
Software and Hardware
Implementation of Hyperelliptic Curve

Cryptosystems

Dissertation

Submitted to the Fakultät für

Elektrotechnik und Informationstechnik

at the

Ruhr-Universität Bochum

for the

Degree of Doktor-Ingenieur

by

Thomas Wollinger

Bochum, Germany, May 2004

Thesis Advisor: Prof. Dr.-Ing. Christof Paar
Thesis Reader: Prof. Dr. Dr. h.c. Gerhard Frey

To my family, my son Marian, daughter Tabea, and wife Anja, for their
endless love.

To my mother and father (especially on the occasion of his 60th
birthday), to my sisters and brothers who always have supported me.

Abstract

The hyperelliptic curve cryptosystem is one of the emerging cryptographic primitives

of the last years. This system offers the same security as established public-key cryp-

tosystems, such as those based on RSA or elliptic curves, with much shorter operand

length. Consequently, this system allows highly efficient computation of the underly-

ing field arithmetic. However, until recently the common belief in industry and in the

research community was that hyperelliptic curves are out of scope for any practical ap-

plication. The reason being the complex group operation leading to a worse overall

performance compared to established public-key primitives.

The thesis at hand is a step towards the practical use of hyperelliptic curve cryp-

tosystems (HECC) by narrowing the performance gap between elliptic curve (EC) and

hyperelliptic curve cryptosystems. We were able to reduce the complexity of the group

operation for small genus hyperelliptic curves and we provide efficient algorithms for

the computation of the hyperelliptic curve cryptosystem. Our theoretical comparison

between elliptic curve and hyperelliptic curve cryptosystems, as well as our software

and hardware implementations show that the performance of both cryptographic prim-

itives are in the same range. Surprisingly, the hyperelliptic curve cryptosystems even

outperforms elliptic curves using certain curve parameters. The implementations we

investigated range from a general purpose processor to a variety of different embed-

ded processors, and also includes the prototype implementation of a hyperelliptic curve

coprocessor on FPGAs.

We were able to lower the complexity of the hyperelliptic curve group operations

compared to the best known formulae. The highest performance on an embedded system

was achieved on the ARM7TDMI running at 80MHz. The scalar multiplication (for a

group order of approximately 2160) for ECC, genus-2 HECC, and genus-3 HECC could

be computed in about 100 milliseconds. More detailed analysis show that on embedded

iii

processors one can improve the performance by almost a factor of 8 when combining

instruction and data cache. Additional speed up of almost 50% can be gained when

using a fixed underlying field and curve.

In addition, we developed a new metric to compare different cryptographic primitives

based on the atomic operations of a processor, contrary to traditional methods using the

bit complexity or specific timings. Hence, we provide a fair(er) and practical comparison

metric not depending on special optimization tricks or theory.

We also analyzed the parallelism of the scalar multiplication on three different levels

to find the optimal architecture for a hyperelliptic curve cryptosystem. We wrote a

software tool for the simulation of the different architecture options. Our main finding

is that architectures based on the inversion-free formulae should be preferred compared

to those using group operations containing inversions. This kind of architecture performs

the scalar multiplication (for a group order of approximately 2160) in only 19, 769 clock

cycles using three field multipliers (of type D = 32), one field adder and one field squarer.

Furthermore, we implemented various designs of HECC coprocessors on FPGAs. Our

HECC coprocessor optimized for speed is considerably faster than the best previous

implementations and the implementation designed for reduced silicon usage utilizes less

area than the smallest design published.

iv

Kurzdarstellung der Dissertation

Verschlüsselung basierend auf hyperelliptischen Kurven (HEC) ist ein asymmetrisches

kryptographisches Verfahren das in den letzten Jahren zunehmend auf Interesse gestoßen

ist. Diese Verschlüsselungstechnik gewährleistet dieselbe Sicherheit wie etablierte Ver-

fahren (beispielsweise RSA oder elliptische Kurven), allerdings benötigen HEC kürzere

Operandenlängen. Diese Eigenschaft führt zu einer effizienten Berechung der zugrunde

liegenden Körperoperationen. Allerdings wurde bis vor kurzem vielfach angenommen,

dass die Verschlüsselung basierend auf hyperellipischen Kurven wegen der komplexen

Gruppenoperationen nicht für praktische Anwendungen geeignet ist.

In dieser Dissertation werden verschiedene Techniken vorgestellt, die HEC wesentlich

praktikabler machen. Dies wurde durch die Reduzierung der Komplexität der Grup-

penoperation für Kurven mit kleinem Geschlecht erreicht. Es werden effektive Algo-

rithmen für ihre Berechnung vorgestellt. Die vorgestellten theoretischen Betrachtungen

sowie die Software- und Hardware-Implementierungen zeigen, dass der Durchsatz von

Verschlüsselungsverfahren basierend auf elliptischen und hyperelliptischen Kurven im

selben Bereich liegt. Erstaunlicherweise übertreffen hyperelliptische Kurven unter be-

stimmten Voraussetzungen sogar die Verschlüsselungsgeschwindigkeit von elliptischen

Kurven. Die Implementierungen, die in dieser Arbeit untersucht werden, reichen von

Pentium Prozessoren über verschiedene eingebettete Prozessoren bis zu einer proto-

typischen Implementierung auf FPGAs.

Die in dieser Arbeit erzielten Resultate verringern die Komplexität der Gruppen-

operation im Vergleich zu den besten Formeln, die bis dato publiziert wurden. Der

beste Durchsatz auf den eingebetteten Prozessoren wurde auf dem ARM7TDMI mit

einer Taktrate von 80MHz erzielt. Die Skalarmultiplikation (für eine Gruppenordnung

von ungefähr 2160) basierend auf hyperelliptischen Kurven konnte in unter 100ms für

Kurven mit Geschlecht zwei und drei berechnet werden. Die genauere Analyse der Im-

v

plementierung auf eingebetteten Prozessoren zeigt, dass man den Durchsatz durch den

Einsatz von Instruction Cache and Data Cache um einen Faktor von acht erhöhen kann.

Ein zusätzlicher Geschwindigkeitsgewinn von bis zu 50% kann erreicht werden, wenn die

Körper- und Kurvenparameter festgelegt sind.

Außerdem wurde eine neue Metrik entwickelt, welche verschiedene kryptographische

Primitive basierend auf atomaren Operationen eines Prozessors vergleicht. Diese ist

im Unterschied zu traditionellen Methoden, welche die Bit-Komplexität oder spezifis-

che Zeitmessungen verwenden. Infolgedessen wird eine faire(re) und praktische Ver-

gleichsmetrik zur Verfügung gestellt, die unabhängig von speziellen Optimierungen oder

Theorien die Effizienz kryptographischer Algorithmen bewertet.

Des Weiteren werden in dieser Dissertation die Parallelität der Skalarmultiplikation

analysiert, um die optimale Architektur für einen Coprozessor basierend auf hyper-

elliptischen Kurven zu finden. Das hierfür entwickelte Softwarepaket simuliert ver-

schiedenste Architekturoptionen. Eines der Hauptergebnisse dieser Analyse ist, dass Ar-

chitekturen basierend auf projektiven Koordinaten Vorteile gegenüber solchen basierend

auf affinen Koordinaten aufweisen. Diese Art von Architekturen, die aus drei Körper-

multiplizierern (D = 32), einem Körperaddierer und einem Körperquadrierer besteht,

führt eine Skalarmultiplikation in 19.769 Taktzyklen aus.

Die Vorstellung verschiedener Designs von Coprozessor-Architekturen basierend auf

hyperelliptischen Kurven auf FPGAs schließt die Arbeit ab. Der auf Geschwindigkeit

optimierter Coprozessor ist um ein Vielfaches schneller als die beste veröffentlichte Im-

plementierung. Die Implementierung die minimale Fläche zum Ziel hat, ist kleiner als

die beste publizierte Architektur.

Preface

The results presented in this dissertation were accomplished in the three years I worked

as researcher at the University of Bochum. I hope that the results presented are a step

towards practical acceptance of hyperelliptic curve cryptosystems. I hope this work is of

use in both university and industry settings in which applications of hyperelliptic curve

cryptosystems are being studied.

The work I present in this dissertation would not have been possible without the help

of many people that supported me throughout the last three years. First, and foremost

many thanks go out to my advisor Prof. Christof Paar. His advice and expertise resolved

many hurdles that I encountered throughout the research. I would also like to thank

Prof. Christof Paar for the friendship and camaraderie that we developed while working

together. I am grateful to my thesis committee, especially to Prof. Gerhard Frey for the

valuable suggestions, comments and advise that they gave me.

I would like to thank my colleagues who by now have become good friends. Jan Pelzl

with whom I developed the fast group operation and who wrote most of the software used

in this thesis. Thanks also for all the nights we spend together writing yet another paper

together (I will miss them!). The work related to find the optimal architecture for HECC

would not have been possible without the help of Guido Bertoni (STMicroelectronics

Milano) and Prof. Luca Breveglieri (Politecnico di Milano). Very special thanks to

HoWon Kim, who spent almost a year in our group and did all the FPGA implementation

Preface vii

of the hyperelliptic curve cryptosystem.

Thanks to Jorge Guajardo who was (and is) the living cryptographic “reference book”

for the group and who had an answer to all questions. I thank André Weimerskirch,

Sandeep Kumar, and Kai Schramm for all the fruitful discussions and exchanging ideas.

Thanks to our computer administrators, Marcel Selhorst and Christian Röpke, for being

so patient with me. Thanks to all the students I supervised. Thanks for your contribu-

tion to this thesis and “helping” me to enlarge my leadership skills. And all the other

guys in the COSY group, who from the fist day on were always in a good mood, provided

a COSY atmosphere to work and were always willing to help. Not to forget our team

assistant Irmgard Kühn who contributed quite a bit to the group atmosphere and was

always a help when struggling with the university administration.

There are also several other people I would like to thank for contribution to my work.

Thanks to Tanja Lange and Roberto Avanzi who patiently answered my endless number

of questions about the theory of hyperelliptic curves and who proof red part of the

thesis. Volker Wittelsberger who helped getting the tools for the embedded processors

running. The ECC implementation was done jointly with Gökay Saldamli (Oregon State

University) and Prof. Çetin K. Koç (Oregon State University). I wish to thank Jonathan

Hammell and Daniel Klodt for correcting my English, a task which certainly belonged

to the less enjoyable ones needed for the completion of this thesis.

Last but not least, I would like to thank my family, my parents, my sisters and

brothers, and my friends for being patient with me and for their support. Special

thanks go out to my wife Anja for her unconditional help and understanding during the

past three years and especially during these last months writing the thesis. Thanks also

to my children, Marian and Tabea, who were a great joy and motivation for me.

To all of you thank you very much!

Thomas

Contents

Preface vi

1 Introduction 1

1.1 Motivation . 1

1.2 Summary of Research Contribution . 4

1.2.1 Improvement of the Group Operation 4

1.2.2 New Complexity Metric for HECC and ECC 6

1.2.3 Software Implementation of HECC 7

1.2.4 Optimized Parallel Architectures for HECC 8

1.2.5 High Speed HECC Coprocessor on FPGA 9

1.3 Outline . 10

2 Mathematical Background 12

2.1 Basic Definitions and Properties . 12

2.2 Polynomials and Rational Functions . 15

2.3 Zeros and Poles . 17

2.4 Divisors . 19

2.5 Principal Divisors . 22

2.6 The Jacobian J . 22

2.7 Reduced Divisors . 24

2.8 Representation of Divisors . 25

2.9 Cantor’s Group Operations on the Jacobian 28

2.10 Harley’s Group Operations on a Jacobian 30

2.10.1 The Frequent Case of Doubling 31

2.10.2 The Frequent Case of Adding . 33

2.11 Hyperelliptic Cryptosystems and Security 35

3 Previous Work 39

3.1 Previous Improvements of Cantor’s Algorithm 39

3.2 Previous Improvements of Harley’s Algorithm 40

3.3 Previous Software Implementations of HECC 43

3.4 Previous Hardware Implementations of HECC 45

Contents ix

4 Improving the Explicit Formulae 47
4.1 Methods to Improve the Explicit Formulae 47

4.1.1 Montgomery’s Trick of Simultaneous Inversions 48
4.1.2 Reordering of the Normalization Step 49
4.1.3 Karatsuba Multiplication . 50
4.1.4 Karatsuba Reduction . 50
4.1.5 Efficient Division . 51
4.1.6 Calculation of the Resultant Using Bezout’s Matrix 51

4.2 Karatsuba Reduction . 52
4.2.1 Reduction with Degree Difference One 52
4.2.2 Reduction with Arbitrary Degree Difference 56
4.2.3 Optimal Reduction Polynomials 59

4.3 Improving the Group Operation . 60
4.3.1 Optimization of Cantor’s Group Operation 61
4.3.2 Optimization of Harley’s Group Operation 62
4.3.3 Optimization of Inversion-Free Explicit Formulae 64

4.4 Summary: HECC Group Operation . 65

5 A New Complexity Metric for HECC and ECC 71
5.1 Previous Theoretical Comparisons . 71
5.2 Our Metric . 73
5.3 Comparing ECC and HECC . 74

6 Software Implementation of Hyperelliptic Curve Cryptosystem 78
6.1 Methodology for the Software Implementation 78

6.1.1 Processors Used for the Software Implementation 79
6.1.2 Finite Field Arithmetic . 81
6.1.3 Group Arithmetic . 83

6.2 Hyperelliptic Curve Cryptosystem on General Purpose Processors 84
6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 87

6.3.1 Implementation Results on Different Embedded Platforms 88
6.3.2 Standard versus Special Implementation 89
6.3.3 Influence of Cache . 92
6.3.4 Comparing the Performance of the Different Cryptosystems . . . 94
6.3.5 Theoretical Metric Applied to the ARM Implementation 95
6.3.6 Low Cost Security . 99

6.4 Summary of the Software Implementation 101

7 Finding an Optimized Parallel Architectures for HECC 103
7.1 Methodology . 105
7.2 Analysis of Parallel Architectures Using Affine Coordinates 110

7.2.1 Parallelism on the Scalar Multiplication Level 110
7.2.2 Performances of the Group Operations and Scalar Multiplication . 112
7.2.3 Area-Time Product . 114

Contents x

7.3 Analysis of Parallel Architectures Using Projective Coordinates 115
7.3.1 Parallelism on the Scalar Multiplication Level 115
7.3.2 Performances of the Group Operations and Scalar Multiplication . 117
7.3.3 Area-Time Product . 120

7.4 Optimum Architecture . 121
7.5 Summary and Outlook . 124

8 A High Speed HECC Coprocessor on FPGAs 127
8.1 HECC Coprocessor on FPGA . 129

8.1.1 Field Operation Units . 129
8.1.2 Arithmetic Unit . 132
8.1.3 Interconnection Network . 133

8.2 Design Methodology for the HECC Coprocessor on FPGA 133
8.2.1 Parallel Architecture for the Group Operations 134
8.2.2 Minimizing the Number of Registers 135
8.2.3 Reduction of the Complexity of the Interconnection Network . . . 135
8.2.4 Various Design Options for the HECC Coprocessor 135

