi) , 0 ≤ i < t. Hence, the W-OTS signature is computed as

σW-OTS = (σ0, . . . , σt−1) =
(
f b0 (x0) , . . . , f bt−1 (xt−1)

)
.

9.3.3 W-OTS Signature Verification

Given a message digest d = g (M), a signature σW-OTS, and a verification key Ys, the verifier
generates blocks b0, . . . , bt−1 from d as done during signature generation and reconstructs

Y ′s = g
(
f2w−1−b0 (σ0) || . . . || f2w−1−bt−1 (σt−1)

)
= g

(
f2w−1−b0

(
f b0 (x0)

)
|| . . . || f2w−1−bt−1

(
f bt−1 (xt−1)

))
= g

(
f2w−1 (x0) || . . . || f2w−1 (xt−1)

)
.

If Y ′s equals Ys the signature is valid, otherwise it has to be rejected. When using W-OTS
signatures in MSS, transmitting Ys and comparing Ys to Y ′s can be omitted. Y ′s can simply be
used together with the nodes of the authentication path to recompute the root of the Merkle
tree. If the recomputed root equals the MSS public-key, then Y ′s is a valid OTS verification key.

9.4 Signing Key Generation

Providing enough memory to store 2H one-time signature keys can quickly become problematic
on constrained devices even for small tree heights. Instead of storing the keys, a PRNG can
be used to generate the keys when needed as proposed in [RED+08] resulting in significantly
reduced storage requirements. On input of a seed ki the PRNG outputs a random string ri+1
and an updated seed ki+1, each of length n.

Prng : {0, 1}n → {0, 1}n × {0, 1}n , ki → (ki+1, ri+1) (9.1)

The MSS signing key is reduced to the initial seed Seed0 ∈R {0, 1}n which is given to the
PRNG. This initial seed is used in a two stage process to generate W-OTS signing keys Xi.
First, PRNG seeds for all W-OTS signing keys denoted as SeedW-OTSi are derived from Seed0:

(Seedi+1,SeedW-OTSi)← Prng (Seedi) , 0 ≤ i < 2H . (9.2)

Then, the W-OTS signing keys Xi = (x0, . . . , xt−1) , 0 ≤ i < 2H are generated by the PRNG
starting from SeedW-OTSi . More specifically, the t n-bit strings of the i-th W-OTS signing key
Xi = (x0, . . . , xt−1) , 0 ≤ i < 2H are generated by

(SeedW-OTSi , xj)← Prng (SeedW-OTSi) , 0 ≤ j < t. (9.3)
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9.5 Authentication Path Computation

As already mentioned in Section 9.2.2, the authentication path allows to link one-time verifica-
tion keys to the overall public-key in MSS (cf. Figure 9.3). Its computation can be costly with
näıve approaches such as simply storing all nodes of the tree or recomputing the Merkle tree
every time an authentication path is required.

Creating an authentication path for a specific leaf s can be easily accomplished by storing all
tree nodes in memory and looking up the required nodes when needed. However, this approach
is infeasible for reasonable applications because of the exponential growth of nodes in the tree
height H. Hence, it is necessary to compute and update the authentication path when signing
messages.

A straightforward approach would be to simply compute the Merkle tree when signing a mes-
sage and storing the authentication nodes. Although the memory requirements of this approach
are moderate (the stack in Treehash and the authentication nodes), the computational com-
plexity is very high since almost the complete Merkle tree has to be computed for each MSS
signature.

The best known algorithm for on-the-fly computation of authentication nodes is the BDS
algorithm [BDS09] (cf. Algorithm 4). It makes use of several treehash algorithm instances
Treehashh for heights 0 ≤ h ≤ H −K − 1 and allows to efficiently create (parts of) Merkle
trees. In the BDS algorithm each instance is initialized with a leaf index s for which it computes
the corresponding node value. Each instance is updated until the required authentication node
is computed. During a treehash update the next leaf is created and parent nodes are computed
if possible.

The generation of the authentication path is divided into two parts that go alongside with the
key and signature generation of MSS. During key generation all treehash instances Treehashh
are initialized with νh [3], and the first authentication path is stored:

Authh = νh [1] , 0 ≤ h ≤ H − 1.

The BDS algorithm generates left authentication nodes either by computing the leaf value
or by one hash function evaluation of a concatenation of two previously computed nodes from
memory. Right authentication nodes are more expensive to generate since they are computed
from the leaf up. Since right nodes close to the top are most expensive to compute, a positive
integer K ≥ 2, (H −K even) decides how many of these nodes are stored in Retainh during
key generation, H −K ≤ h ≤ H − 2.

The authentication nodes change every 2h steps for height h. During signature generation
the treehash instances are updated and if an authentication node from a treehash instance is
used, the instance is re-initialized to compute the next authentication node for that particular
height.
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Algorithm 4 Algorithm for BDS Authentication Path Computation [BDS09]

Input: s ∈
{

0, . . . , 2H − 2
}
, H,K, and the algorithm state.

Output: Authentication path As+1 for leaf s+ 1.
1: Let τ = 0 if leaf s is a left node or let τ be the height of the first parent of leaf s which is a

left node: τ ← max{h : 2h|(s+ 1)}
2: If the parent of leaf s on height τ + 1 is a left node, store the current authentication node

on height τ in Keepτ :
if bs/2τ+1c is even and τ < H − 1 then Keepτ ← Authτ

3: If leaf s is a left node, it is required for the authentication path of leaf s+ 1:
if τ = 0 then Auth0 ← Leafcalc(s)

4: Otherwise, if leaf s is a right node, the auth. path for leaf s+ 1 changes on heights 0, . . . , τ :
if τ > 0 then
a) The authentication path for leaf s+ 1 requires a new left node on height

τ . It is computed using the current authentication node on height τ − 1
and the node on height τ − 1 previously stored in Keepτ−1. The node
stored in Keepτ−1 can then be removed:
Authτ ← g (Authτ−1 ‖Keepτ−1), remove Keepτ−1

b) The authentication path for leaf s+ 1 requires new right nodes on heights
h = 0, . . . , τ − 1. For h < H −K these nodes are stored in Treehashh
and for h ≥ H −K in Retainh:
for h = 0 to τ − 1 do

if h < H −K then Authh ← Treehashh.pop()
if h ≥ H −K then Authh ← Retainh.pop()

c) For heights 0, . . . ,min{τ − 1, H −K − 1} the Treehash instances must be
initialized anew. The Treehash instance on height h is initialized with
the start index s+ 1 + 3 · 2h < 2H :
for h = 0 to min{τ − 1, H −K − 1} do

Treehashh.initialize(s+ 1 + 3 · 2h)
5: Next we spend the budget of (H − K)/2 updates on the Treehash instances to prepare

upcoming authentication nodes:
repeat (H −K)/2 times
a) We consider only stacks which are initialized and not finished. Let k be

the index of the Treehash instance whose lowest tail node has the lowest
height. In case there is more than one such instance we choose the instance
with the lowest index:
k ← min