8.3 Results of HECC Coprocessor on FPGA 138
8.4 Summary and Analysis of our FPGA Implementation 139

9 Discussion 142
9.1 Conclusions . 142
9.2 Further Research . 144

A Explicit Formulae for the Group Operations over GF(p) 147

List of Tables

2.1 Comparison of the complexity of different attacks on HECC. 37

3.1 Execution times of recent HEC implementations in software. 44

3.2 Previous results of the HEC implementations on FPGA. 46

4.1 Cost of standard polynomial reduction versus Karatsuba reduction. . . . 55

4.2 Group operations using Cantors Algorithm. 67

4.3 Group operations using Harley’s Algorithm. 68

4.4 Inversion-free group operations for genus-2 HEC. 69

4.5 Most efficient group operations for HECC. 70

5.1 Field operations required for ECC in each coordinate system [HHM00]. . 75

5.2 Total number of atomic operations for ECC and HECC (underlying field
F2ni , processor word w, MI-ratios j, l,m, r). 76

6.1 Hardware platforms used. 81

6.2 Timings for ECC and HECC on the Pentium4 @1.8GHz. 85

6.3 Timings of the scalar multiplication of ECC and HECC on different em-
bedded platforms (in ms). 89

6.4 Influence of special and standard field reduction (all timings in µs, plat-
form: ARM @50MHz). 90

6.5 Influence of different reduction routines on HECC scalar multiplication
(all timings in ms, platform: ARM @50MHz). 92

6.6 Influence of different cache options on ECC and HECC performance (all
timings in ms, platform: PowerPC @50MHz, see Table 6.7 for ratios). . . 93

6.7 Ratios of the ECC and HECC scalar multiplication using different cache
settings (platform: PowerPC @50MHz, see Table 6.6 for the timings). . . 94

6.8 Timings for ECC and HECC on the ARMulator ARM7TDMI @80MHz. . 97

6.9 Timings of the field library and corresponding MI-ratios (in µsec, ARM
@80MHz). 98

6.10 Derivation of our implementation and the theoretical matrix (security
level ≈ 2160). 99

6.11 Timings of the field library and corresponding MI-ratios (in µsec, ARM
@80MHz). 99

List of Tables xii

6.12 Derivation of our implementation and the theoretical matrix (security
level ≈ 2180). 99

6.13 Timings on the ARM7TDMI@80MHz and Pentium4 @1.8GHz for group
order ≈ 2128 (explicit formulae). 101

7.1 Area and time complexity of the arithmetic operations (underlying field
F2m , irreducible polynomial F (x) = xm +

∑t
i=0 fix

i, where m− t ≥ D). . 107

7.2 Overlapping of doubling after addition(in clock cycles, affine coordinates). 111

7.3 Overlapping of doubling after doubling (in clock cycles, affine coordinates).111

7.4 Overlapping of addition after doubling (in clock cycles, affine coordinates).111

7.5 Latency of group addition (in clock cycles, affine coordinates). 112

7.6 Latency of group doubling after doubling / after addition (in clock cycles,
affine coordinates). 113

7.7 Latency of the scalar multiplication (in clock cycles, group order ≈ 2160,
affine coordinates). 113

7.8 Normalized area-time product (group order ≈ 2160, affine coordinates). . 115

7.9 Overlapping of doubling after doubling (in clock cycles, projective coor-
dinates). 116

7.10 Overlapping of addition after doubling (in clock cycles, projective coor-
dinates). 116

7.11 Overlapping of doubling after addition (in clock cycles, projective coor-
dinates). 117

7.12 Latency of group addition and doubling (in clock cycles, projective coor-
dinates). 118

7.13 Latency of the scalar multiplication (in clock cycles, group order ≈ 2160,
projective coordinates). 118

7.14 Normalized area-time product for scalar multiplication (in clock cycles,
group order ≈ 2160, projective coordinates). 120

8.1 Performance of field multiplication and field inversion logic (FPGA Xilinx
Virtex II XC2V4000 ff1517-6, F281). 131

8.2 Architectural characteristics of the different HECC coprocessor types. . . 138

8.3 Performance of the scalar multiplication on the HECC coprocessors (Xil-
inx FPGA XC2VP20 ff1152-7, group order 2162). 139

8.4 Comparison of the ECC and HECC scalar multiplication implementations
on FPGAs (target device is Xilinx FPGA XC2V4000, except in [OP00]). 140

A.1 Explicit formulae for adding on a HEC of genus two (Harley) [Lan02a]. . 147

A.2 Explicit formulae for doubling on a HEC of genus two (Harley) [Lan02a]. 148

A.3 Optimized explicit formulae for doubling a divisor on special curves of
genus two over F2n with h(x) = x. 149

A.4 Explicit formulae for adding on a HEC of genus two (Cantor). 150

A.5 Explicit formulae for doubling on a HEC of genus two (Cantor). 152

A.6 Explicit formulae for adding on a HEC of genus three (Harley). 153

List of Tables xiii

A.7 Explicit formulae for doubling on a HEC of genus three (Harley). 155
A.8 Explicit formulae for adding on a HEC of genus three (Cantor). 157
A.9 Explicit formulae for doubling on a HEC of genus three (Cantor). 160
A.10 Explicit formulae for doubling on special curves of genus three over F2n

with h(x) = 1 (Cantor). 163
A.11 Explicit formulae for adding on a HEC of genus four (Harley). 164
A.12 Explicit formulae for doubling on a HEC of genus four (Harley). 166
A.13 Explicit formulae for adding on a HEC of genus four (Cantor). 169
A.14 Explicit formulae for doubling on a HEC of genus four (Cantor). 173
A.15 Optimized inversionfree explicit formulae for adding a divisor on a HEC

of genus two over F2n . 178
A.16 Optimized inversionfree explicit formulae for doubling a divisor on a HEC

of genus two over F2n . 179
A.17 Optimized inversionfree explicit formulae for mixed adding a divisor on a

HEC of genus two over F2n . 179
A.18 Optimized affine inversionfree explicit formulae for doubling a divisor on

a HEC of genus two over F2n . 180

List of Figures

2.1 Hyperelliptic curve C. 14
2.2 Multiplicity of zero [Gau00a]. 20
2.3 Example of a principal divisor [Gau00a]. 23
2.4 Example of rational functions defined over a curve C [Gau00a]. 23
2.5 Geometrical visualization of the addition on genus 2 HEC. 30
2.6 Main flow of Harley’s doubling algorithm. 31

5.1 Cost of a scalar multiplication for different MI-ratios and cryptosystems
in AOPS (32-bit µP, group order ≈ 2163). 77

6.1 Comparison of the scalar multiplication implementation on the Pentium4
@1.8GHz (security ≈ 2163). 86

6.2 Comparison of the scalar multiplication implementation on the Pentium4
@1.8GHz (security ≈ 2180). 87

6.3 Implementation of ECC and HECC scalar multiplication on different em-
bedded platforms (group order ≈ 2160). 88

6.4 Comparison of standard versus special implementation of the field arith-
metic (platform: ARM@50MHz). 91

6.5 Comparison of the scalar multiplication implementation on the ARMula-
tor ARM7TDMI @80MHz (security ≈ 2163). 96

6.6 Comparison of the scalar multiplication implementation on the ARMula-
tor ARM7TDMI @80MHz (security ≈ 2180). 96

7.1 Architecture of the HECC coprocessor. 105
7.2 Latency of the scalar multiplication using projective coordinates (group

order ≈ 2160). 119
7.3 Latency comparison of the scalar multiplication between the architectures

based on affine and projective coordinates (group order ≈ 2160). 121
7.4 Comparison of the best five area-time product figures using affine and

projective coordinates (group order ≈ 2160). 122
7.5 Comparison of the best five area-time products using affine and projective

coordinates (projective numbers includes the conversion of coordinates,
group order ≈ 2160). 125

8.1 Architecture of the HECC coprocessor on FPGAs. 129

List of Figures xv

8.2 Arithmetic Unit of the HECC coprocessor on FPGA. 133
8.3 Various design options for the HECC coprocessor. 136

1 Introduction

1.1 Motivation

Historians divide the history of humanity in the year before and after Christ, B.C. versus

A.D. If one would try to provide a similar division for the history of cryptography, one

would probably choose the year 1976 to be the cryptographical year zero. Before 1976,

(at least outside of the intelligence community) one did not have an elegant way for

distributing keys over an insecure communication channel. The turning point in the

cryptographic sense was the contribution of Whitfield Diffie and Martin Hellman [DH76]

who introduced the concept of public-key cryptography.

Public-key cryptography can be used to provide the following services: a) key dis-

tribution and key establishment; b) digital signatures; and c) encryption. In modern

applications, public-key primitives are used to provide all three services, in particular

the services a) and b). For the encryption and authentication of large data streams one

uses symmetric key algorithms because public-key algorithms are relatively inefficient.

Hence, all protocols, such as IPSec [KA98], SSL [FKK96], and TLS [DA99], use both

public and private cryptography and are therefore called hybrid protocols. Digital sig-

natures have been a driving force behind the usage of public-key algorithms in the last

decade. They provide integrity, sender authentication as well as non-repudiation. Thus,

the sender of a message can not deny the creation of a message which can be crucial,

1.1 Motivation 2

e.g., for online shopping.

Since 1976, three different variants of public-key cryptosystems of practical relevance

have emerged, namely cryptosystems based on the difficulty of integer factorization (e.g.,

RSA [RSA78]), solving the discrete logarithm (DL) problem in finite fields (e.g., Diffie-

Hellman key exchange [DH76] or Digital Signature Algorithm), and the DL problem

in the group of algebraic curves over a finite field. Elliptic curve [Mil86, Kob87] and

hyperelliptic curve cryptosystems (HECC) [Kob88] are the most well-known types of

the last kind. HECC are a generalization of elliptic curve cryptosystems (ECC) and

were suggested for cryptographic applications in 1988 by Koblitz.

Since their introduction, elliptic curve cryptosystems have been extensively studied

not only by the research community but also in industry. In particular, there are several

standards involving EC, such as the IEEE P1363 [P1399] standardization effort and the

bank industry standards [ANS99]. The situation in the case of HECC is quite different.

Until recently it was often believed that HECC are out of scope for practical application.

Koblitz’s idea to use HEC for cryptographic applications has only lately been analyzed

and implemented both in software and in more hardware-oriented platforms such as field

programmable gate arrays (FPGAs). However, there are still many open engineering

problems regarding HECC and we will focus on some of them in this work.

The above mentioned asymmetric primitives can be used in a variety of different

applications. It is obvious that the conditions for a practical implementation is very

much application driven. Imagine a scenario where a number of PDAs communicate

with a server. On the server side high data throughput is a necessity, because the server

has to encrypt the data traffic of all personal devices. Area and power consumption is

not critical on the server. However, moderate speed is acceptable on the PDAs, but the

battery life and size of the device demand small area and low power. In short, both

systems have very different requirements for the implementation of the cryptographic

1.1 Motivation 3

primitives.

Additionally, one notices that more and more IT applications are embedded systems.

In fact, 98% of all microprocessors sold today are embedded in household appliances,

vehicles, and machines on factory floors [EGH00,BW00], whereas only 2% are used in

PCs and workstations. We also should keep in mind that the number of microprocessors

in most of our modern kitchens is higher than in our offices. Shortcomings of the em-

bedded processors are that they possess CPUs with very low clock rates and a relatively

small amount of memory. Hence, embedded processors often have 100 – 1000 times lower

computational power than conventional PCs. In addition to many other challenges, the

integration of security and privacy in the existing and new embedded applications will

be a major one.

In this work we are going to study the usability of HECC on general purpose processors

and embedded software and hardware platforms. Throughout our work we will present

different implementation techniques targeting different platforms. We show that HECC

is one of the cryptosystems that should be considered for use in embedded environ-

ments because of their short operand length. Considering the implementation aspects

of the public-key algorithms, one notices that a major difference is the bit-length of

the operands. It is widely accepted that for commercial applications one needs at least

1024-bit operands for RSA or the DL problem in finite fields. In the case of ECC or

HECC applications, a group order of size approximately 2160 is believed to be sufficient

for moderate security. Hence, one needs to work with at least 160 bit long numbers

in the case of ECC. For HECC of genus two we will need a field Fq with 80-bit long

operands, for the same level of security genus-3 HEC can even be realized securely with

approximately 55-bit operands.

Most general purpose processors and also most embedded processors are designed to

execute instructions in essence sequentially. As a consequence, one can only in limits use

1.2 Summary of Research Contribution 4

the parallelism inherent in some cryptographic algorithms. However, hardware imple-

mentations allow for parallelism which can result in significant performance increases.

Towards the end of this thesis we analyze the parallelism in HECC and present our

prototype implementation of a HECC coprocessor on FPGA.

Some implementations introduced in this thesis are based on HEC over fields GF(2m),

where m is a composite integer. HEC over such fields have potential cryptographic

weaknesses based on the Weil descent attack [Fre98,GHS02]. However, all introduced

implementation techniques do not use the composite field structure to improve the per-

formance, unlike [WBV+96, GP97]. This implies in particular that all software and

hardware techniques introduced here are also applicable to HEC over fields with a prime

extension.

1.2 Summary of Research Contribution

In this thesis, we mainly consider the engineering aspects of the cryptographic primi-

tive HEC. We introduce four main contributions which we hope will improve the overall

acceptance of HECC as one of the public-key primitives for future applications: 1)

improvement of the group operation; 2) implementation of HECC on general and em-

bedded processors; 3) finding optimal parallel architecture for HECC; 4) implementation

of a HECC coprocessor on hardware-oriented platform, namely a FPGA. We also de-

veloped a metric for comparing the software performance of cryptographic primitives.

Furthermore, we generalized Karatsuba’s method for polynomial reduction to lower the

computational complexity.

1.2.1 Improvement of the Group Operation

Part of this work was published in [PWGP03,PWP03,PWP04b,PWP04a].

1.2 Summary of Research Contribution 5

The first algorithm to compute the group operation of HEC was presented by Can-

tor [Can87]. Cantor’s approach works on elements given in Mumford’s representa-

tion [Mum84]. We present an explicit description of the original Cantor algorithm.

We were able to speed up the group addition and the group doubling using Cantor’s

idea for genus-2, 3, and 4 HEC compared to the best known work presented in [Nag00].

We could lower the complexity of the group addition and doubling formulae by up to

26% and 78%, respectively, compared to [Nag00]. We reached similar performance for

the doubling operation for certain curves compared to Harley’s algorithm.

In [GH00], the authors presented a modified version of the original Cantor algorithm.

The idea of [GH00] was the basis for further optimization of HECC. The work at hand

presents an improvement for the doubling operation in the case of genus-2 HEC. We

show also for the first time generalized explicit formulae for genus-3 curves including

fields of characteristic 2 and, in addition, we were able to decrease the complexity of

these formulae. Furthermore, we present (for the first time) explicit formulae for genus-4

curves based on Harley’s algorithm. Genus-4 HECC did not draw a lot of attention in

the past because they seem to be far less efficient than genus-2 HECC, genus-3 HECC,

and ECC. Our contribution saves 134 and 175 multiplications/squarings for the group

addition and doubling, respectively, compared to previous work considering genus-4

curves by Nagao [Nag00]. However, genus-4 curves might have cryptographic weakness

which may render them unsuitable for practical systems.

One of the techniques used to speed up the group operation was introduced by Karat-

suba [KO63]. His algorithm efficiently computes the multiplication of two polynomials.

Karatsuba multiplication can also be used to increase the performance in the reduc-

tion of two polynomials. We generalized Karatsuba’s method in order to decrease the

complexity of the polynomial reduction. We were able to obtain a similar cost reduc-

tion compared to Karatsuba multiplication, namely to save one multiplication for the

1.2 Summary of Research Contribution 6

additional cost of three additions.

At this point we want to stress that the presented HECC group operations are most

probably not the optimal formulae. Hence, our work should be considered an upper

bound for the computational effort needed for HECC encryption rather than the best

possible one. However, our results appear to be the best published ones to date. We en-

courage the research community to further reduce the complexity of the group operation

of HECC.

1.2.2 New Complexity Metric for HECC and ECC

Part of this work was presented in [PWGP03].

A fair comparison between ECC and HECC was difficult to achieve due the different

field sizes, types of operations, and the non-deterministic nature of the HEC operations,

in particular, the computation of polynomial GCDs (Greatest Common Divisors) when

using Cantor’s algorithm. In addition, a lot of the published ECC results contain many

platform specific optimizations which vary greatly between different implementations.

We introduce a new metric for ECC and HECC over characteristic two fields which is

based on an atomic operation count rather than on the (theoretical) bit complexity or

specific timings.

The most interesting results are: (a) ECC, genus-2, and genus-3 HECC are in the same

performance range (b) under certain conditions genus-2 and/or genus-3 hyperelliptic

curves are faster than ECC at the same level of security. This result, however, implies

to use very specific curves for HECC. Our new metric is validated by comparing our

theoretical and practical results.

1.2 Summary of Research Contribution 7

1.2.3 Software Implementation of HECC

Part of this work was published in [PWGP03,PWP03,WPW+04,PWP04b,PWP04a].

We implemented all group operations introduced in this contribution on an Intel

Pentium Processor and on embedded microprocessors. One of the reasons to do so

was to prove the correctness of our newly derived group formulae. Furthermore, we

could show that HECC can reach the performance of ECC and, in some cases, even

outperforms ECC.

We provide a thorough comparison of ECC and HECC, taking the latest advances in

HECC group operations into account. We were able to achieve a competitive throughput

for the cryptosystems implemented on a wide range of embedded platforms, namely

ARM, ColdFire, and PowerPC. The best timings for the scalar multiplication with a

group order of approximately 2163 for certain HEC cryptosystems could be achieved on

ARM7TDMI running at 80MHz, resulting in 87 and 94 milliseconds for genus 2 and 3,

respectively. The scalar multiplication for ECC could be performed on the same platform

in 108 ms. Hence, HECC reaches the same throughput as ECC, and furthermore, in

some cases HECC outperformed ECC. This fact holds for our implementations on the

embedded as well as on the general processors. However, we want to point out, that the

HECC implementations were based on curves using special parameters.

Furthermore, we show that for the two algorithm types implemented, the instruction

cache on the PowerPC had a fundamental influence regarding the speed of one scalar

multiplication. The time needed to perform one scalar multiplication can be decreased

by more than a factor of three when using the instruction cache, and by almost a factor

of eight when using instruction as well as data cache. In addition, we could speed

up the throughput of the HEC scalar multiplication by up to 50% by focusing on a

fixed underlying field and curve, which is an attractive option for implementations on

1.2 Summary of Research Contribution 8

embedded systems. Combining all of these results, we showed that both families of

algorithms are well suited for embedded applications.

In many low cost and embedded applications lower security margins are adequate.

In practice, if a group order of 2128 is sufficient, we can perform the field operations

of HECC with a smaller number of word operations. The underlying field operations

can be implemented very efficiently for genus-4 HEC using 32-bit microprocessors (e.g.,

ARM). We provide a study of the efficiency of HECC considering this kind of low security

application. However, one should keep in mind the security limitations of genus-4 HECC.

1.2.4 Optimized Parallel Architectures for HECC

Part of this work was published in [BBWP04b,BBWP04a].

We present optimized parallel architectures for a HECC considering the most recent

explicit formulae to compute group operations. This was achieved by theoretically eval-

uating a variety of different architectures.

We investigate various parallel architectures for a genus-2 HECC using affine and

projective coordinate systems considering the group order of approximately 2160. We

studied the parallelism of the HECC at three levels, namely the field operation level, the

group operation level, and the scalar multiplication level. We analyzed the trade-offs

between parallelization options, the latency, and area-time optimized configurations.

For the architecture using the affine coordinate system, we found that using a single

multiplier with digit-size D = 8 is best suited. This architecture is able to compute the

scalar multiplication in 76, 797 clock cycles. When providing more resources it is possible

to lower the latency to 56, 139 clock cycles. Using projective coordinates the scalar

multiplication can be performed in 19, 769 clock cycles using three field multipliers of

type D = 32, one field adder and one field squarer, if area constraints are not considered.

1.2 Summary of Research Contribution 9

However, the optimal solution in terms of latency and area uses two multipliers of type

D = 8, one adder and one squarer. The main finding is that architectures based on the

inversion-free formulae should be preferred compared to those using group operations

containing inversions.

1.2.5 High Speed HECC Coprocessor on FPGA

There have been some efforts to implement HECC on hardware devices, like FPGAs

[Wol01,WP02,BCLW02,Cla02,Cla03,EMY04]. Most of the implementations, however,

consider the algorithm introduced by Cantor and not the explicit formulae.

We propose prototype implementations of genus-2 hyperelliptic curve cryptographic

coprocessors. We present for the first time an FPGA implementation considering explicit

formulae based on affine coordinates. We provide three different designs of the HECC

coprocessor aiming for high performance. Additionally, we tried to reduce the area for

two design options.

Our fastest version of the HECC coprocessor can perform one scalar multiplication in

415µs and is therefore 81% faster than the best previous implementation. The reduced

area implementation utilizes 81% less area than the smallest design published.

The HECC coprocessor designs were evaluated by considering both the hardware

requirements and the time constraints of the cryptographic application. Using the area-

time product, our coprocessors is an order of magnitudes better than previous publica-

tions. Through this improvement, HECC is now approaching the performance range of

ECC FPGA implementations.

1.3 Outline 10

1.3 Outline

In Chapter 2 we introduce the mathematical background of hyperelliptic curve cryptosys-

tems, restricting ourselves to the material necessary to understand the dissertation. We

show the basic definitions and properties, introduce divisors and the divisor class group.

With these definitions we are able to define the Jacobian of the HEC. Next we define

a polynomial representation of the equivalence classes. Furthermore, we introduce the

group operations based on Cantor’s and Harley’s algorithm. We conclude Chapter 2

with some considerations about hyperelliptic curve cryptosystems and their security.

Chapter 3 summarizes the previous work on HECC and is divided into four sections.

The first two sections cover all publications dealing with the improvement of the group

operations based on Cantor’s and Harley’s algorithm. Parts three and four introduce

the previous publications implementing HECC in software and hardware.

In Chapter 4 we state our improvements on the group operations for the hyperelliptic

curve cryptosystem. We first introduce the methods used for speeding up the group

operation, especially the generalization of the reduction using Karatsuba’s algorithm.

Then we introduce our optimized group operations based on Cantor’s algorithm, Harley’s

algorithm, and the inversion-free formulae introduced by Lange. Finally we end this

chapter with a summary.

In Chapter 5 we introduce our new metric for a theoretical comparison of various

cryptographic primitives implemented on a certain processor. We focus on the under-

lying assumptions of our metric and apply it to a comparison of ECC and HECC on a

32-bit processor.

Chapter 6 deals with the implementation of HECC in software. In the first part we

present the methodology used for the software implementation. Secondly, we show our

ECC and HECC software implementations on general purpose processors. In the third

1.3 Outline 11

part, implementation results on embedded processors (ARM, ColdFire, and PowerPC)

are presented. Furthermore, we validate our theoretical comparison metric introduced

in Chapter 5 using the ARM implementations. Furthermore, we study the performance

of HECC for low cost security applications. We end this chapter with a short summary.

Chapter 7 describes the analysis of the parallelism of the HECC group addition, group

doubling, and scalar multiplication. We provide a theoretical comparison of different

architecture options. Parallelism of HECC was exploited on three different levels, namely

on the field arithmetic level, the group operation level, and the scalar multiplication level.

We target affine and inversion-free formulae for genus-2 curves. The analysis results in

the introduction of the optimal architecture for HECC. Finally we present a summary

and an outlook.

The fastest known HECC implementation results achieved on FPGA are presented

in Chapter 8. We propose three different prototype implementations targeting a genus-

2 hyperelliptic curve cryptosystem using affine coordinates. We describe the HECC

coprocessor, outline our methodology, the different design options, and finally put our

results in perspective to previous ECC and HECC FPGA implementations.

We end this dissertation with the conclusions of our work and some suggestions for

further research.

2 Mathematical Background

In this section, we present an elementary introduction to the theory of hyperelliptic

curves over finite fields of arbitrary characteristic, restricting attention to material that is

relevant for this work. For more details, the reader is referred to [Kob89,Kob98,MWZ98].

The idea that groups formed from hyperelliptic curves (HEC) are suitable for discrete

logarithm cryptosystems was first introduced 1988 by Neal Koblitz [Kob88]. Hyperel-

liptic curves are a special class of algebraic curves and can be viewed as generalization

of elliptic curves. There are hyperelliptic curves of every genus g ≥ 1. A hyperelliptic

curve of genus g = 1 is an elliptic curve.

Most of the material presented in this chapter was taken from [MWZ98] and some of

the examples are from [Gau00a]. For an introduction to algebraic geometry the reader

is referred to [Ful69].

2.1 Basic Definitions and Properties

This section provides the main definitions and properties of hyperelliptic curves.

Definition 2.1.1 If a field F has the property that every polynomial with coefficients in

F factors completely into linear factors, then we say that F is algebraically closed.

2.1 Basic Definitions and Properties 13

Definition 2.1.2 [MWZ98] Let F be a finite field, and let F be the algebraic closure of

F. An equation of the form

C : v2 + h(u)v = f(u) in F[u, v], (2.1)

where h(u) ∈ F[u] is a polynomial of degree at most g, f(u) ∈ F[u] is a monic polynomial

of degree 2g + 1, and there are no solutions (u, v) ∈ F× F which simultaneously satisfy

the equation v2 + h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 and

h′(u)v − f ′(u) = 0 defines a hyperelliptic curve C of genus g over F (g ≥ 1).

A singular point on a curve C is a solution (u, v) ∈ F×F which simultaneously satisfies

the equation v2 + h(u)v = f(u) and the partial derivative equations 2y + h(u) = 0 and

h′(u)y − f ′(u) = 0. From Definition 2.1.2 we see that hyperelliptic curves do not have

any singular point.

Lemma 2.1.3 [MWZ98] Let C be a hyperelliptic curve over F defined by Equation

(2.1).

1. If h(u) = 0 then char(F) 6= 2.

2. If char(F) 6= 2, then the change of variables u → u, v → (v − h(u)/2) transforms

C to the form v2 = f(u) where f ∈ F[u]

3. Let C be an equation of the form (2.1) with h(u) = 0 and char(F) 6= 2. Then C is

a hyperelliptic curve if and only if f(u) has no repeated roots in F.

For the proof of Lemma 2.1.3 consult [MWZ98].

Definition 2.1.4 [MWZ98] Let K be an extension field of F. The set of K-rational

points on C, denoted C(K), is the set of all points P = (x, y) ∈ K×K that satisfy (2.1),

2.1 Basic Definitions and Properties 14

together with a special point at infinity denoted ∞. The set of points C(K) will simply

be denoted by C. The points in C other than ∞ are called finite points.

Note, the point at infinity lies in the projective plane P 2(F). It is the only projective

point lying on the line at infinity that satisfies the homogenized hyperelliptic curve

equation. If g ≥ 2 then ∞ is a singular (projective) point (which is allowed since ∞ is

not in F× F).

Definition 2.1.5 [MWZ98] Let P = (x, y) be a finite point on a hyperelliptic curve C.
The opposite point of P is the point P̃ = (x,−y− h(x)). We also define the opposite of

∞ to be ∞̃ = ∞ itself. If a finite point P satisfies P = P̃ , then the point is said to be

special; otherwise, the point is said to be ordinary.

Figure 2.1 shows an example of a hyperelliptic curve over the field of real numbers.

Figure 2.1: Hyperelliptic curve C.

2.2 Polynomials and Rational Functions 15

2.2 Polynomials and Rational Functions

In this section we only introduce the properties of polynomials and rational functions

when they are viewed as functions on a hyperelliptic curve.

Definition 2.2.1 [MWZ98] The coordinate ring of C over F, denoted F[C], is the quo-

tient ring

F[C] = F[u, v]/(v2 + h(u)v − f(u)),

where (v2 + h(u)v − f(u)) denotes the ideal in F[u, v] generated by the polynomial v2 +

h(u)v − f(u). Similarly, the coordinate ring of C over F is defined as

F[C] = F[u, v]/(v2 + h(u)v − f(u)).

An element of F[C] is called a polynomial function on C.

Lemma 2.2.2 [MWZ98] The polynomial r(u, v) = v2 +h(u)v−f(u) is irreducible over

F, and hence F[C] is an integral domain.

The proof for Lemma 2.2.2 is shown in [MWZ98]. Note that each polynomial function

G(u, v) ∈ F[C] is represented as G(u, v) = a(u)−b(u)v, where a(u), b(u) ∈ F, are unique.

Definition 2.2.3 [MWZ98] Let G(u, v) = a(u) − b(u)v be a polynomial function in

F[C]. The conjugate of G(u, v) is defined to be the polynomial function G(u, v) = a(u) +

b(u)(h(u) + v).

Definition 2.2.4 [MWZ98] Let G(u, v) = a(u) − b(u)v be a polynomial function in

F[C]. The norm of G is the polynomial function N(G) = GG.

2.2 Polynomials and Rational Functions 16

The norm is used to transform questions about polynomial functions in two variables

into easier questions about polynomials in a single variable. In the next lemma the

properties of the norm are given and the proof can be found in [MWZ98].