{
h : Treehashh.height() = min

j=0,...,H−K−1
{Treehashj .height()}

}
b) The Treehash instance with index k receives one update: Treehashk.update()

6: The last step is to output the authentication path for leaf s+ 1:
return Auth0, . . . ,AuthH−1.
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9.6 Security of Hash-Based Signature Schemes

The security properties of the MSS signature scheme are discussed in [BDS09]. Specifically,
the work shows that Lamport-Diffie one-time signatures [Lam79] are existentially unforgeable
under adaptive chosen message attacks (i.e., provide EUF-CMA security), if the chosen one-
way function is preimage resistant. The Merkle signature scheme is also CMA-secure if the
underlying OTS scheme is CMA-secure and if the underlying hash function is collision resis-
tant. For increased efficiency and shorter signatures we choose Winternitz OTS rather than
the classic Lamport-Diffie OTS. The security of the Winternitz one-time signatures is discussed
in [DSS05, BDE+11, Hül13]. The findings in [BDE+11] and [Hül13] show that Winternitz OTS
are CMA-secure if used with pseudo-random functions or collision-resistant, undetectable one-
way functions, respectively. The level of equivalent symmetric security lost by using a small
Winternitz-parameter w is in both cases rather small. In our case, the biggest Winternitz pa-
rameter is w = 4, hence we still provide a security level of approx. 95 bits for a 128-bit PRF
or 116 bits for W-OTS+ [Hül13]). Related discussions for a similar MSS scheme can also be
found in [BDH11].

Another important aspect is that most hash-based signature schemes are stateful, i.e., it is
required to maintain persistent information about which of the OTS keys were already used.
When signing a message, it is crucial that the signer ensures not to reuse a one-time signing
key. While in a mathematical description this does not pose a problem, in practice there are a
few obstacles to overcome. Commonly the state maintenance would be realized by an always
increasing index stored in non-volatile memory which points to the first unused one-time signing
key. The index should be incremented prior to issuing a signature such that an index increment
cannot be skipped by fault injection attacks after signature generation. State maintenance
becomes more difficult in case multiple parties should be able to sign messages with the same
signing key, in case of restoring key backups, virtual machine images, and so forth. A possible
solution proposed by Goldreich are Merkle trees with a huge number of leaves in the range of
the security parameter [Gol03]. The index can then be chosen at random or could be derived
from a hash of the message that is signed. Efficiently handling such large Merkle trees can
be achieved using the technique of tree-chaining as proposed for example in GMSS [BDK+07].
Extending on these ideas [BHH+15] recently introduced the SPHINCS stateless hash-based
signature scheme which uses a hyper-tree structure that combines the approaches of Merkle
and Goldreich. Instead of one-time signatures so called few-time signatures are used to reduce
the total tree height. Further state management techniques for different scenarios, e.g., a hybrid
stateless/stateful approach, are presented and analyzed in [MKF+16].
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Chapter 10

Faster Hash-Based Signatures
with Bounded Leakage

Digital signatures have become a key component of many embedded system solutions
and are facing strong security and efficiency requirements. At the same time side-
channel resistance is essential for a signature scheme to be accepted in real-world
applications. Based on the Merkle signature scheme and Winternitz one-time sig-
natures we propose a quantum-resistant signature scheme with bounded side-channel
leakage. Novel algorithmic improvements for the authentication path computation re-
duce the average signature computation time by nearly 50 % when compared to state-
of-the-art algorithms. Furthermore, our improvements tightly bound side-channel
leakage and we state the exact number of times each key is used.
The proposed scheme is implemented on two platforms, an Intel Core i7 CPU and an
AVR ATxmega microcontroller, with carefully optimized versions for the respective
target platform. The theoretical algorithmic improvements are verified in both imple-
mentations using cryptographic hardware accelerators to achieve high performance.

This research was presented at SAC’13 and appeared in the book Number Theory
and Cryptography [EvMPY13, EvMY14]. It is joined work with Thomas Eisenbarth,
Xin Ye, and Christof Paar.
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10.1 Introduction

Side-channel attacks are considered a serious threat for cryptographic implementations in em-
bedded devices. Adding effective protection against attacks such as power analysis or EM anal-
ysis is costly in terms of space and computation time. Hence, side-channel resistant public-key
engines are often just too bulky for wide-spread adoption. Exploring public-key digital signature
schemes that are efficient on embedded platforms and offer inherent side-channel resistance can
be a superior alternative to the prevailing choices of (EC-)DSA and RSA.

New research directions in theoretical cryptography, namely leakage resilient cryptographic
schemes, suggest that performing cryptographic algorithms in a different way might make them
inherently resistant against side-channel attacks without the need of further implementational
countermeasures. Instead of protecting a key that is used over and over again, these schemes
limit the leakage that an attacker can observe for a given key (or state) by limiting the number
of accesses to it. The groundbreaking work of Faust et al. [FKPR10] shows a scheme that
provides a selectable number of leakage resilient signatures. The approach builds on a signature
scheme that only leaks an admissible amount of information when executed up to three times.
The scheme does not explicitly propose or recommend an underlying signature scheme. But
when instantiated with one of the prevailing signature schemes, the leakage resilient signature
engine becomes practically infeasible: each generated leakage-resilient signature requires three
signature generations and two key generations of the underlying signature scheme.

Prior work by Rohde et al. [RED+08] as well as by Hülsing et al. [HBB13] suggest that the
Merkle Signature Scheme (MSS) in combination with Winternitz One-Time Signatures (W-
OTS) [DSS05] is a possible choice for a time-limited signature scheme and can be efficiently
implemented in embedded systems. We analyze and extend the proposal by Rohde et al. and
propose several modifications that lead to significant performance improvements and bounded
side-channel leakage. A key component of the analyzed MSS engine is the PRNG which is used
to generate the private signing key. The PRNG is a self-contained component and is desired to
be leakage resilient. Another building block for the one-time signatures is a one-way function
that needs to have bounded leakage. Other parts of the engine, e.g., a collision resistant hash
function needed for the Merkle tree, only process public data and are thus leakage-agnostic.

Contribution Compared to the state-of-the-art, our proposed scheme provides bounded leak-
age at comparable cost to an unprotected ECC engine. We implement the proposed signature
scheme on two wide-spread platforms: an Intel Core i7 CPU and a low-cost AVR 8-bit micro-
controller. We target a security level of 80-bit and make use of available cryptographic hardware
accelerators to gain maximum efficiency. In addition, we evaluate existing algorithms to com-
pute the authentication path of the Merkle signatures and propose improvements that balance
the number of times each leaf is computed and thus limit side-channel leakage. These improve-
ments also halve the average computation time required to compute the authentication path.
We quantify how often each leaf is computed, show that previous algorithms have a strong bias
in their leaf computations, and explain how we distribute and balance the load across all leaves.

Outline This work is outlined as follows. We start by investigating bounded leakage features
of our MSS design in Section 10.2. The optimized authentication path computation which
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balances computations across all leaves is presented in Section 10.3. Implementation details
and a leakage analysis are given in Section 10.4. We draw a conclusion in Section 10.5.

10.2 Bounded Leakage for MSS

The presented design has several features that bound leakage of secret information. First, the
design consists of many one-time signatures with independent keys. This means there is no key
reuse, and leakage of one OTS key does not reveal information about the other keys. Major
parts of the performed computations are in the Merkle tree. Since the Merkle tree is public,
computations within the tree do not leak any secret information. Hence, leakage of g is not an
issue.

Secret information is only processed during signing and key generation. Key generation usu-
ally takes place in a secure environment, as key generation is usually too costly to be performed
on the embedded system. However, even if key generation leaks, it is a single sequence of leakage
for all parts of the key, i.e., all one-time keys leak exactly once. Critical information leakage
can only happen during signing. If all OTS keys would be stored, they could be chosen inde-
pendently and would leak exactly once, when used for signing (assuming that only computation
leaks information [MR04]). In this case, an adversary would get, at most, two observations
per key (one during key generation and one at signing), outperforming the scheme described
in [FKPR10]. However, as described in Section 9.4, the OTS keys are generated on-the-fly using
a PRNG to achieve a scheme suited for embedded devices. In this case each signing operation
consists of three steps: (i) performing an OTS, (ii) updating the state which requires recompu-
tation of verification keys, and (iii) computing the authentication path. Since the Merkle tree
is public, no secret information is revealed during authentication path computation. The OTS
itself only leaks information about the current OTS key, i.e., one additional leakage for each key.
The main leakage occurs during the state updates, which result in repeated execution of the
PRNG and recomputation of verification keys that leak information about the corresponding
OTS key.

Each PRNG update reveals information about one OTS key and the internal state of the
PRNG. As the described scheme generates several one-time keys more than once, the PRNG
can be executed l times on the same input, where l is determined by the parameters of the
BDS algorithm. That is, each Seedi has up to l leakages as PRNG input. The OTS keys xi
are derived from an initial seed SeedW-OTSi by the same PRNG. The xi serve as input for the
one-way function f . That is, each SeedW-OTSi has up to l leakages as input to PRNG; each xi
is either known by the adversary as part of the signature or has up to l leakages as input of f
during verification key recomputation and signing.

10.3 Optimized Authentication Path Computation

Since the Merkle tree is not stored, the parts of the Merkle tree needed for the authentica-
tion path must be generated. One optimized algorithm for this purpose is the BDS algo-
rithm [BDS09]. Its goal is to minimize costly leaf computations. However, to minimize the
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leakage, it is also important to balance leaf computations. In the following we describe further
optimizations that reduce the number of computations for each individual leaf, thereby mini-
mizing the maximum leakage per private-key computation. We furthermore reduce the overall
computation time by nearly 50%, at the cost of a slightly increased memory usage.

10.3.1 Authentication Path Computation

The authentication path consists of nodes of the Merkle tree. For the computation of upcoming
authentication nodes we use several stacks of nodes for different heights of the tree. Treehash
instances Treehashh are used for heights 0 ≤ h ≤ H −K− 1. Each instance is initialized with
a leaf index s and is updated in Algorithm 4 until the required authentication node is computed.
During a treehash update the next leaf is created and parent nodes are computed by hashing
previously created nodes if possible. Authentication nodes change every 2h steps for height h
and if an authentication node is used from a treehash instance, this instance is re-initialized to
compute the following authentication node for that height.

Preliminaries

The total number of leaf computations that occur during execution of Algorithm 4 can be
calculated by counting all invocations of Leafcalc, a function that on input s outputs leaf
ν0 [s]. As mentioned in [BDS09] it is possible to omit Leafcalc in Step 3 of Algorithm 4 since
the s-th W-OTS key pair is used to sign the current message, hence the verification key can
be computed from the signature and one additional hash computation yields leaf ν0 [s]. If a
different OTSS is used, the verification key is part of the OTS, and can be hashed to create
ν0 [s]. This saves 2H−1 Leafcalc invocations. Careful analysis of Algorithm 4 leads to the
total number of leaf computations in the BDS algorithm

NH,Ktotal =
H−K−1∑
h=0

(
2H−1 − 2h+1

)
= (H −K) 2H−1 − 2H−K+1 + 2.

To count how often a specific leaf s is computed during Algorithm 4 we have to consider all
occurrences of s as parameter of Leafcalc, except for when s is a left leaf (Step 3, Algorithm 4),
as explained above. To determine if leaf s is computed in treehash instance Treehashh we make
the following observation: Treehash0 computes leaves (5), (7), (9), . . . , Treehash1 computes
leaves (10, 11), (14, 15), . . . , Treehash2 computes leaves (20, 21, 22, 23), (28, 29, 30, 31), . . . and
so forth. Hence, the total number of computations for leaf s is given by

NH,K (s) =
H−K−1∑
h=0

⌊
s mod 2h+1

2h

⌋
·


⌊

s
5·2h

⌋
2H

 .
Drawbacks

A drawback of the BDS algorithm (Algorithm 4) is that it does not balance the computation
of leaf nodes. Some leaves are generated multiple times, others are only computed once. On
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average each leaf of the Merkle tree is computed NH,K = NH,Ktotal/2H ≈
1
2(H − K) times.

However, the computations per leaf deviate from the average as shown in Figure 10.1 for a
Merkle tree with 1024 leaves (H = 10,K = 2).

10.3.2 Balanced Authentication Path Computation

Since the rightmost nodes of each treehash instance are calculated most frequently, we propose
to cache and reuse them for balancing the leaf computations. We use an array Rightnodes to
store those nodes. Note, the root of each treehash instance and the complete treehash instance
Treehash0 are not stored since lower treehash instances do not require those nodes. Besides
reducing the side-channel leakage for heavy duty leaves, this also leads to a significantly reduced
computation time, at the cost of an increased memory consumption.

In general, h nodes νj [22+h−j − 1], j = 0, . . . , h− 1 are stored for each instance Treehashh,
1 ≤ h ≤ H − K − 1 (Treehash1: node ν0 [7], Treehash2: nodes ν1 [7] , ν0 [15] , etc.). The
required storage space is

SRightNodes (H,K) =
H−K−1∑
h=1

h =
(
H −K

2

)
= 4H−K−1.

Table 10.1 lists the required memory to store right nodes for common parameter sets. The
Rightnodes array is initialized when computing the root of the Merkle tree. Algorithm 5
formalizes the adjusted initial setup.

Table 10.1: Storage space required by the Rightnodes array where the rightmost nodes of each
treehash instance Treehashh, h = 1, . . . ,H−K−1 are stored for reusage by lower
treehash instances.