Lemma 2.2.5 [MWZ98] Let G,H ∈ F[C] be polynomial functions.

1. N(G) is a polynomial in F[u].

2. N(G) = N(G)

3. N(GH) = N(G)N(H).

Definition 2.2.6 [MWZ98] The function field F(C) of C over F is the field of fractions

of F[C]. Similarly, the function field F(C) of C over F is the field of fractions of F[C].

The elements of F(C) are called rational functions on C.

It is important to point out that F[C] is a subring of F(C) and that every polynomial

function is also a rational function. Next, we are going to define the value of a rational

function at a finite point.

Definition 2.2.7 [MWZ98] Let R ∈ F(C), and let P ∈ C, P 6= ∞. Then R is said to

be defined at P if there exist polynomial functions G,H ∈ F[C] such that R = G/H and

H(P) 6= 0; if no such G,H ∈ F[C] exist, then R is not defined at P . If R is defined at

P , the value of R at P is defined to be R(P) = G(P)/H(P).

One can see from the definitions above, that the well-defined value R(P) is independent

of the choice of G and H. The following definition will introduce the degree of the

polynomial function and in Lemma 2.2.9 we state the properties of the degree.

2.3 Zeros and Poles 17

Definition 2.2.8 [MWZ98] Let G(u, v) = a(u)− b(u)v be a non-zero polynomial func-

tion in F[C]. The degree of G is defined to be

deg(G) = max[2 degu(a), 2g + 1 + 2 degu(b)].

Lemma 2.2.9 [MWZ98] Let G,H ∈ F[C].

1. deg(G) = degu(N(G)).

2. deg(GH) = deg(G) + deg(H).

3. deg(G) = deg(G).

Now we are going to define the value of the rational function at ∞.

Definition 2.2.10 [MWZ98] Let R = G/H ∈ F(C) be a rational function.

1. If deg(G) < deg(H) then the value of R at ∞ is defined to be R(∞) = 0.

2. If deg(G) > deg(H) then R is not defined at ∞.

3. If deg(G) = deg(H) then R(∞) is defined to be the ratio of the leading coefficients

(with respect to the deg function) of G and H.

2.3 Zeros and Poles

The purpose of this section is to introduce the orders of zeros and poles of rational

functions as well as the notion of a uniformizing parameter. The proofs of all the

lemmas and theorems can be found in [MWZ98].

2.3 Zeros and Poles 18

Definition 2.3.1 [MWZ98] Let R ∈ F(C)∗ and let P ∈ C. If R(P) = 0 then R is said

to have a zero at P . If R is not defined at P then R is said to have a pole at P , in which

case we write R(P) = ∞.

Lemma 2.3.2 [MWZ98] Let G ∈ F[C]∗ and P ∈ C. If G(P) = 0 then G(P̃) = 0.

The following three lemmas are used in Theorem 2.3.6 that introduces the existence

of uniformizing parameters.

Lemma 2.3.3 [MWZ98] Let P = (x, y) be a point of C. Suppose that G = a(u) −
b(u)v ∈ F[C]∗ has a zero at P and that x is not a root of both a(u) and b(u). Then

G(P) = 0 if and only if P is a special point.

Lemma 2.3.4 [MWZ98] Let P = (x, y) be an ordinary point on C and let G = a(u)−
b(u)v ∈ F[C]∗. Suppose that G(P) = 0 and x is not a root of both a(u) and b(u). Then

G can be written in the form (u − x)sS, where s is the highest power of (u − x) which

divides N(G), and S ∈ F(C) has neither a zero nor a pole at P .

Lemma 2.3.5 [MWZ98] Let P = (x, y) be a special point on C. Then (u − x) can be

written in the form (v − y)2S(u, v), where S(u, v) ∈ F(C) has neither a zero nor a pole

at P .

Theorem 2.3.6 [MWZ98] Let P ∈ C. Then there exists a function U ∈ F(C) with

U(P) = 0 such that the following property holds: for each polynomial function G ∈ F[C]∗,

there exists an integer d and function S ∈ F(C) such that S(P) 6= 0, ∞ and G = UdS.

Furthermore, the number d does not depend on the choice of U . The function U is called

a uniformizing parameter for P .

Using Theorem 2.3.6, one can define the order of a polynomial function at a point.

2.4 Divisors 19

Definition 2.3.7 [MWZ98] Let G ∈ F[C]∗ and P ∈ C. Let U ∈ F(C) be uniformizing

parameter for P , and write G = UdS where S ∈ F(C), S(P) 6= 0, ∞. The order of G at

P is defined to be ordP (G) = d.

Lemma 2.3.8 [MWZ98] Let G1, G2 ∈ F[C]∗ and P ∈ C, and let ordP (G1) = r1,

ordP (G2) = r2.

1. ordP (G1G2) = ordP (G1) + ordP (G2).

2. Suppose that G1 6= −G2. If r1 6= r2 than ordP (G1 + G2) = min(r1, r2). If r1 = r2

then ordP (G1 + G2) ≥ min(r1, r2).

Next, we generalize Lemma 2.3.2 and get Lemma 2.3.9.

Lemma 2.3.9 [MWZ98] Let G ∈ F[C]∗ and P ∈ C. Then ordP (G) = ordP̃ (G).

Theorem 2.3.10 [MWZ98] Let G ∈ F[C]∗. Then G has a finite number of zeros and

poles. Moreover,
∑

P∈C ordP (G) = 0.

In the following we are going to define the order of a rational function at a point.

Definition 2.3.11 [MWZ98] Let R = G/H ∈ F(C)∗ and P ∈ C. The order of R at P

is defined to be ordP (R) = ordP (G)− ordP (H).

2.4 Divisors

This section introduces the concept of divisors and theirs basic properties.

2.4 Divisors 20

Definition 2.4.1 [MWZ98] A divisor is a finite formal sum of C(F)-points,

D =
∑
Pi∈C

miPi,mi ∈ Z

where only a finite number of the mi are non-zero. The degree of D, denoted deg D, is

the integer
∑

P∈C mP . The order of D at P is the integer mP : we write ordP (D) = mP .

Example: [Gau00a] Intuitively, the order of a function f at a point P is the

measure of the multiplicity of zero of f , see Figure 2.2, i.e. multiplicity of

the intersection of the curve C with f = 0.

f(P) = 0

f(P) = 0

Figure 2.2: Multiplicity of zero [Gau00a].

Example: Assume we have a hyperelliptic curve C : v2 + uv = u5 + 5u4 +

6u2 + u + 3 over F7, an example of a divisor is

D = 2(2, 2) + 3(5, 3) + (1, 1) + (6, 4)

2.4 Divisors 21

and the degree of D is

∑
mi = 2 + 3 + 1 + 1 = 7.

Definition 2.4.2 The number of points of a divisor is called the weight of the divisor.

The set of all divisors, denoted by D, forms an additive group under the addition rule:

∑
Pi∈C

miPi +
∑
Pi∈C

niPi =
∑
Pi∈C

(mi + ni)Pi

Let D0 denote the subgroup consisting of divisors of degree 0.

In the next two definitions we introduce the GCD of divisors and the divisor of a

rational function.

Definition 2.4.3 [MWZ98] Let D1 =
∑

P∈C mP P and D2 =
∑

P∈C nP P be two divi-

sors. The greatest common divisor of D1 and D2 is defined to be

gcd(D1, D2) =
∑
P∈C

min(mP , nP)P − (
∑
P∈C

min(mP , nP))∞.

Definition 2.4.4 [MWZ98] Let R ∈ F(C)∗. The divisor of R is

div(R) =
∑
P∈C

(ordP R)P.

Consulting Theorem 2.3.10, one notices that the divisor of a rational function is a

finite formal sum and has degree 0.

Lemma 2.4.5 Let G ∈ F[C]∗, and let div(G) =
∑

P∈C mP P . Then div(G) =
∑

P∈C mP P̃ .

2.5 Principal Divisors 22

2.5 Principal Divisors

For the definition of the Jacobian, principal divisors are needed.

Definition 2.5.1 [MWZ98] A divisor D ∈ D0 is called principal divisor if D = div(R)

for some rational function R ∈ F(C)∗. The set of all principal divisors is denoted as P.

Example: [Gau00a] Let f be a function. The divisor div(f) can be decom-

posed into a difference of two divisors:

div(f) = div0(f)− div∞(f),

where div0(f) corresponds to the intersection of C with the curve f = 0 and

div∞(f) to the intersection of C with 1
f

= 0.

In Figure 2.3, we show an example, where div(f) = P1 + P2 + P3 + P4 −
(2Q1 + 2Q2).

2.6 The Jacobian J

Definition 2.6.1 [MWZ98] The quotient group

J = D0/P

is called the Jacobian of the curve C. If D1, D2 ∈ D0 and D1 − D2 ∈ P then we write

D1 ∼ D2. In that case, D1 and D2 are said to be equivalent divisors.

Hence, the Jacobian is a finite quotient group of one infinite group by another infinite

group. Every element on the Jacobian is an equivalence class of divisors. Figure 2.4,

2.6 The Jacobian J 23

Figure 2.3: Example of a principal divisor [Gau00a].

shows two rational functions defined over a curve (plotted over R for visualization pur-

poses).

Figure 2.4: Example of rational functions defined over a curve C [Gau00a].

2.7 Reduced Divisors 24

A convenient set of coset representatives and algorithms to perform operations are

needed for the computations on J. In the Section 2.8 the unique representation of

elements in the Jacobian group is being introduced. The addition rules are stated in

Section 2.9 and Section 2.10. Before doing so we will introduce reduced divisors in the

next section.

2.7 Reduced Divisors

This section provides the definition of reduced divisors. We first have to define the

support and the semi-reduced divisor to be able to get the reduced divisor.

Definition 2.7.1 [MWZ98] Let D =
∑

Pi∈C miPi be a divisor. The support of D is the

set

supp(D) = {Pi ∈ C | mi 6= 0}.

Definition 2.7.2 [MWZ98] A semi-reduced divisor is a divisor of the form

D =
∑
Pi∈C

miPi −
(∑

Pi∈C
mi

)
∞

where each mi ≥ 0 and the Pi ∈ C\{∞} are finite points such that when Pi ∈ supp(D)

then P̃i /∈ supp(D), unless Pi = P̃i, in which case mi = 1.

The following lemma shows that for each element D ∈ D0 there exists a semi-reduced

divisor D1 equivalent to D:

Lemma 2.7.3 [MWZ98] For each divisor D ∈ D0 there exists a semi-reduced divisor

D1 ∈ D0 such that D ∼ D1.

2.8 Representation of Divisors 25

The proof can be found in [MWZ98].

Note that semi-reduced divisors are not unique in their equivalence class. In the case

of hyperelliptic curves, one can show a stronger result (using the Riemann-Roch theorem,

see [Ful69]) that every element of J can be uniquely represented by a so-called reduced

divisor. The reduced divisors are defined as follows:

Definition 2.7.4 [MWZ98] Let D =
∑

P∈C miPi − (
∑

P∈C mi)∞ be a semi-reduced

divisor. If
∑

P∈C mi ≤ g (g is the genus of C) then D is called a reduced divisor.

Hence, a divisor D =
∑

miPi − (
∑

mi)∞ ∈ D0 is said to be reduced if:

1. All of the mi are non-negative, and if Pi is equal to its opposite then mi ≤ 1.

2. If Pi 6= P̃i, then Pi and P̃i do not both occur in the sum.

3.
∑

mi ≤ g.

One can show that each coset of the quotient group J = D0/P has exactly one reduced

divisor.

Theorem 2.7.5 [MWZ98] For each divisor D ∈ D0 there exists a unique reduced

divisor D1 such that D ∼ D1.

A proof for the theorem presented above can be found in [MWZ98].

2.8 Representation of Divisors

In Section 2.7, a unique representation of all elements in the Jacobian group was intro-

duced with the concept of divisors. Mumford presented an alternative representation of

the divisors, that is more efficient for practical applications [Mum84].

2.8 Representation of Divisors 26

Semi-reduced divisors can be described as a pair of polynomials as stated in the

following theorem.

Lemma 2.8.1 [MWZ98] Let P = (x, y) be an ordinary point of C. Then for each

k ≥ 1, there exists a unique polynomial bk(u) ∈ F[u] such that

1. degubk < k;

2. bk(x) = y; and

3. b2
k(u) + bk(u)h(u) ≡ f(u)(mod(u− x)k).

Theorem 2.8.2 [MWZ98] Let D =
∑

miPi − (
∑

mi)∞ be a semi-reduced divisor,

where Pi = (xi, yi). Let a(u) =
∏

(u − xi)
mi. There exists a unique polynomial b(u)

satisfying:

1) degub < degua;

2) b(xi) = yi for all i for which mi 6= 0;

3) a(u) divides b(u)2 + b(u)h(u)− f(u).

Notation: Then D = gcd(div(a(u)), div(b(u)−v)). Usually gcd(div(a(u)), div(b(u)−v))

will be abbreviated to div(a(u), b(u)− v) or, more simply, to div(a, b).

The proofs for the lemmas and the theorem can be found in [MWZ98] and the zero

divisor is represented as div(1, 0).

Lemma 2.8.3 Let a(u), b(u) ∈ F[u] such that degub < degua. Then a|(b2 + bh − f) if

and only if div(a, b) is semi-reduced.

2.8 Representation of Divisors 27

Now we have an alternative representation for semi-reduced divisors, but as discussed

above, each element of J can be represented uniquely by a reduced divisor. A reduced

divisor is a semi-reduced divisor but of degree less than or equal to g. Hence the

polynomial a is of degree less than or equal to g.

Example: Consider the hyperelliptic curve

C : v2 + (u2 + u)v = u5 + u3 + 1

of genus g = 2 over the finite field F25 defined with the primitive polynomial

P (x) = x5 + x2 + 1, and let P (α) = 0. Let P1 = (α30, 0) and P2 = (0, 1) be

two points on the curve. Now compute the polynomial representation of

D = P1 + P2 − 2∞ = div(a, b).

As shown in Theorem 2.8.2, a(u) is calculated as

a(u) =
∏

(u− xi)
mi .

It follows that a(u) = (u + α30)(u + 0) = (u + α30)u.

To calculate the polynomial b(u) = cu+a of degree ≤ 1 one has to determine

its coefficients such that b(xi) = yi for all i for which mi 6= 0. Hence one

obtains two equations with two variables:

b(x1) = y1 = 0 = cx1 + d = cα30 + d

b(x2) = y2 = 1 = cx2 + d = c · 0 + d.

The second equation yields d = 1. In the next step compute the inverse of

2.9 Cantor’s Group Operations on the Jacobian 28

α30 modulo the primitive polynomial P (x) = x5 + x2 + 1:

[α30]−1 = α mod x5 + x2 + 1.