H −K 4H−K−1 128-bit digest 160-bit digest 256-bit digest
6 15 240 bytes 300 bytes 480 bytes
8 28 448 bytes 560 bytes 896 bytes
10 45 720 bytes 900 bytes 1,440 bytes
12 66 1,056 bytes 1,320 bytes 2,112 bytes
14 91 1,456 bytes 1,820 bytes 2,912 bytes
16 120 1,920 bytes 2,400 bytes 3,840 bytes
18 153 2,448 bytes 3,060 bytes 4,896 bytes

The treehash instances are updated in case they are initialized but not yet finished (Step 5,
Algorithm 4). Each update computes one new leaf. If possible, higher nodes are generated
by hashing concatenated nodes from the stack. The rightmost leaf of a treehash instance is
computed when the instance receives its last update before finishing. Afterwards, all consec-
utive rightmost nodes of this instance are generated. If the leaf index s ≡ 2h − 1 mod 2h in
instance Treehashh, we store the following nodes in the Rightnodes array starting from
offset h (h− 1) /2. Algorithm 6 presents our treehash update algorithm.

The Rightnodes array holds the authentication node for every other treehash instance
Treehashh, h = 0, . . . , H −K − 2 since it was already computed by instance Treehashh+1.
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Algorithm 5 Key Generation and Initial Setup for the Improved Traversal Algorithm.
Input: H,K
Output: Public-key νH [0], Authentication path, Rightnodes array, Treehash stacks, Re-

tain stacks
1: Public-Key

Calculate and publish tree root, νH [0].
2: Initial Right Nodes
i = 0
for h = 1 to H −K − 1 do

for j = 0 to h− 1 do
Set Rightnodes[i] = νj

[
22+h−j − 1

]
.

i = i+ 1
3: Initial Authentication Nodes

for each h ∈ {0, 1, . . . ,H − 1} do
Set Authh = νh [1].

4: Initial Treehash Stacks
for each h ∈ {0, 1, . . . ,H −K − 1} do

Setup Treehashh stack with νh [3].
5: Initial Retain Stacks

for each h ∈ {H −K, . . . ,H − 2} do
for each j ∈

{
2H−h−1, . . . , 0

}
do

Retainh.push(νh [2j + 3]).

Algorithm 6 Improved Treehash Update
Input: Height h, current index s, Rightnodes array
Output: Updated Rightnodes array, updated Treehash instance Treehashh

Compute the s-th leaf: Node1 ←Leafcalc(s)
if s ≡ 2h − 1

(
mod 2h

)
and Node1.height() < h then

offset = h (h− 1) /2
Rightnodes[offset]←Node1

end if
while Node1 has the same height as the top node on Treehashh do

Pop the top node from the stack: Node2 ←Treehashh.pop()
Compute their parent node: Node1 ← g(Node2‖Node1)
if s ≡ 2h − 1

(
mod 2h

)
then

offset = offset + 1
Rightnodes[offset]←Node1

end if
end while
Push the parent node on the stack: Treehashh.push(Node1)
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Hence, it is possible to copy the authentication node from the Rightnodes array instead
of computing it during every other initialization of treehash instance Treehashh. The au-
thentication node can be copied from the Rightnodes array if s + 1 ≡ 0 mod 2h+2 and if
s + 1 ≡ 2h+1 mod 2h+2 the authentication node has to be computed. If nodes can be reused,
the authentication node (root of Treehashh) is copied from the Rightnodes array along with
its rightmost child nodes. This way we can reuse them in instances Treehashj , j < h. This
improvement can be easily integrated into the BDS algorithm by modifying Step 4c accordingly.

Comparison

In order to quantify our improvements, we count the overall number of leaf computations
and develop formulas with which we can count how often a specific leaf s is computed. As
before, 2h leaves are computed by each instance Treehashh but since we are able to copy
the authentication node from the Rightnodes array during every other re-initialization for
treehash instances Treehashh, h = 0, . . . ,H − K − 2, half of the Leafcalc computations
can be omitted and only 2H−h−2 − 1 re-initializations are required. Hence, these treehash
instances make 2H−2 − 2h calls to Leafcalc each. The exception is the treehash instance
TreehashH−K−1 because it cannot copy nodes from the Rightnodes array. This is due to
the fact that it is the highest instance and its nodes have not been computed before by any
other treehash instance. Thus, this instance remains unchanged and makes 2H−1 − 2H−K calls
to Leafcalc. Overall, the total number of leaf computations is

N ′H,Ktotal
=

H−K−2∑
h=0

(
2H−2 − 2h

)
+ 2H−1 − 2H−K

= (H −K + 1) 2H−2 − 3 · 2H−K−1 + 1.

This is nearly a 50% reduction compared to NH,Ktotal of the BDS algorithm.
The number of leaf computations for a specific leaf s in the improved algorithm depends on

whether s is a left leaf or a right leaf. If s is even, it is a left leaf and can be computed from
the current one-time signature or verification key as mentioned in Section 10.3.1 for Step 3 of
Algorithm 4. If s is odd, it is a right leaf and thus Leafcalc is not executed directly. To
determine if s is computed in treehash instance Treehashh, h = 0, . . . ,H − K − 2, we have
to consider that s is copied instead of being computed during every other initialization. We
construct function δ′H,K (s) that returns the number of times leaf s is computed in treehash
instances Treehashh, h = 0, . . . ,H −K − 2.

δ′H,K (s) =
H−K−2∑
h=0

⌊
s mod 2h+1

2h

⌋
·


⌊

s
5·2h

⌋
2H

 ·
(

1−
⌊
s mod 2h+2

2h+1

⌋)

Since the highest treehash instance TreehashH−K−1 cannot copy nodes from the Rightn-
odes array, we count the number of computations for this instance as for the BDS algorithm
by evaluating δH,K (s,H −K − 1) for leaf s. Overall, leaf s is generated

N ′H,K (s) =
⌊
s mod 2H−K

2H−K−1

⌋
·


⌊

s
5·2H−K−1

⌋
2H

+ δ′H,K (s)

169



Chapter 10. Faster Hash-Based Signatures with Bounded Leakage

times during the computation of all authentication nodes. On average each leaf is now computed
N ′H,K = N ′H,Ktotal

/2H ≈ 1
4(H −K + 1) times. The reduced number of computations for each

leaf is shown in Figure 10.2. Visual comparison between Figure 10.1 and Figure 10.2 gives
an intuition of the reduction and balancing of leaf computations. For further comparisons see
Figure 10.3.

Figure 10.1: Number of times each leaf is com-
puted by the original BDS algo-
rithm for a Merkle tree of height
H = 10 and K = 2.

Figure 10.2: Number of times each leaf is
computed by our variation for a
Merkle tree of height H = 10 and
K = 2.

We compare the overall, average and worst-case number of leaf computations in Table 10.2
for common parameters sets (H,K). The total number of leaf computations as well as the
average computations per leaf are decreased by about 38 − 48% for the chosen parameters of
H and K. Both the worst-case computation time as well as the average signature computation
time are decreased. For example, battery-powered devices benefit from a reduced computation
time, which directly relates to the overall power consumption.

Table 10.2: Comparison of the required computations for a Merkle tree with common parameter
sets (H,K). We also list the average and worst-case number of leaf computations
NH,K and N ′H,K , as well as the variance σ2

H,K and σ′2H,K of NH,K (s) and N ′H,K (s).
max. max.

H K NH,Ktotal N ′H,Ktotal
NH,K N ′H,K % σ2

H,K σ′2H,K % NH,K (s) N ′H,K (s) %

10 2 3,586 1,921 3.50 1.88 46.4 2.24 0.73 67.3 8 4 50.0
10 4 2,946 1,697 2.88 1.66 42.4 1.60 0.50 68.5 6 3 50.0
10 6 2,018 1,257 1.97 1.23 37.7 1.02 0.33 67.9 4 2 50.0
16 2 425,986 221,185 6.50 3.38 48.1 3.75 1.11 70.4 14 7 50.0
16 4 385,026 206,849 5.88 3.16 46.3 3.11 0.88 71.6 12 6 50.0
16 6 325,634 178,689 4.97 2.73 45.1 2.53 0.71 72.1 10 5 50.0
20 2 8,912,898 4,587,521 8.50 4.38 48.5 4.75 1.36 71.4 18 9 50.0
20 4 8,257,538 4,358,145 7.88 4.16 47.2 4.11 1.13 72.5 16 8 50.0
20 6 7,307,266 3,907,585 6.97 3.73 46.5 3.53 0.96 72.9 14 7 50.0
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Figure 10.3: Comparison of NH,K (s) (on the left) and N ′H,K (s) (on the right) for H =
{10, 16, 20} and K = {2, 4} for all leaves s of the respective tree.
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Since all but the topmost treehash instances need to be computed only every second time,
the number of updates per signature (Step 5, Algorithm 4) can be reduced from d(H −K)/2e
to d(H −K + 1)/4e. As a result, the average update time is much better balanced than in
Algorithm 4 and the worst case computation time is also improved. The BDS algorithm needs
to store 3H+bH/2c−3K+2K−2 tree nodes and 2 (H −K)+1 PRNG seeds as signature keys.
Due to storing the rightmost nodes our improved algorithm increases the number of tree nodes
that have to be stored by

(H−K
2
)
. Even if the additional memory is used to increase K for the

original BDS algorithm, the speedup is still significant. E.g., our algorithm with (H,K) = (16, 4)
and BDS with (16, 6) have comparable storage requirements, but our algorithm still achieves
a speedup of 36% over BDS. The verification key and signature sizes remain unaffected: the
verification key size is m and the signature size remains at t · n+H ·m.

10.4 Implementation Details and Leakage Analysis

We describe our choices for the cryptographic primitives which is used to implement the pro-
posed signature scheme described in Sections 9.2 and 10.3. We detail on the target platforms
and give performance figures for key and signature generation as well as signature verification.

10.4.1 A Bounded Leakage Merkle Signature Engine

We implement two versions with different hash functions g for the Merkle tree. Both versions use
AES-128 in an MJH construction [LS11]. Using AES-128 as the block cipher is favorable from a
performance perspective as existing AES co-processors can be used. MJH is collision resistant
for up to O(2 2n

3 −logn) queries when instantiated with a n-bit block cipher. With AES-128 as
an ideal cipher this results in 80 bits security [LS11]. On the downside, MJH produces 256-bit
hash outputs which in the MSS setting leads to an increased key and signature size. Hence,
we also implement a version that shortens the 256-bit output of MJH to 160-bit, resulting in
smaller key and signature sizes. This also reduces the number of times the AES engine needs to
be used when creating nodes in the Merkle tree. Remember: leakage of g is not an issue since
g only processes public information.

One-way function f is implemented based on AES-128 in an MMO [MMO85, MOV01] con-
struction: f(xi) := AESIV(xi)⊕ xi. Unlike the PRNG, f is keyless. Hence, for independent in-
puts its leakage is inherently 1-limiting and f can thus be viewed as uniformly seed-preserving.
The PRNG defined in Equation (9.1) in Section 9.4 is implemented based on the leakage-2-
limiting PRNG proposed in [SPY+10]. In particular,

PRNG(ki) := (AESki
(0128), AESki

(0127||1)),

where AESki
denotes AES-128 with a 128-bit key ki, used as seed-preserving function.

Both PRNG and f handle secret inputs. The PRNG processes each Seeds and SeedW-OTSs

as well as the xi for s exactly N ′H,K(s) times during state updates and one time during signing
OTSs. We exclude the key generation in this analysis, as it is performed off-chip, presumably
in a secure environment. Both PRNG and f rely on AES-128 as cryptographic building block.
The PRNG executes AES twice under the same secret-key (i.e., the PRNG is 2-limiting) while f
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touches the secret input only once, making the signature engine overall leakage-2-limited. The
strongest leakage will be observed for the Seedi, resulting in a total of l = 2·(max(N ′H,K(s))+1)
leakages. These l observations are on 2 different inputs, hence there are l/2 = max(N ′H,K(s))+1
observations under the same input, i.e., leakage will only differ by noise. Classical side-channel
attacks are further mitigated by the fact that intermediate values Seedi of the key generation
PRNG are not output. The adversary will only get access to a limited number of xi.

10.4.2 Implementation Platforms

We implement the signature scheme on two different platforms: a lightweight and low-cost 8-bit
Atmel ATxmega microcontroller and a powerful Intel Core i7 CPU.

Intel Core i7-2620M 64-bit CPU

Intel’s off-the-shelf Core i7-2620M 64-bit Sandy Bridge CPU features two cores running at
2.70 GHz (with Turbo Boost technology up to 3.40 GHz). For accurate measurement, we dis-
able Turbo Boost and hyper-threading during our benchmarks. The CPU incorporates recent
extensions to the x86 instruction set. An important extension in our context is the AES-NI
extension which consists of six additional instructions that improve the performance when en-
/decrypting data using AES [Cor10]. All standardized key lengths (128 bits, 192 bits, 256 bits)
are supported for a block size of 128 bits.

Atmel AVR ATxmega128A1 8-bit Microcontroller

We are using the Atmel evaluation board AVR XPLAIN that features an ATxmega128A1 mi-
crocontroller. The ATxmega offers hardware accelerators for DES and AES and is clocked at
32 MHz. The hardware acceleration is limited to AES with 128-bit key and block sizes. A leak-
age analysis has been performed on this processor in Section 10.4.4, as it is a typical example
for a low-power embedded platform.

10.4.3 Performance Results

In the following we give performance figures of the signature scheme for selected Merkle tree
parameters H and K as well as Winternitz parameter w on both platforms.