With the knowledge of the inverse, it is easy to find c = α. Hence b(u) =

αu + 1. With Theorem 2.8.2 the polynomial representation of the given

semi-reduced divisor is:

div(a, b) = (u2 + α30u, αu + 1).

It can be seen that the degree of a(u) is equal to g and therefore the polyno-

mial representation found is also the representation for the reduced divisor.

For the setup of a hyperelliptic curve cryptosystem we need to generate random divi-

sors with the properties given above. A method to generate a random divisor is given

in [Kob89] and summarized in [Pel02]. In the next sections we introduce the group

operation for HECC.

2.9 Cantor’s Group Operations on the Jacobian

This section gives a brief description of the algorithms used for adding and doubling

divisors on the Jacobian introduced by Cantor [Can87] and given for even characteristic

in [Kob89]. Let C be a hyperelliptic curve of genus g defined over a finite field F, and

let J be the Jacobian of C. Let P = (x, y) ∈ C, and let σ be an automorphism of F over

F. Then P σ def
= (σ(x), σ(y)) is also a point on C.

Definition 2.9.1 A divisor D =
∑

mP P is said to be defined over F if Dσ def
=

∑
mP P σ

is equal to D for all automorphisms σ of F over F.

2.9 Cantor’s Group Operations on the Jacobian 29

Algorithm 1 describes the group law. The group operation is performed in two steps.

First we have to find a semi-reduced divisor D′ = div(u′, v′), such that D′ ∼ D1 + D2 =

div(u1, v1) + div(u2, v2) in the group J (see Algorithm 1, Step 1 to Step 3). In the second

step we have to reduce the semi-reduced divisor D′ = div (u′, v′) to an equivalent divisor

D = (u, v) (see Algorithm 1, Step 4 to Step 9). Figure 2.5 The addition is visualized for

a genus-2 curves “geometrically”.

Algorithm 1 Group addition

Require: D1 = div(u1, v1), D2 = div(u2, v2)
Ensure: D = div(u3, v3) = D1 + D2

1: d = gcd(u1, u2, v1 + v2 + h) = s1u1 + s2u2 + s3(v1 + v2 + h)
2: u′0 = u1u2/d

2

3: v′0 ≡ [s1u1v2 + s2u2v1 + s3(v1v2 + f)]d−1(modu′)
4: k = 1
5: while deg u′k > g do
6: k = k + 1

7: u′k =
f−v′k−1h−(v′k−1)2

u′k−1

8: v′k ≡ (−h− v′k−1) mod u′k
9: end while

10: Output (u3 = u′k, v3 = v′k)

The following two theorems show that Algorithm 1 works and the proofs can be

found in [MWZ98]. Theorem 2.9.2 provides the correctness of the composition part and

Theorem 2.9.3 of the reduction part.

Theorem 2.9.2 [MWZ98] Let D1 = div(u1, v1) and D2 = div(u2, v2) be semi-reduced

divisors. Let u and v be defined as in Step 2 and 3 of Algorithm 1. Then D = div(u, v)

is a semi-reduced divisor and D ∼ D1 + D2.

Theorem 2.9.3 [MWZ98] Let D = div(u, v) be a semi-reduced divisor. Then the

divisor D3 = div(u3, v3) returned by Algorithm 1 is reduced and D3 ∼ D.

Doubling a divisor is easier than general addition and therefore, Steps 1, 2, and 3 of

Algorithm 1 can be simplified as follows:

2.10 Harley’s Group Operations on a Jacobian 30

Figure 2.5: Geometrical visualization of the addition on genus 2 HEC.

1: d = gcd(u, 2v + h) = s1u + s3(2v + h)

2: u′ = u2/d2

3: v′ = [s1uv + s3(v
2 + f)]d−1(modu′)

2.10 Harley’s Group Operations on a Jacobian

In [GH00], the authors noticed that one can reduce the number of operations by distin-

guishing between possible cases according to the properties of the input divisors. They

described an efficient algorithm (using Karatsuba multiplication, CRT, and Newton It-

eration) to reduce the overall complexity of the group operations.

To determine explicit formulae, it is essential to know the weight of the input divisor.

The weight of a divisor is defined as the number of finite points in the support of D.

2.10 Harley’s Group Operations on a Jacobian 31

For example, in the case of a hyperelliptic curve of genus 2, a divisor can have weight

0, 1, or 2. For each case, implementations of different explicit formulae are required. In

Figure 2.6, the main flow of the doubling algorithm of a genus-2 HEC is illustrated.

START

STOP

weight(D)=2?

weight(D)=1?

no

yes

yes

no

result = div(1,0)

Call function for Doubling

a divisor of degree 2

a divisor of degree 1

Call function for Doubling

Figure 2.6: Main flow of Harley’s doubling algorithm.

Two random polynomials of small degree have a linear factor in common with proba-

bility of ≈ 1/q. Hence, in the case of a hyperelliptic curve of genus 2, we have no factor

in common with probability P ≈ 1− 2−80. Therefore, in most cases the gcd(u1, u2) = 1.

For the remainder of this work, we call this the frequent case. An implementation based

on explicit formulae can be realized by avoiding the non frequent cases. This can be

done on basis of a protocol which restarts if a non frequent case occurs. We now restrict

to genus two curves over fields of odd characteristic for the moment. Therefore we may

assume h = 0.

2.10.1 The Frequent Case of Doubling

The frequent case of doubling a divisor occurs if and only if D = (u1, v1) is of weight 2

and gcd(u1, v1) = 1, i.e., both u1 and v1 do not have a factor in common. This means

2.10 Harley’s Group Operations on a Jacobian 32

that D consists of two distinct ordinary points.

According to Cantor’s algorithm, u′ = u2
1 (see Algorithm 1). The v′ polynomial can be

calculated using the property u1(x)|(v1(x)2 − f(x)) and therefore u′(x)|(v′(x)2 − f(x)).

Since v′ ≡ v1 mod u1, v′(x) can be seen as a square root of f(x) modulo u2
1(x) and v1(x)

as a square root of f(x) modulo u1(x). Hence, we can obtain v′(x) by performing one

step of the Newton Iteration [GH00]:

v′ ≡ v1 − f − v2
1

2v1

mod u′. (2.2)

In order to obtain a unique representation of D′, we need to reduce the polynomials

u′(x) and v′(x). The polynomials of the reduced divisor D2 = (u2, v2) are

u2 =
f − (v′)2

u′
(2.3)

u2 = monic(u2)

v2 ≡ −v′ mod u2.

Equations (2.2) and (2.3) can be computed efficiently using following substitutions

proposed by Harley:

k =
f − v2

1

u1

s =
k

2v1

mod u.

2.10 Harley’s Group Operations on a Jacobian 33

Then Equation (2.2) simplifies to v′ = v1 − u1s and Equation (2.3) can be rewritten:

u2 =
f − (v′)2

u′

=
(v2

1 − f) + 2su1v1 + s2u2

u2
1

= s2 − k − 2sv1

u1

.

Algorithm 2 combines all steps of the most frequent case for arbitrary characteristic

including all subexpressions and uses h = 0 [Lan02a].

Algorithm 2 Frequent Case for Group Doubling (g = 2).

Require: D1 = div(u1, v1)
Ensure: D2 = div(u2, v2) = 2D1

1: k =
v2
1−v1h−f

u1
(exact division)

2: s ≡ k
h+2v1

mod u1

3: u′ = s2 + k−s(h+2v1)
u1

(exact division)
4: u2 = u′ made monic
5: v2 ≡ −(h + su1 + v1) mod u2

In the case of genus-3 and genus-4 curves an extra reduction step is necessary to obtain

a reduced divisor. Hence, for genus-3 and genus-4 curves, Steps 6 and 7 have to be added

to Algorithm 2 in order to end up with a reduced divisor D3 = div(u3, v3) = 2D1.

6 : u3 =
f − v2h− (v2)

2

u2

(exact division)

7 : v3 ≡ −(v2 + h) mod u3

2.10.2 The Frequent Case of Adding

The frequent case of adding two divisors occurs if and only if D1 = (u1, v1) and D2 =

(u2, v2) are both of weight 2 and gcd(u1, u2) = 1, i.e. both u1 and u2 do not have a factor

2.10 Harley’s Group Operations on a Jacobian 34

in common, meaning the support of D1 does not contain any point or opposite of a point

in the support of D2.

In Algorithm 1, u′ is given as u′ = u1u2 (Step 2). Since in the frequent case d = d1 = 1,

s1 = e1, s2 = e2 and s3 = 0, v′ is obtained by v′ ≡ (e1u1v2 + e2u2v1) mod u′ (see

Algorithm 1, Step 3). Applying Garner’s Algorithm for the Chinese Remainder Theorem

[MvOV97] results in:

v′ ≡
[(v2 − v1

u1

mod u2

)
u1 + v1

]
mod u′.

Since D′ = (u′, v′) is a semi-reduced divisor, a reduction is necessary. Harley performs

a reduction which is optimized by reusing some pre-computed quantities. The reduction

of u′ can be written as

u′ =
f − (v′)2

u′
(2.4)

=
1

u1u2

{
f −

[
(
v2 − v1

u1

mod u2)u1

]2

− 2v1u1(
v2 − v1

u1

mod u2)− v2
1

}
(2.5)

=
1

u2

{f − v2
1

u1

− (
v2 − v1

u1

mod u2)
[
(
v2 − v1

u1

mod u2)u1 + 2v1

]}
(2.6)

Equation 2.6 can be simplified and computed efficiently using the following substitu-

tions proposed by Harley:

k =
f − v2

1

u1

(2.7)

s ≡ v2 − v1

u1

mod u2 (2.8)

z = su1 (2.9)

2.11 Hyperelliptic Cryptosystems and Security 35

Equation 2.6 can now be rewritten:

u′ =
k − s(z + 2v1)

u2

In the next step, u′ is made monic and v′ is reduced, resulting in a reduced divisor

D3 = D1 + D2 = (u3, v3) . All steps for arbitrary characteristic including those for the

precomputed quantities and considering h = 0 are given in Algorithm 3 [Lan02a].

Algorithm 3 Frequent Case for Group Addition (g = 2).

Require: D1 = div(u1, v1), D2 = div(u2, v2)
Ensure: D3 = div(u3, v3) = D1 + D2

1: k =
f−v1h−v2

1

u1
(exact division)

2: s ≡ v2−v1

u1
mod u2

3: z = su1

4: u′ = k−s(z+h+2v1)
u2

(exact division)
5: u3 = u′ made monic
6: v3 ≡ −(h + z + v1) mod u3

For genus-3 and genus-4 curves an additional reduction step is necessary to calculate

the reduced divisor D4 = div(u4, v4) = D1 + D2:

6 : u4 =
f − v3h− (v3)

2

u3

(exact division)

7 : v4 ≡ −(v3 + h) mod u4

Based on Algorithms 2 and 3, the upcoming explicit formulae for the group operations

on hyperelliptic curves of genera 2, 3 and 4 are derived.

2.11 Hyperelliptic Cryptosystems and Security

The Diffie-Hellman problem on J is closely related to the well-studied discrete logarithm

problem (DLP) [MvOV97]. These problems are significant to public-key cryptography

2.11 Hyperelliptic Cryptosystems and Security 36

because they form the basis for the security of many cryptographic schemes. The DLP

on J can be stated as follows: given two divisors D1, D2 ∈ J, determine the smallest

integer m such that D2 = mD1, if such an m exists.

A central ingredient in cryptosystems based on the DL problem in an abelian group

is an efficient process for computing mD for D ∈ J and for large integers m.

D + D + · · ·+ D︸ ︷︷ ︸
m times

= mD

This operation is called divisor multiplication or scalar multiplication, and dominates

the execution time of hyperelliptic cryptosystems. The binary algorithm and its variants

[MvOV97,Gor98] can be used to efficiently compute mD. The main operations in the

algorithm are group additions and group doublings.

It is widely accepted that for most cryptographic applications based on EC or HEC

one needs a group order of size at least ≈ 2160. Thus, for HECC over Fq we will need at

least g · log2 q ≈ 160, where g is the genus of the curve. Hence, for a curve of genus two,

we will need a field Fq with |Fq| ≈ 280.

Pollard’s rho method and its variants [GLV98,Pol78,Wie86] are the most important

examples for algorithms solving the DLP with complexity O(
√

n) in groups of order

n. However, some special cases of HEC were discovered in [FR94, Rüc99], which can

be attacked with lower complexity than O(
√

n). The first algorithm which computes

the DL in subexponential time for sufficiently large genera was published in [ADH94].

The algorithm was improved and implemented, e.g., in [FS97,Eng99a,Gau00a,Gau00b,

EG02]. This algorithm has a lower complexity than Pollard’s rho method for g > 4.

In [FR94], the authors described of the Tate pairing, that is a bilinear map from

the divisor class group of a curve C over a finite field Fq into the multiplicative group

F∗
qk . Hence, for small k, the DLP in the divisor class group can be solved with the

2.11 Hyperelliptic Cryptosystems and Security 37

subexponential index-calculus algorithms in F∗
qk . In [Gau00b] it is shown that index-

calculus algorithms in the Jacobian of HEC have a lower complexity than the Pollard

rho method for curves of genus greater than 4. However, the author further studied

special cases by keeping only a fraction of the divisors in the factor base resulting in

a reduction of the base by a factor of n. In this case, the author obtained an overall

complexity of O(q2g

g+1
). Thus, the complexity of the attack of genus-4 curves is lower than

the complexity of the rho method. However, no practical comparisons between the two

approaches have been made.

Recently, Thériault optimized the sub-exponential algorithm to compute the discrete

logarithm in the Jacobian of low genus hyperelliptic curves [Thé03]. The underlying field

for HEC with genus higher than two might have to be larger than believed in order to

achieve a certain security level, see the correction factor in Table 2.1. For the moment,

the most efficient attacks presented in [Thé03] are not practical, because of the high

storage usage. Note, we took this security consideration into account and enlarge the

field sizes accordingly.

Table 2.1: Comparison of the complexity of different attacks on HECC.
g 1 2 3 4

Index calculus q2 q2 q2 q2

Rho [Gau00b] q1/2 q q3/2 q2

reduced factor base [Thé03] n.a. n.a. q3/2 q8/5

with large primes [Thé03] n.a. n.a. q10/7 q14/9

Correction factor for log2 |Fq| - - 1.05 1.286

In order to find secure HECC one has to consider criteria to ensure that a curve is

not supersingular as this implies weaknesses under the Frey-Rück attack (see [Gal01]).

However, there are no hyperelliptic supersingular curves of genus 2n−1 and characteristic

2 for any integer n ≥ 2 [SZ02].

Later in this thesis we present explicit formulae based on special types of curve equa-

2.11 Hyperelliptic Cryptosystems and Security 38

tions, resulting in especially fast doubling. For our improvements we use a genus-2 curve

of the form y2 + xy = x5 + f1x + f0 where f0, f1 ∈ F2n . Similar curves where chosen for

the genus-3 and genus-4 cases. Obviously, they form a special class of curves but the

free choice of f0 and f1 still leads to sufficiently many. We are not aware of any security

limitation of the curves that we used in this publication.