CPU Performance

On the Intel CPU we measure the time to create the root node of Merkle trees, i.e., the
verification key generation. We iterate over all leaves and sign random messages to measure
the average computation time that is needed to create a valid MSS signature. Additionally, we
measure the time it takes to verify an MSS signature. Signature computation includes creating
the signing key, performing a one-time signature with the signing key, and generating the next
authentication path. The last step can be precomputed between two signing operations since
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Table 10.3: Performance figures of a Merkle tree with parameters H = 16,K = 2, w = 2 on
an Intel i7 CPU and H = 10,K = 2, w = 2 on an ATxmega microcontroller.
One-way function f is implemented using a hardware-accelerated AES-128 (AES-
NI instructions, ATxmega crypto accelerator) in MMO construction. Hash function
g is implemented using AES-128 in an MJH-256 construction and with the output
truncated to 160 bits. The Intel CPU runs at 2.7 GHz and the ATxmega at 32 MHz.

Hash g MJH-256 w/ AES-128 MJH-160 w/ AES-128
Target [RED+08] our impr. [RED+08] our impr.

Core i7 KeyGen 6546.9 ms 6037.5 ms 8% 4218.7 ms 3,886.3 ms 8%
Core i7 Sign 743.9 us 401.3 us 46% 487.1 us 256.2 us 47%
Core i7 Verify 76.1 us 78.1 us -3% 50.8 us 49.3 us 3%
AVR Sign 110.0 ms 64.9 ms 41% 70.7 ms 41.7 ms 41%
AVR Verify 18.4 ms 18.4 ms 0% 11.0 ms 11.0 ms 0%

it is independent of the signed message. The measurement is done for tree height H = 16 with
K = 2 and w = 2. Note, due to the binary tree structure computation of the root node can
be parallelized if more than one CPU core is available. This would bring down the required
computation time by roughly the factor of used cores.

We compare our results against the originally proposed signature scheme [RED+08] in Ta-
ble 10.3. Our improved algorithm in combination with the exchanged PRNG yields on average
a performance gain of 46-47 % for signature generation compared to the results of [RED+08].
The new PRNG improves the computation time on average by 8%, the algorithmic changes of
the authentication path computation yield 38-39% points.

When generating verification keys an 8% improvement can be observed. This is due to the
exchanged PRNG which uses a hardware-accelerated AES engine since our algorithmic improve-
ments do not affect key generation. Signature verification is more or less stable, regardless of
cipher/algorithm combinations and is about a factor of 5 faster than signature generation.

Microcontroller Performance

On the microcontroller we measure the average computation time that is needed to create a
valid MSS signature (including next authentication path computation) and the time it takes to
verify an MSS signature. We omit the generation of the verification key since for reasonable tree
heights it is an infeasible task for the microcontroller. Verification keys have to be computed
once on a more powerful platform when initializing the microcontroller. The code was compiled
using avr-gcc version 3.3.0. We found optimization stage -O2 to achieve the best tradeoff
between runtime and code size.

The results on the microcontroller are in accordance with the results observed on the Intel
CPU. The average signature generation time improves by 41 % when using our proposed changes.
Signature verification remains stable and is four times faster than signature generation. The
memory consumption is listed in Table 10.4. Compared to the setting of [RED+08] we need more
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Table 10.4: Required memory on the ATxmega128A1 microcontroller. In total 128 Kbytes flash
memory and 8 Kbytes SRAM are available on this device. Memory consumption is
reported in bytes and includes the verification and signature keys.

MJH-256 w/ AES-128 MJH-160 w/ AES-128
[RED+08] our [RED+08] our

H K Flash SRAM Flash SRAM Flash SRAM Flash SRAM
10 2 10,608 1,486 12,070 2,382 10,204 1,066 11,352 1,626
10 4 10,726 1,604 11,768 2,084 10,250 1,112 11,138 1,412
10 6 11,994 2,874 12,752 3,066 11,018 1,878 11,726 1,998

Table 10.5: Comparison of signing key (sk), verification key (vk), and signature size (sig) be-
tween [RED+08], our improvement, and XMSS+ [HBB13] for common (H,K,w)
parameter sets. All sizes are reported in bytes.
MJH-256 MJH-160 MJH-256 MJH-160 XMSS+

our our [RED+08] [RED+08] [HBB13]
H K w sk vk sig sk vk sig sk vk sig sk vk sig sk vk sig
16 2 2 5,335 32 2,640 3,547 20 1,680 2,423 32 2,640 1,727 20 1,680 3,760 544 3,476
16 2 4 5,335 32 1,584 3,547 20 1,008 2,423 32 1,584 1,727 20 1,008 3,200 512 1,892
20 4 2 7,049 32 2,768 4,649 20 1,760 3,209 32 2,768 2,249 20 1,760 4,303 608 3,540
20 4 4 7,049 32 1,712 4,649 20 1,088 3,209 32 1,712 2,249 20 1,088 3,744 576 1,956

flash and SRAM memory due to the additional storage for the Rightnodes array. Table 10.5
compares key and signature sizes for different MSS implementations. Note that the increased
signature sizes of [HBB13] enable on-card key generation.

10.4.4 Leakage Analysis

The AVR ATxmega processors has been analyzed with respect to power analysis in [Kiz09].
The found leakage is weak: the best attack needs more than 3000 measurements on random
known inputs for secret-key recovery. However, the applied method is not the most powerful1.

In order to get a more thorough leakage analysis of the target platform, we performed own
side-channel experiments. Since all AES computations with critical leakage are performed by
the AES co-processor of the ATxmega processor, we analyzed the leakage of that co-processor.
Instead of a correlation based DPA, we applied a (univariate) template attack [CRR03], the
de-facto standard for power leakage evaluation [SMY09]. The profiled intermediate state is
∆ = p0 ⊕ k0 ⊕ p1 ⊕ k1, where one template was created for each possible ∆. This is the same
intermediate state that was targeted in [Kiz09]. It appears to be the intermediate state with
the strongest leakage. Each recovered ∆ reveals one byte of key information. The maximum

1Targeting the key xor and using correlation attacks are not considered optimal methods of leakage extraction.
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observable leakage is that of the 2-limiting PRNG, which is, at most, executed 10 times each on
two different inputs for MSS parameters (H,K) = (20, 2). To capture the maximum leakage,
the experiment builds univariate templates from 10,000 traces and tests over two groups of 10
traces where each group shares the same input. A total of 5,000 experiments are conducted,
resulting in a Guessing Entropy [SMY09] of 85.06 or 6.41 bits for the correct ∆. This means
that the adversary still has to test more than 85 hypotheses for that byte on average. The
reduction in entropy is hence less than 0.6 bits2, resulting in well above 100 bits of remaining
key entropy when considering univariate side-channel attacks.

An alternative to plain template attacks are algebraic side-channel attacks [RSVC09] which
do not require a known input and output and would be more applicable to attack the PRNG in
this work. While being able to exploit several leakages during a single execution of AES (close
to 1000 in [RSVC09]), these methods are very sensitive to noise and need a much stronger
leakage than the one observed here. Often, an almost noise-free Hamming weight leakage is
assumed, which is more than 2.5 bits of information on a byte. This kind of information is not
provided by the observed leakage of the hardware AES of the ATxmega processor.

Another location of potential leakage is the computation of the Winternitz signature, where
the adversary actually gets access to hash outputs and some outputs of the PRNG used to gen-
erate the one-time keys. The observed leakage (10 observations for the same single input, same
setup as for the PRNG) has a guessing entropy of 99.53, i.e., less than 0.4 bits of information per
byte are revealed. Not much prior work on side-channel attacks on one-way functions has been
performed which is most likely due to the fact that the adversary gets only single observations
of the leakage.

10.5 Conclusion

We presented novel algorithmic improvements for computing the authentication path in MSS
that balance leaf computations, accelerate the overall authentication path generation, and re-
duce side-channel leakage. The proposed improvements have been implemented on two plat-
forms and were compared to previous proposed algorithms showing significant improvements.
We gave explicit formulas to quantify the number of leaf computations when using MSS and
showed that the leakage of the secret state is bounded throughout the scheme. The leakage
analysis of the ATxmega AES engine showed that no significant information can be extracted
about the secret state due to the bounded number of executions under the same key.

We stated theoretically achievable performance gains and verified them practically. The
algorithmic improvements decrease the required computation time for signature creation in
theory as well as in practice. The performance figures show that Merkle signatures are not
only practical, but also resource-friendly and fast. Furthermore, the scheme inherently bounds
side-channel leakage. As such it can be an advantageous choice for, e.g., digital signature
smartcards.

2Note that the guessing entropy for a byte with 28 equiprobable states is 128, i.e., 7 bits as guessing entropy
looks for the expected number of guesses.
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Chapter 11

Conclusion

This chapter concludes the thesis and provides a summary of the presented results.
The thesis ends with an overview of further interesting research topics for alter-
native public-key cryptography, in particular for code-based public-key encryption
and for hash-based digital signatures. Future research ideas include further explo-
ration of side-channel and fault-injection attacks, the NIST call for standardization
of quantum-resistant cryptography, and the investigation of other hash-based signa-
ture schemes, e.g., the recently proposed SPHINCS signature scheme.
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11.1 Conclusion

This thesis provided novel designs of code-based public-key encryption and hash-based digital
signatures schemes targeting resource constraint FPGAs and microcontrollers.

McEliece and Niederreiter encryption will likely be the first code-based cryptographic schemes
chosen for practical applications. Their good track record of being fundamentally unbroken de-
spite multiple cryptanalytic results over a long period of time inspires confidence in the security
of the constructions and the underlying problems. Binary Goppa codes are the conservative
choice for the code family upon which the McEliece and Niederreiter schemes are constructed.
In this work we investigated the recently proposed MDPC family of codes and their quasi-cyclic
variants in the context of code-based cryptography. We belief to have provided convincing in-
centives for further consideration of QC-MDPC codes as serious competitors to binary Goppa
codes in the McEliece and Niederreiter cryptoschemes by demonstrating the efficiency in mul-
tiple use-cases on various implementation targets. Our design explorations include low-cost
and lightweight implementations, a hybrid encryption scheme providing IND-CCA security,
and high-performance hardware accelerators. We provided and evaluated novel optimizations
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for hard-decision bit-flipping MDPC decoders and were able to accelerate decoding, decrease
the required decoding iterations, and significantly reduce decoding error probabilities. The
optimizations apply even beyond cryptographic applications.

Furthermore, we developed side-channel attacks such as timing attacks and power analysis
attacks on early FPGA and microcontroller implementations of the QC-MDPC schemes to
identify which parts of the implementations have to be hardened against information leakage.
Subsequently, hardened microcontroller implementations were proposed to provide constant-
time operations and instruction-invariant execution flows. Continuing cryptanalysis of QC-
MDPC McEliece and Niederreiter will help the scheme to further increase the confidence of the
broad cryptographic community as will be discussed in the following section on future work.

Our work on hash-based signatures presented a combination of the Merkle signature scheme
and Winternitz one-time signatures to achieve a quantum-resistant digital signature engine
with minimal assumptions and bounded information leakage. Novel algorithmic improvements
which balance leaf computations during the authentication path computation in MSS were
proposed. We accelerated the overall authentication path generation and verified the reduced
side-channel leakage. Our implementations on two target platforms were shown to significantly
improve over previously proposed algorithms, and we showed that the leakage of the secret
state is bounded throughout the scheme. The algorithmic improvements decrease the required
computation time for signature creation in theory as well as in practice. Merkle signatures offer
practical performance at low cost, and are among the most promising quantum-resistant digital
signatures schemes due to their minimal assumptions.

11.2 Future Work

Although multiple implementations of McEliece and Niederreiter have been proposed over the
last years (mostly using binary Goppa codes), hardening against power and electromagnetic
analysis and especially against fault attacks still requires further investigations to provide in-
dustry grade drop-in replacements of the prevailing public-key encryption schemes RSA and
ECC. An interesting question in the context of cryptosystems based on coding theory is their
behavior with regard to fault attacks, since errors are inherently detected and corrected when
decoding codes.

Cryptography based on QC-MDPC codes still requires more cryptanalytic results to gain fur-
ther confidence in the constructions. In addition to classical cryptanalysis, e.g., ISD-like attacks
(cf. Section 3.4), it appears necessary to analyze in more detail whether specific quantum algo-
rithms can be designed to break (features of) schemes which claim quantum-resistance, although
drastically more efficient quantum attacks appear to be unrealistic for McEliece and Nieder-
reiter. The security of the prevailing RSA, ECC, and DH-based schemes disintegrates when
applying Shor’s quantum algorithm [Sho97], which is not applicable for McEliece and Nieder-
reiter; only Grover’s generic quantum algorithm [Gro96] applies with a limited and expected
impact.

The handling of decoding errors and their probability reduction is another important research
topic for QC-MDPC McEliece and Niederreiter. Our improvements already achieved a signifi-
cantly lower error probability compared to the original bit-flipping decoder of Gallager [Gal63]
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(cf. Section 4.5). However, it would be desirable to achieve a decoding failure probability in
the range of the security parameter. The investigation of other decoder improvements, e.g., by
using soft-decision decoding or by using the recently proposed worst-case decoder for MDPC
codes of Chaulet et al. [CS16], could help achieving this goal. After submission of this thesis,
Guo et al. [GJS16] presented a reaction attack on QC-MDPC decryption which observes and
exploits decoding errors to recover the secret parity-check matrix. The attack benefits from the
rather high error probability of the original Gallager bit-flipping decoder [Gal63] and degrades
with a decreasing decoding failure rate.

A remaining open question is whether timing attacks can succeed to recover secret information
from the timing variations of MDPC decoders. We already avoid timing variations in our
implementations in Chapter 6, as we assume some form of information leakage. However, it
would be interesting to investigate such an information leakage and how it could be exploited.

For future work on hash-based signatures it will be interesting to analyze the recently pro-
posed stateless hash-based signature signature scheme SPHINCS [BHH+15] with regard to its
suitability for resource constraint devices and to investigate whether similar side-channel leakage
limitations from our work can be applied. The SPHINCS scheme provides a virtually unlimited
number of signatures and eliminates the need for secure state handling, although [MKF+16]
argue that the state handling does not pose a major thread in practice.