There is a contribution that dealt with securing practical implementations [Ava03].

In this paper, countermeasures against differential power analysis for HECC were intro-

duced by modeling two techniques used for elliptic curves cryptosystems.

In addition, one should consider the Weil decent attack methodology and especially

the GHS Weil decent attack. Consider E to be a non-supersingular elliptic curve defined

over a field K = F2m , and m is composite. The idea of the attack is to reduce the ECDLP

in E(F2m) to the DLP in the jacobian variety of a curve of larger genus defined over a

proper subfield k = Fl of K. The attack was first presented by Frey [Fre98]. In [GHS02],

the authors showed how to attack this kind of systems when considering finite fields of

characteristic two of composite degree. Concluding from the above mentioned publica-

tions, using fields with composite extension degree can have cryptographic weaknesses

which can potentially lead to attacks.

By our choices of fields we tried to get a comparison in group size of ECC and HECC

as tight as possible, therefore some of the fields we used are based on m composite.

However, all implementation techniques do not use the composite field structure, unlike

the work in [WBV+96,GP97]. Hence, all the software and hardware implementations

should be viewed as example cases to show the efficiency of the different systems and

are also applicable to HECC based on prime extension fields.

3 Previous Work

In this section, we first summarize previous improvements on group operations of genus-

2, genus-3, and genus-4 curves. We start with the work done on speeding up the oper-

ations based on Cantor’s algorithm, followed by the work done to increase the perfor-

mance of Harley’s algorithm. In the second part we present the previous publications

implementing HEC in software and hardware.

In the remainder of the thesis I refers to a field inversion, M to a field multiplication,

and S to a field squaring. In some references, the authors did not distinguish between

multiplications and squarings. This will be denoted as M/S.

3.1 Previous Improvements of Cantor’s Algorithm

Nagao improved the polynomial arithmetic for Cantor’s algorithm [Nag00]. He mainly

applied the following ideas:

• Division of polynomials without field inversions.

• Computation of the greatest common divisor with one inversion.

• Interleaving superfluous calculations in the reduction part.

• Expressing points on the Jacobian in a different form.

3.2 Previous Improvements of Harley’s Algorithm 40

Nagao evaluated the computational cost of the group operations by applying the stated

improvements for genus 2 ≤ g ≤ 10. The best results for genus two to four HEC are

stated in Table 4.2.

Note that in [Nag00] the author estimates the cost of the operations using polynomial

arithmetic. We were able to decrease the number of operations needed in all cases by

optimizing the explicit notation of these group operations.

3.2 Previous Improvements of Harley’s Algorithm

The first work trying to improve the group operation was done from Spallek [Spa94].

She developed explicit formulae for genus-2 curves targeting degree two polynomial and

odd characteristic. In [GH00], the authors introduced a slightly different way to reduce

the computational effort for the HECC group operations significantly. This was achieved

by reducing the number of operations by distinguishing between different cases of the

properties of the input divisors. Using the Karatsuba multiplication algorithm [KO63],

the Chinese remainder theorem, the Newton iteration, and a reordering of operations,

the authors further reduced the overall complexity of the group operations.

In [Lan01], Lange developed for the first time explicit formulae for even characteristic

fields and genus-2 curves following the approach from [GH00]. Additionally, in this work

the author describing the group operation distinguishing between all the different cases of

the properties of the input divisors. For the most frequent case the group addition could

be computed using 2 inversion, 24 multiplication, and 3 squarings. The group doubling

takes 2 inversion, 26 multiplication, and 6 squarings. However, no implementation was

given.

The follow-up implementation based on Harley’s algorithm, was done by Matsuo, Chao

and Tsuji in [MCT01]. They could save some multiplications compared to Harley’s al-

3.2 Previous Improvements of Harley’s Algorithm 41

gorithm. A group addition takes 2 inversions and 25 multiplications/squarings and a

group doubling takes 2 inversions and 27 multiplications/squarings (see Table 4.3). The

authors showed an implementation of both the improved Harley algorithm and the el-

liptic curve algorithm for comparison. Each one was implemented over some optimal

extension fields (OEF): a 93-bit OEF for hyperelliptic curves of genus 2 and a 186-bit

OEF for elliptic curves. A Pentium III@886MHz with the GNU C++-2.95.2 compiler

was used. A further speed-up for HEC of genus 2 of odd characteristic was achieved in

2002 by Miyamoto, Doi, Matsuo, Chao and Tsuji [MDM+02]. The authors suggested

Montgomery’s trick of simultaneous inversions to compute two inverses by performing

only one field inversion and three field multiplications (for more details see Chapter 4.1).

An alternative representation was described in order to avoid inversion. The disadvan-

tage of the alternative representation is the increased amount of multiplications. The

new algorithm was implemented on a Pentium III@886MHz. At the same conference,

Masashi Takahashi further improved the arithmetic genus-2 curves of odd characteris-

tic [Tak02]. With the help of a small change in the order of a special operation, he could

save one multiplication compared to [MDM+02].

The extension of the explicit formulae for arithmetic on genus-2 curves of [MDM+02]

and [Tak02] to fields of even characteristic and to arbitrary equations of the curve

were done independently from each other and almost at the same time in [SMCT02]

and [Lan02a]. In [SMCT02], the authors were able to reduce the number of field oper-

ation needed, resulting in 1I + 25M for the group addition. The group doubling was

performed in 1I + 27M. The authors used all of the techniques known from the pre-

vious publications, like Karatsuba multiplication and Montgomery’s multiple inversion

technique. In [Lan02a], the author was able to further reduce the complexity of the

group operations: I+22M+3S for group addition and I+22M+5S for group doubling.

Timings for the implementation of those formulae are also given. Various libraries for

3.2 Previous Improvements of Harley’s Algorithm 42

the field arithmetic over prime fields and binary fields on a Pentium IV@1.5GHz were

investigated.

In [MDM+02, Lan02b, Lan03], the authors introduced a way to calculate the HEC

group operations without using inversions. To reach this aim, at least one coordinate had

to be added to represent the elements of the divisor class group. The resulting explicit

formulae are advantageous in applications where inversions are expensive compared to

multiplication. The authors in [MDM+02] were the first to publish this kind of approach.

Their results were improved and generalized to even characteristic in [Lan02b, Lan03].

In [Lan02b], 47 multiplications and 4 squarings are required for a group addition. For

the group doubling operation, 40 multiplications and 3 squarings are necessary.

In [Lan02c], the author introduced weighted coordinates on genus-2 curves, resulting

in more efficient inversion-free formulae. Furthermore, the paper presents an extensive

study about the usage of curves of different characteristic for varying applications. Very

recently, [Lan03] gave a thorough comparison of arithmetic on hyperelliptic curves of

genus-2 curves containing mainly the material of the previous three papers [Lan02a,

Lan02b,Lan02c].

Genus-3 HEC group operations using odd characteristic were improved applying Harley’s

methodology in [KGM+02]. The authors adopted the methods from [MDM+02,Har00] to

increase the performance. The proposed algorithm was implemented on an Alpha Work-

station 21264@667MHz using an underlying field Fq, where q = 261 − 1. In [GMA+04],

the authors introduced very recently an improvement of the genus-3 algorithm. The

proposed algorithm takes I + 70M and I + 71M for a group addition and doubling,

respectively. The publication introduces two additionally variants algorithms for the

group operation in order to adjust the algorithm to various platforms. Furthermore, the

authors implemented a 160 bit scalar multiplication on a 64-bit CPU, namely Alpha

EV68@1.25GHz.

3.3 Previous Software Implementations of HECC 43

The work at hand introduces explicit formulae for genus-3 curves of arbitrary charac-

teristic and improves the formulae for the group operation of genus-2 and genus-3 HEC.

Furthermore we present explicit formulae for genus-4 curves.

3.3 Previous Software Implementations of HECC

Since HEC cryptosystems were proposed, there have been several software implementa-

tions on general purpose machines and, only recently, publications dealing with hardware

implementations of HECC.

The results of previous HECC software implementations are summarized in Table 3.1.

The table entries are sorted in chronological order. All implementations up to [SS00] use

Cantor’s algorithm with polynomial arithmetic. Starting with [MCT01], the implemen-

tations make use of explicit formulae. The table includes only implementations that are

considered to be secure, namely curves of genus smaller than five, and shows only the

fastest numbers given in each publication. For example, the implementation presented

in [Sma99] is not included in Table 3.1, because it focused only on HECC with genus

five or higher.

The authors in [MCT01] could save two multiplications/squarings and three multipli-

cations/squarings in the group addition and doubling operations, respectively, compared

to Harley’s algorithm. This implementation was followed by [MDM+02,Tak02,Lan02a,

Ava04]. In [Ava04], the author did an extensive study of HECC using prime fields.

The only genus-3 curve implementations based on the explicit formulae were presented

in [KGM+02,Ava04].

In [Ngu02] the author did the first implementation of HECC on an embedded processor

namely using the FrameXE smart card coprocessor. To our knowledge the work at hand

is the only work providing extensive implementations of HECC on various different

3.3 Previous Software Implementations of HECC 44

Table 3.1: Execution times of recent HEC implementations in software.
reference processor genus group order tscalarmult. in ms

[Kri97] Pentium@100MHz 2 ≈ 2128 520
3 ≈ 2126 1200
4 ≈ 2124 1100

[SS98] Alpha@467MHz 3 ≈ 2177 83.3
3 ≈ 2267 25700
3 ≈ 2339 37900
4 ≈ 2164 96.6

Pentium-II@300MHz 3 ≈ 2177 11700
4 ≈ 2164 10900

[SS00] Alpha21164A@600MHz 3 ≈ 2180 98
3 ≈ 2177 40
4 ≈ 2164 43

[MCT01] PentiumIII@866MHz 2 ≈ 2186 OEF 1.98
[MDM+02] PentiumIII@866MHz 2 ≈ 2186 OEF 1.69
[KGM+02] Alpha21264@667MHz 3 ≈ 2183 0.932
[Lan02a] Pentium-IV@1.5GHz 2 ≈ 2160 18.875

2 ≈ 2180 25.215
2 ≈ 2160 5.663
2 ≈ 2180 8.162

[GMA+04] Alpha EV68@1.25GHz 3 ≈ 2160 0.176
[Ava04] AMD Athlon@1GHz 2 ≈ 2128 0.867

2 ≈ 2144 1.21
2 ≈ 2160 1.41
2 ≈ 2192 1.676
2 ≈ 2224 3.085
2 ≈ 2256 3.528
2 ≈ 2320 6.85
2 ≈ 2512 23.323
3 ≈ 2128 1.604
3 ≈ 2144 1.808
3 ≈ 2160 2.792
3 ≈ 2192 3.538
3 ≈ 2224 4.53
3 ≈ 2256 5.343
3 ≈ 2320 10.28
3 ≈ 2512 36.209

3.4 Previous Hardware Implementations of HECC 45

embedded systems and analyzing the achieved results.

3.4 Previous Hardware Implementations of HECC

This section gives a short overview of the hardware implementations targeting HECC.

The first work discussing hardware architectures for the implementation of HECC

appeared in [Wol01,WP02]. The authors describe efficient architectures to implement the

necessary field operations and polynomial arithmetic in hardware. All of the presented

architectures are speed and area optimized. In [Wol01], they also estimated that for a

hypothetical clock frequency of 20 MHz, the scalar multiplication of HECC would take

21.4 ms using the window NAF method.

In [BCLW02] the authors presented the first complete hardware implementation of a

hyperelliptic curve coprocessor on FPGA. This implementation targets a genus-2 HEC

over F2113 . The target platform is a Xilinx II FPGA. Point addition and point dou-

bling with a clock frequency of 45MHz take 105µs and 90µs, respectively. The scalar

multiplication could be computed in 20.2 ms.

In [Cla02,Cla03] the authors presented extended results of [BCLW02]. They imple-

mented a HECC coprocessor using a variety of base fields, ranging from F283 to F2163 , as

well as two different multipliers (digit size D=1 and D=4). The scalar multiplication

takes between 9ms and 40ms, and uses between 22,000 and 119,000 slices. Analyzing

the implementation numbers given in the paper, one notice, that especially the design

options using D=4 multipliers have unreasonable hardware requirements.

Note that publications mentioned so far adopt the Cantor algorithm to compute group

operations. Today, there exist more efficient algorithms to compute group addition and

group doubling, as described in the previous sections.

3.4 Previous Hardware Implementations of HECC 46

The first approach to implement hyperelliptic curve cryptosystem in hardware us-

ing explicit formulae is presented in [EMY04]. The authors used the inversion-free

group operations for HECC introduced in [Lan02b]. The results presented used a field

GF(2113), two different methods for the scalar multiplication (Binary Expansion Method

and NAF), and two different digit multipliers (D = 1 and D = 4). They were able to

reach a speed of 2.03ms for the best scalar multiplication. More details about the results

presented in [EMY04] are given in Table 3.2.

Table 3.2: Previous results of the HEC implementations on FPGA.
group order Clock Cycles Slices Freq Time

[MHz] [ms]
[Cla03] affine coord.

binary (D=1) ≈ 2166 - 22,000 - 10.00
binary (D=4) ≈ 2166 - 60,000 - 9.00

[EMY04] proj. coord.
binary (D=1) ≈ 2226 339,057 22,183 45.6 7.53
NAF (D=1) ≈ 2226 332,913 21,550 45.6 7.39
binary (D=4) ≈ 2226 95,286 25,911 46.7 2.12
NAF (D=1) ≈ 2226 91,606 25,271 45.3 2.03

4 Improving the Explicit Formulae

In this chapter we describe our work on improving the group operations for the HECC.

Part of the work presented in this section was published in [PWGP03,PWP03,PWP04b,

PWP04a]. The ideas of [GH00] were the starting point for our improvements. For more

details concerning Harley’s algorithm, see Section 2.10.

We will first start to describe the methods that we used to improve the HEC group

operations. One of the techniques applies the Karatsuba method to reduce the com-

plexity of polynomial reduction, which we generalized in our work. This will be followed

by the presentation of our optimized group operation. We decreased the complexity for

Cantor’s and Harley’s algorithm and the inversion-free group operations. We end this

chapter with a short summary of the fastest explicit formulae for HECC to date.

4.1 Methods to Improve the Explicit Formulae

In this section, we list all techniques used to improve the efficiency of the explicit for-

mulae.

4.1 Methods to Improve the Explicit Formulae 48

4.1.1 Montgomery’s Trick of Simultaneous Inversions

The idea of Montgomery is reduce the number of inversions at the cost of some cheaper

operations, e.g., multiplications [Coh93, Algorithm 10.3.4], by simultaneous inversion.

The idea is to combine two or more inversions into one inversion. Without loss of

generality (WLOG) we consider the group addition on genus-2 HECC to illustrate its

application.

Harley’s Algorithm needs two field inversions, see Algorithm 3, Steps 2 and 5. These

steps can be modified. Instead of computing

s(x) = s1x + s0 ≡ v2 − v1

u1

mod u2,

one first computes the resultant r of u1 and u2

inv ≡ r

u1

mod u2 (no field inversion needed)

and

s′(x) = rs ≡ (v2 − v1) · inv mod u2.

In the latter step only one inversion is necessary to obtain both r−1 and s−1
1 . The

variable s−1
1 is required in Algorithm 3 to make u′ monic and r−1 is required to calculate

s(x) = s′r−1. First, one has to compute the inverse w1 = (rs′1)
−1, then s and r−1 can be

calculated:

r−1 = w1s
′
1

s(x) = s1x + s0 =
s′

r
=

s′1
r

x +
s′0
r

.

s−1
1 is then obtained by

s−1
1 = w1r

2 =
r

s′1
.

4.1 Methods to Improve the Explicit Formulae 49

4.1.2 Reordering of the Normalization Step

Reordering allows one to calculate the required monic polynomial u′ (Algorithm 2,

Step 4, and Algorithm 3, Step 5) while saving field operations [Tak02]. The highest

order term of u′ results from the product of s and z divided by u2. Since u2 is monic,

the leading coefficient of u′ is s2
1. Thus, the step of making u′ monic is unnecessary if

the polynomial s is already monic (i.e., s1 = 1). In [Tak02], the author shows that this

simplification of using Smonic instead of s saves one multiplication in total for the case

of genus 2. In this contribution, we show that in the case of genus-3 and genus-4 curves

one can save even more multiplications. In the following we show, that u′ is already

monic:

let w4 =
1

s1

and w5 = w2
4

u′ =
1

u2

[
smonic(smonicu1 + w4(h + 2v1))− w5

f − v1h− v2
1

u1

]

=
1

u2

[
sw4(sw4u1 + w4(h + 2v1))− w5

f − v1h− v2
1

u1

]
with smonic = sw4

=
w2

4

u2

[
s(su1 + h + 2v1)− f − v1h− v2

1

u1

]

= −w2
4u = − u

s2
1

Using the reordering, the calculation of v′ changes as follows:

with w3 = s1, v′ = −(w3smonicu1 + h + v1) mod u′

= −(w3w4su1 + h + v1) mod u′

= −(su1 + h + v1) mod u′

4.1 Methods to Improve the Explicit Formulae 50

4.1.3 Karatsuba Multiplication

In 1962, Karatsuba introduced an algorithm to multiply two polynomials [KO63]. Com-

pared to the schoolbook method, the Karatsuba Algorithm (KA) saves multiplications

of the coefficients at the cost of extra additions. Hence, if the ratio of the complexity of a

coefficient multiplication and a coefficient addition is higher than a certain value, KA is

more efficient. Since its introduction, further work was done to improve the KA and to

find bounds of the complexity [Knu81,LSW83,Win77]. In [Ber01], Bernstein presented

a survey of different methods to multiply polynomials. In [WP03a], detailed information

on the usage of KA in order to multiply with the least cost is provided. Furthermore, a

table states the computational cost of the KA for polynomials up to a degree of 127.

In [KO63], the efficient multiplication of two polynomials of degree 1 is introduced.

We will briefly develop the KA and refer the interested reader to the given literature.

Given two polynomials A(x) = a1x + a0 and B(x) = b1x + b0. Let D0 = a0b0, D1 = a1b1

and D0,1 = (a0 + a1)(b0 + b1). The product of two polynomials can be computed as:

C(x) = D1x
2 + (D0,1 −D0 −D1)x + D0

The total cost is four additions and three multiplications. Whereas, if using the school-

book method, four multiplications and one addition are needed. Thus, we save one

multiplication at the cost of three extra additions.

4.1.4 Karatsuba Reduction

The technique introduced by Karatsuba can be used to efficiently compute the reduction

of two polynomials. We generalized the use of Karatsuba for the reduction of polynomials

in Chapter 4.2.

4.1 Methods to Improve the Explicit Formulae 51

4.1.5 Efficient Division

In [vzGG99], an efficient way to calculate the quotient of two polynomials is presented.

The division is based on the observation that the quotient of two polynomials of degree

deg1 and deg2, with deg1 > deg2, depends only on the deg1−deg2 +1 highest coefficients

of the dividend and the deg1− deg2 + 1 highest coefficients of the divisor. Hence, we do

not have to consider all coefficients of the polynomials.

This efficient division is, for example, used in Step 8 in Table A.6. One has to compute

u3 = (f − v′h− v′2)/u′ with deg(f − v′h− v′2) = 7 and deg(u′) = 4. Thus, only the four

highest coefficients of the two terms are needed to compute u3 (Notice, that f7 = u′4 = 1

and therefore do not appear in the formula).

4.1.6 Calculation of the Resultant Using Bezout’s Matrix

The calculation of the resultant using Bezout’s matrix in the case of genus-3 HEC can be

performed very efficiently. Notice, that there is no benefit when applying the Bezout’s

matrix to genus-2 and genus-4 HEC.

The resultant of two polynomials a =
∏n

i=1(x− αi) and b =
∏m

j=1(x− βj) is defined by

r(a, b) =
∏n

i=1

∏m
j=1(βj − αi).

Let a = x3 + ax2 + bx + c and b = x3 + dx2 + ex + f , then the resultant calculated

with the Bezout’s matrix is given by

r(a, b) = (f + ea− c− bd)[(−c + f)2 − (−a + d)(fb− ce)] + (fa− cd)

[(fa− cd)(−a + d)− 2(−b + e)(−c + f)] + (fb− ce)(−b + e)2.

In general, the total cost of this operation is 12 multiplications and 2 squarings. For

two input polynomials in the case of doubling, the resultant is less complex and can be

4.2 Karatsuba Reduction 52

computed with 6 multiplications and 2 squarings. For more details, see Tables A.6 and

A.7.

4.2 Karatsuba Reduction

In our contribution, we used the idea of the algorithm presented by Karatsuba [KO63]

to minimize the computational complexity of polynomial modulo reduction, denoted

as Karatsuba reduction. In the context of HECC, this idea was first used for genus-2

curves targeting small polynomials in [GH00, KGM+02]. In this work, we generalized

the procedure for polynomials of arbitrary degree.

Let the polynomial A(x) =
∑m+d

i=0 aix
i to be reduced by the polynomial P (x) =

xm + p(x) = xm +
∑m−1

i=0 pix
i of degree m. Recursive application of Equation (4.1) is

a simple way to perform modulo reduction whenever encountering powers of x greater

than m− 1.

xm = −p(x) =
m−1∑
i=0

(−pi)x
i (4.1)

4.2.1 Reduction with Degree Difference One

In this subsection, we will derive an algorithm to reduce a polynomial A(x) with degree

m+1, where m is the degree of the reduction polynomial. If using the method described,

one can save one multiplication at the extra cost of three additions. The following

example will sketch the idea of the Karatsuba reduction.

4.2 Karatsuba Reduction 53

Example: Let, the polynomial A(x) be of degree 3 and let P (x) be monic

of degree 2.

B(x) = A(x) mod P (x)
1∑

i=0

bix
i =

3∑
i=0

aix
i mod (x2 +

1∑
i=0

pix
i)

In the first step, x3 = −x(p1x + p0) = −p1x
2 − p0x can be substituted in the

polynomial A(x) and we set a3 = T0. Hence,

B(x) = [a2 − T0p1]x
2 + [a1 − T0p0]x + a0 mod P (x). (4.2)

In the second step, x2 = −p1x − p0 is substituted in Equation (4.2) and we

replace T1 = a2 − T0p1.

B(x) = [a1 − T0p0 − T1p1]x + [a0 − T1p0] mod P (x) (4.3)

In Equation (4.3), we can apply Karatsuba in order to save one multiplica-

tion, as we have already computed T0p1.

B(x) = [a1 − (T0 + T1)(p0 + p1) + T0p1 + T1p0]x + [a0 − T1p0] mod P (x) (4.4)

In Equation (4.3), the total cost of the polynomial reduction without using Karatsuba

reduction is 4 multiplications and 4 additions (1M and 1A to calculate T1; 3M and 3A in

Equation (4.3)). In Equation (4.4), after applying Karatsuba reduction, we need 3 mul-

tiplications and 7 additions (1M and 1A to calculate T1; 2M and 6A in Equation (4.4)).

Now, consider an algorithm to reduce polynomials with m + 1 coefficients, where m is

any positive integer and the degree of the monic reduction polynomial P (s).

4.2 Karatsuba Reduction 54

B(x) =





∑(m−1)/2
l=1 [(−T1p2l − T0p2l−1 + a2l)x− T1p2l−1

−T0p2l−2 + a2l−1]x2l−1 − T1p0 + a0 for odd m
(−T1pm−1 − T0pm−2 + am−1)xm−1 +

∑m/2−1
l=1 [(−T1p2l − T0p2l−1

+a2l)x− T1p2l−1 − T0p2l−2 + a2l−1]x2l−1 − T1p0 + a0 for even m

(4.6)

=





∑(m−1)/2
l=1

[
(−T1p2l − T0p2l−1 + a2l)x− (T1 + T0)(p2l−1 + p2l−2)

+ T1p2l−2 + T0p2l−1 + a2l−1

]
x2l−1 − T1p0 + a0 for odd m[

− (T1 + T0)(pm−1 + pm−2) + T1pm−2 + T0pm−1 + am−1

]
xm−1

+
∑m/2−1

l=1 [(−T1p2l − T0p2l−1 + a2l)x− (T1 + T0)(p2l−1 + p2l−2)
+T1p2l−2 + T0p2l−1 + a2l−1]x2l−1 − T1p0 + a0 for even m

(4.7)

Compute

B(x) = A(x) mod P (x)
m−1∑
i=0

bix
i =

m+1∑
i=0

aix
i mod (xm +

m−1∑
i=0

pix
i).

After substituting xm+1 = −∑m−1
i=0 pix

i+1 and xm = −∑m−1
i=0 pix

i we get

B(x) = am+1

[
pm−1p0 +

m−1∑
i=1

xi(pm−1pi − pi−1)
]

+ am

[
−

m−1∑
i=0

pix
i
]

+
m−1∑
i=0

aix
i

=
m−1∑
i=1

[
pi(am+1pm−1 − am)− am+1pi−1 + ai

]
xi + p0(am+1pm−1 − am) + a0.

For the sake of simplicity we set the leading coefficients T0 := am+1 and T1 := am −
am+1pm−1.

B(x) =
m−1∑
i=1

[
− piT1 − T0pi−1 + ai

]
xi − p0T1 + a0 (4.5)

We have to consider two cases — m odd and even — in order to be able to apply

Karatsuba reduction for the reduction of A(x) in Equation (4.6). The result is shown

in Equation (4.7).

4.2 Karatsuba Reduction 55

Table 4.1: Cost of standard polynomial reduction versus Karatsuba reduction.
m standard Karatsuba tmult/

tadd

2 4M + 4A 3M + 7A 3
3 6M + 6A 5M + 9A 3
4 8M + 8A 6M + 14A 3
5 10M + 10A 8M + 16A 3
6 12M + 12A 9M + 21A 3
7 14M + 14A 11M + 23A 3
8 16M + 16A 12M + 28A 3
...

...
...

...
m 2mM + 2mA d3/2meM + (8m− 3d3/2me)A 3

For m odd one has to perform (m−1)/2 times 3M+7A and additionally 2M+2A. Each

partial addend comprises the following three multiplications: (T1 + T0)(p2l−1 + p2l−2),

T0p2l−1, and T1p2l. Note, that T0p2l−1 occurs twice but has to be calculated only once and

that T1p2l−2 is known from the previous step. In addition, two multiplications am+1pm−1

and T1p0 have to be computed.

For m even, one has to provide in total m/2 times 3M and 7A. Hence, one more

multiplication is necessary: (T1 + T0)(pm−1 + pm−2). T1pm−2 was already calculated in

an earlier step and T0pm−1 was computed in order to get T1.

Corollary 4.2.1 Let #M and #A be the number of multiplications and additions, re-

spectively, required to reduce a polynomial with degree m + 1 modulo a reduction polyno-

mial of degree m. Using Karatsuba reduction as shown in Equation (4.7), we need

d3/2meM + (8m− 3d3/2me)A. (4.8)

In the case of the schoolbook method, as it can be seen in Equation (4.5), one needs

to perform (m− 1)(2M + 2A) + 2M + 2A = m(2M + 2A) operations. Table 4.1 shows

a comparison of the Karatsuba reduction and the schoolbook method. From the table,

4.2 Karatsuba Reduction 56

it can be seen that the ratio between the execution time of multiplication and addition

is always 3. Therefore, Karatsuba reduction is more efficient if the execution time for

one coefficient multiplication is higher than the time to perform three additions, which

is the case for most software and hardware implementations.

The complete calculation using Karatsuba reduction with degree difference one is

merged in Algorithm 4.

Algorithm 4 Karatsuba reduction (degree difference d = 1).

Require:
Polynomial P (x) = xm +

∑m−1
i=0 pix

i of degree m,
Polynomial A(x) =

∑m+1
i=0 aix

i of degree m + 1
Ensure: B(x) = A(x) mod P (x) =

∑m−1
i=0 bix

i

1: T0 = am+1

2: T1 = am − T0pm−1

3: b0 = a0 − T1p0

4: for l = 1 to bm−1
2
c do

5: b2l−1 = a2l−1 − (T0 + T1)(p2l−1 + p2l−2) + T1p2l−2 − T0p2l−1

6: b2l = a2l − T1p2l − T0p2l−1

7: end for
8: if m even then
9: bm−1 = am−1 − (T0 + T1)(pm−1 + pm−2) + T1pm−2 + T0pm−1

10: end if
11: Output B(x) =

∑m−1
i=0 bix

i

4.2.2 Reduction with Arbitrary Degree Difference

In this section we generalize the results from Section 4.2.1 to arbitrary degree difference

d of the polynomial to be reduced and the reduction polynomial. Let

B(x) = A(x) mod P (x) =
m+d∑
i=0

aix
i mod xm +

m−1∑
i=0

pix
i (4.9)

with an integer d ≥ 1.

We reduce the polynomial
∑m+d

i=0 aix
i by recursively inserting xm+j = −xj

∑m−1
i=0 pix

i

4.2 Karatsuba Reduction 57

B(x) =

m+d−2
2∑

l= d+1
2

{
[a2l − T0p2l−d − T1p2l−d+1]x + [a2l−1 − T0p2l−1−d − T1p2l−d]

}
x2l−1

+(ad−1 − T1p0)x
d−1 +

d−2∑
i=0

aix
i (4.12)

=

m+d−2
2∑

l= d+1
2

{
[a2l − (T0 + T1)(p2l−d + p2l−d+1) + T0p2l−d+1 + T1p2l−d]x

+[a2l−1 − T0p2l−1−d − T1p2l−d]
}
x2l−1 + (ad−1 − T1p0)x

d−1 +
d−2∑
i=0

aix
i (4.13)

for 0 ≤ j ≤ d. The reduction for arbitrary degree difference consists of two substitution

steps, that are repeatedly computed d/2 or (d − 1)/2 times for d even or odd, respec-

tively. In the following we describe these steps in more detail and summarize them in

Algorithm 5.