The NIST call for standardization of quantum-resistant public-key cryptography will likely en-
courage further proposals for building alternative public-key schemes and cryptanalysis thereof.
McEliece and Niederreiter encryption on the basis of binary Goppa codes will almost certainly
enter the competition, and a proposal of QC-MDPC McEliece and Niederreiter would be ad-
visable due to its demonstrated practicality for embedded devices compared to binary Goppa
codes. Similarly, we expect hash-based digital signatures to be among the most promising
candidates of this competition.
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“Compact Implementation and Performance Evaluation of Hash Functions in AT-
tiny Devices,” in Smart Card Research and Advanced Applications, ser. Lecture
Notes in Computer Science, S. Mangard, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, vol. 7771, pp. 158–172. [4, 148, 208]

[Ber66] E. R. Berlekamp, Nonbinary BCH decoding, ser. Institute of Statistics mimeo
series. Chapel Hill: University of North Carolina. Dept. of Statistics, 1966, vol.
no. 502. [16]

[Ber97] T. Berson, “Failure of the McEliece public-key cryptosystem under message-resend
and related-message attack,” in Advances in Cryptology — CRYPTO ’97, ser.
Lecture Notes in Computer Science, Kaliski, BurtonS., Jr, Ed. Springer Berlin
Heidelberg, 1997, vol. 1294, pp. 213–220. [33]
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ence, B. S. Kaliski, ç. K. Koç, and C. Paar, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, vol. 2523, pp. 13–28. [175]

[CS98] A. Canteaut and N. Sendrier, “Cryptanalysis of the Original McEliece Cryptosys-
tem,” in Advances in Cryptology — ASIACRYPT’98, ser. Lecture Notes in Com-
puter Science, K. Ohta and D. Pei, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, vol. 1514, pp. 187–199. [33, 34]

[CS03] R. Cramer and V. Shoup, “Design and Analysis of Practical Public-Key Encryp-
tion Schemes Secure against Adaptive Chosen Ciphertext Attack,” SIAM Journal
on Computing, vol. 33, no. 1, pp. 167–226, 2003. [119, 120, 121, 122, 124]

[CS16] J. Chaulet and N. Sendrier, “Worst case QC-MDPC decoder for McEliece cryp-
tosystem,” in IEEE International Symposium on Information Theory (ISIT),
IEEE, Ed. IEEE, 2016, pp. 1366–1370. [181]

[Dam90] I. B. Damg̊ard, “A Design Principle for Hash Functions,” in Advances in Cryp-
tology — CRYPTO’ 89 Proceedings, ser. Lecture Notes in Computer Science,
G. Brassard, Ed. New York, NY: Springer New York, 1990, vol. 435, pp. 416–
427. [137, 138]

[DB14] N. S. Dattani and N. Bryans, “Quantum factorization of 56153 with only 4 qubits,”
CoRR, vol. abs/1411.6758, 2014. [2]

[DH76] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644–654, 1976. [22]

[DJJ+06] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan, and Z. Huang,
“FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian
Integers,” in Cryptographic Hardware and Embedded Systems - CHES 2006, ser.
Lecture Notes in Computer Science, L. Goubin and M. Matsui, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, vol. 4249, pp. 445–459. [58, 59]

187

https://eprint.iacr.org/2004/013
https://eprint.iacr.org/2004/013
http://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf


Bibliography

[DSS05] C. Dods, N. P. Smart, and M. Stam, “Hash Based Digital Signature Schemes,” in
Cryptography and Coding, ser. Lecture Notes in Computer Science, N. P. Smart,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, vol. 3796, pp. 96–115.
[158, 162, 164]

[eBA15a] eBACS, “eBACS: ECRYPT Benchmarking of Cryptographic Systems,” 2015,
http://bench.cr.yp.to/results-encrypt.html. [106, 108, 146]

[eBA15b] eBASH, “eBASH: ECRYPT Benchmarking of All Submitted Hashes,” 2015, http:
//bench.cr.yp.to/ebash.html. [137]
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[GP08] T. Güneysu and C. Paar, “Ultra High Performance ECC over NIST Primes on
Commercial FPGAs,” in Cryptographic Hardware and Embedded Systems – CHES
2008, ser. Lecture Notes in Computer Science, E. Oswald and P. Rohatgi, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 5154, pp. 62–78. [58,
59]

[GPT91] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a Non-
Commutative Ring and their Application in Cryptology,” in Advances in Cryptol-
ogy — EUROCRYPT ’91, ser. Lecture Notes in Computer Science, D. W. Davies,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, vol. 547, pp. 482–489.
[34]

[Gro96] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting, G. L. Miller, Ed. New York, NY: ACM Pr, 1996, pp. 212–219. [180]

[HB10] M. N. Hassan and M. Benaissa, “A scalable hardware/software co-design for ellip-
tic curve cryptography on PicoBlaze microcontroller,” in 2010 IEEE International
Symposium on Circuits and Systems - ISCAS 2010, 2010, pp. 2111–2114. [67]

[HBB13] A. Hülsing, C. Busold, and J. Buchmann, “Forward Secure Signatures on Smart
Cards,” in Selected Areas in Cryptography, ser. Lecture Notes in Computer Sci-
ence, L. R. Knudsen and H. Wu, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, vol. 7707, pp. 66–80. [154, 164, 175, 209]

[Hei87] R. Heiman, “On the security of cryptosystems based on linear error-correcting
codes: M.Sc. Thesis, Feinberg Graduate School, Weitzman Institute of Science,
Rehovot,” 1987. [33]

[Hel74] H. J. Helgert, “Alternant codes,” Information and Control, vol. 26, no. 4, pp.
369–380, 1974. [16]

[Hel15a] Helion Technology, “RSA and Modular Exponentiation cores,” 2015, http://www.
heliontech.com/modexp.htm. [67]

[Hel15b] Helion Technology, “SHA-1, SHA-2 & MD5 Fast Hashing Cores for FPGA (Xilinx,
Altera, Microsemi, Lattice) and ASIC,” 2015, http://www.heliontech.com/fast
hash.htm. [150]

[Hey11] S. Heyse, “Implementation of McEliece Based on Quasi-dyadic Goppa Codes for
Embedded Devices,” in Post-Quantum Cryptography, ser. Lecture Notes in Com-
puter Science, B.-Y. Yang, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, vol. 7071, pp. 143–162. [103, 107, 131, 132]

190

http://www.heliontech.com/modexp.htm
http://www.heliontech.com/modexp.htm
http://www.heliontech.com/fast_hash.htm
http://www.heliontech.com/fast_hash.htm


Bibliography

[Hey13] S. Heyse, “Post Quantum Cryptography: Implementing Alternative Pub-
lic Key Schemes on Embedded Devices: Preparing for the Rise of Quan-
tum Computers,” 2013, http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/
Diss/HeyseStefan/diss.pdf. [25]
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