STEP 1: We substitute xm+d = −xd
∑m−1

i=0 pix
i and T0 = am+d into Equation (4.9) :

B(x) = (am+d−1 − T0pm−1)x
m+d−1 +

m+d−2∑

i=−d

(ai − T0pi−d)x
i +

d−1∑
i=0

aix
i (4.10)

STEP 2: We substitute xm+d−1 = −xd−1
∑m−1

i=0 pix
i and T1 = (am+d−1− am+dpm−1) into

Equation 4.10:

B(x) =
m+d−2∑

i=d

(ai − T0pi−d − T1pi−d+1)x
i + (ad−1 − T1p0)x

d−1 +
d−2∑
i=0

aix
i (4.11)

Next, we assume WLOG m and d to be odd. We rewrite Equation (4.11) in order

to be able to apply Karatsuba reduction on Equation (4.12). The result is given in

Equation (4.13).

After the second step, we have a polynomial B(x) of degree m+d−2. Thus, we are able

4.2 Karatsuba Reduction 58

to reduce the degree of the polynomial by 2. Step 1 and Step 2 have to be repeated d/2

or (d + 1)/2 times in order to reduce A(x) for d odd or even, respectively. After each

iteration of Step 1 and 2 we set A(x)i = B(x)i−1. Algorithm 5 summarizes this iteration

of Step 1 and 2.

Algorithm 5 Karatsuba reduction (arbitrary degree difference).

Require:
Polynomial P (x) = xm +

∑m−1
i=0 pix

i of degree m,

Polynomial B(d)(x) =
∑m+d

i=0 b
(d)
i xi of degree m + d

Ensure: B(x) = B(d)(x) mod P (x) =
∑m−1

i=0 bix
i

1: while d > 0 do
2: T0 = b

(d)
m+d

3: T1 = b
(d)
m+d−1 − T0pm−1

4: b
(d−2)
d−1 = b

(d)
d−1 − T1p0

5: for l = dd+1
2
e to bm+d−2

2
c do

6: b
(d−2)
2l = b

(d)
2l − (T0 + T1)(p2l−d + p2l−d+1) + T0p2l−d+1 − T1p2l−d

7: b
(d−2)
2l−1 = b

(d)
2l−1 − T0p2l−d−1 − T1p2l−d

8: end for
9: if m even then

10: b
(d−2)
m+d−2 = −(T0 + T1)(pm−1 + pm−2) + T1pm−2 + T0pm−1 + b

(d)
m+d−2

11: end if
12: for j = 0 to d− 2 do
13: b

(d−2)
j = b

(d)
j

14: end for
15: d = d− 2
16: end while
17: if d = 0 then
18: for j = 0 to m− 1 do
19: b

(−1)
j = b

(d)
j − b

(d)
m · pj

20: end for
21: end if
22: Output B(x) =

∑m−1
j=0 bjx

i = B(−1)(x)

Corollary 4.2.2 Let #M and #A be the number of multiplications and additions, re-

spectively, to reduce a polynomial of degree m + d, where d is a positive integer and

where m is the degree of the reduction polynomial. Thus, we need to perform d + 1

reduction steps in order to replace all terms with occurrences of xk where k ≥ m. In

4.2 Karatsuba Reduction 59

Equation (4.13) the cost of the two successive reduction steps is reduced by combining the

calculation of the coefficients using Karatsuba reduction. The cost of each “double-step”

is equivalent to the cost described in Corollary 4.2.1. Thus, the total cost is as stated in

Equation (4.14).

Cost




bd+1

2
c
[
d3/2meM + (8m− 3d3/2me)A

]
for odd d

bd+1
2
c
[
d3/2meM + (8m− 3d3/2me)A

]
+ mM + mA for even d

(4.14)

In the case of even d, we have to add an additional step after applying Karatsuba.

This last step reduces the polynomial with degree m, by substituting xm =
∑m−1

i=0 (−pi)x
i.

Hence, we need m additional multiplications and m additions. Applying Karatsuba reduc-

tion to the additional step does not result in a more efficient way to reduce the polynomial

of degree m.

If we use the schoolbook method instead, we need m multiplications and m additions

for each reduction step, thus m(d + 1)[M + A] in total.

4.2.3 Optimal Reduction Polynomials

In Subsections 4.2.1 and 4.2.2, we considered only reduction polynomials with all co-

efficients non-zero. In most cases, reduction polynomials will have only some non-zero

coefficients. In this case Corollary 4.2.3 should be considered.

Corollary 4.2.3 Let #M and #A be the number of multiplications and additions, re-

spectively, to reduce a polynomial A(x) with degree m + d, where d is a positive integer.

The reduction polynomial is given by P (x) = xm + xt1 + xt2 + xt3 + · · ·+ xti, where i + 1

is the number of non-zero coefficients. Hence, the cost to reduce the polynomial A(x) is

4.3 Improving the Group Operation 60

given in Equation (4.15).

Cost




bd+1

2
c[d3/2ieM + (8i− 3d3/2ie)A]

for odd d

bd+1
2
c[d3/2ieM + (8i− 3d3/2ie)A]

+ iM + iA for even d
(4.15)

Corollary 4.2.4 In case of schoolbook or Karatsuba reduction, a polynomial with the

smallest possible number of non-zero coefficients results in a minimum of computational

cost.

4.3 Improving the Group Operation

After Koblitz suggested HEC for the use for a cryptosystem in 1989, it took over 10

years until the first improvements of the group operation were published. In [GH00],

the authors proposed explicit formulae for the group operations. For the deviation of

the explicit formulae, polynomial calculations are mapped onto field operations. For

genus-2 HEC, such a mapping can be calculated quite easily, since the degree of the

occurring polynomials is low. Deriving explicit formulae for higher genus HEC is more

complicated since with increasing genus the degree of the polynomials rises. For higher

genera, the problem becomes intractable by hand and the use of additional tools for the

mathematical evaluation of all equations is required.

Choice of HEC with Certain Properties: A detailed analysis of the explicit formu-

lae gives rise to certain types of curves with low complexity, i.e., optimal performance

regarding the number of required field operations for the execution of the group opera-

tions. As a result of this analysis, curves of the form y2 + y = f(x) over extension fields

of characteristic two turn out to be the best option. Unfortunately, this type of curve

is supersingular for genus 2 and genus 4 [Gau00b,Gal01]. To our knowledge, curves of

this form for genus 3 have no security limitations [SZ02]. Hence, curves of the form

4.3 Improving the Group Operation 61

y2 + h(x)y = f(x), with h(x) = x give the best performance for genus 2 and genus 4.

According to [Lan03], for genus-2 curves, even characteristic, and deg[h(x)] = 1, we

can achieve f3 = f4 = 0. With the substitution x → x − f4/5 we obtain a curve

where f4 = 0. y → y + h−1
1 f3x

2 provides f3 = 0. In addition, if we can find a b such

that f3h0 + b2h1 + bh2
1 = f2h

−1
1 has a solution, we can achieve f2 = 0 by substituting

y → y + h1f3x
2 + bx. For our improvements we assume genus-2 curves of the form

y2 + xy = x5 + f1x + f0 where f0, f1 ∈ F2n . Similarly, one can achieve efficient curve

equations for genus-3 y2 + xy = x7 + f1x + f0 where f0, f1 ∈ F2n and genus-4 HEC

y2 + xy = x9 + f1x + f0 where f0, f1 ∈ F2n .

Note, we integrated the parameters mentioned above to speed-up our implementation

of HECC. However, all explicit formulae presented in the appendix are for the most

general case.

4.3.1 Optimization of Cantor’s Group Operation

In this subsection, we consider the group operations presented in [Can87] and apply the

techniques introduced in Chapter 4.1, resulting in efficient group operations for genus-2,

genus-3, and genus-4 HECC. Table 4.2 summarizes the efforts made to date and our

contribution to speed up Cantor’s algorithm. The detailed instruction, how to calculate

the group operations are given in the appendix.

This is the first contribution that presents explicit formulae of Cantor’s algorithm for

genus 2, 3, and 4. Hence, we were able to speed up the group operations for all genera.

In the following, we will compare our results with the ones presented in [Nag00]. Our

improvements are stated in Table 4.2 and are based on the following assumptions:

• We consider the cardinality of the resulting group to be ≈ 2160.

4.3 Improving the Group Operation 62

• We apply different time complexities for the field inversions over F2m (the following

numbers are based on the implementation results presented in Table 6.9). Some of

the implementations might have potential cryptographical weaknesses according

to [Fre98,GHS02], however, we would like to emphasize that the implementation

techniques are also applicable to fields with prime extensions, see Page 4.

– m = 81 for genus-2 HEC and m = 57 for genus-3 HEC: one inversion has the

same time complexity as six multiplications.

– m = 53 for genus-4 HEC: one inversion has the same time complexity as four

multiplications.

– We compare our results with the best known formulae published.

Based on the assumption given above, one draws the following conclusions: Our genus-

2 HEC group operation saves up to 6M/S in the case of adding divisors and 1I as well

as up to 20M/S in the case of doubling a divisor. This complies with an improvement

of 9% and 43% for addition and doubling, respectively. Using our formulae for certain

genus-3 curves one can save 24% (corresponding to 40M/S) and 78% (equals 1I and

107M/S) of the computational cost for adding and doubling, respectively. In addition,

we were able to reduce the computational cost of genus-4 curves by 76M/S for group

addition and 1I and 171M/S doubling. Hence, the speed up in these cases were 26%

and 64%, respectively.

4.3.2 Optimization of Harley’s Group Operation

The approach presented in [GH00] was also optimized by us using the techniques in

Chapter 4.1. We were able to speed up the group operation of genus-2, genus-3 and

genus-4 HECC. Table 4.3 presents a summary of our work, as well as of all the previous

4.3 Improving the Group Operation 63

work that has been done on improving Harley’s algorithm. All the steps necessary to

compute the group operations using the explicit formulae are presented in the appendix.

The analysis of our results in Table 4.3 is based on: the cardinality of the underlying

group is ≈ 2160, in the case genus-2 HEC and genus-3 HEC one inversion has the same

time complexity as six multiplications, and for genus-4 HEC one inversion has the same

time complexity as four multiplications. The time complexity assumptions are based on

our implementation results (see Table 6.9). Hence one can draw the following conclusions

from our newly derived group operations based on Harley’s considerations:

• We introduced for the first time genus-3 explicit formulae for arbitrary character-

istic.

• This work presents (for the first time) explicit formulae for hyperelliptic curve

cryptosystems of genus 4 based on Harley’s algorithm.

• We could improve the explicit formulae for arbitrary characteristic for genus-3

and genus-4 hyperelliptic curves compared to the previous publications [KGM+02]

and [Nag00], respectively.

• For characteristic two fields, we could decrease the costs to calculate the group

operations on special genus-2, genus-3, and genus-4 curves.

• Considering certain curve parameters we were able to save 35% for the genus-2

doubling operation compared to the best known formulae [Lan02a,Lan03].

• Our fastest genus-3 group curve uses 42M/S less for the group doubling as pre-

sented in [GMA+04]. These savings correspond to 54%.

• In the case of genus-4 curves there is no other publication introducing explicit

formulae. Hence, we compare our results with the best known formulae based on

4.3 Improving the Group Operation 64

Cantor’s equations and presented in [Nag00]. Our results need one inversion as

well as 140 and 188 less multiplications/squarings for the addition and doubling,

respectively. Hence, we were able to improve the performance by 46% and 66%

for the genus-4 HEC group operations.

4.3.3 Optimization of Inversion-Free Explicit Formulae

In [MDM+02,Lan02b,Lan03], the authors introduced a way to calculate the HEC group

operations without using inversions. The authors in [MDM+02] were the first to publish

this kind of approach. Their results were improved and generalized to even characteristic

in [Lan02b,Lan03]. For the remainder of the paper we refer to affine coordinates, when

talking about the usual representation. Projective denotes the inversion-free represen-

tation (analogous to the elliptic curve cryptosystem).

In order to save the inversion one has to introduce a coordinate space Z. Hence, the

two polynomials representing a divisor are given as following: u(x) = x2 + U1/Zx +

U0/Z and v(x) = V1/Zx + V0/Z. We abbreviate a divisor in projective system as

[U1, U0, V1, V0, Z].

In order to obtain a greater speed-up for some scalar multiplication algorithms one can

use mixed coordinates as inputs for the addition. Mixed addition was first introduced

in [Lan02b] building on [CMO98].

We optimized the group doubling, group addition, and the mixed addition and the

newly derived formulae can be found in Table A.15, A.16, and A.17, respectively. In

addition, we optimized the explicit formulae for inversion-free doubling using affine in-

put, see Table A.18. This formulae can be useful to get another small speed gain, in

applications where area or code size is not an issue. The decrease of field operations

for projective group operations could be achieved by applying the methods described in

4.4 Summary: HECC Group Operation 65

Section 4.1.

Table 4.4 compares our result with the best ones previously published. The complexity

of the squaring operations for characteristic two fields is very low and can therefore be

neglected in the comparison. We could achieve up to 18% improvement with our newly

derived formulae in the case of the doubling operation. Hence, the scalar multiplication

using double-and-add can be improved by 14% for 160bit security.

4.4 Summary: HECC Group Operation

The aim of this section is to give a summary of the chapter. In the first part of the

chapter we presented our techniques used for the improvement of the explicit formulae.

The section includes the description of well known techniques like Montgomery’s trick of

simultaneous inversions, Karatsuba multiplication, and efficient division. Furthermore,

we explained how to use the Bezout’s matrix and the reordering of calculation steps to

improve the HECC group operations.

In the second part of the chapter, we generalized the Karatsuba reduction that is used

for efficient polynomial reduction. This technique allows to substitute one multiplication

by three addition. Therefore, Karatsuba reduction is more efficient if the execution time

for one coefficient multiplication is higher than the time to perform three additions.

In the third part of the chapter we introduced our explicit formulae. In this section,

we provided the most efficient HECC group operations at the time of writing. The bold

numbers in Table 4.2, 4.3 and 4.4 indicate the fastest group operations to date where

we include special cases. Table 4.5 summarizes the explicit formulae one should use for

an efficient implementation of HECC. In most of the cases, the group operations based

on Harley’s algorithm perform better. However, it is noticeable that the performance

of the doubling operation for certain curves based on Harley or Cantor are almost the

4.4 Summary: HECC Group Operation 66

same.

We showed that explicit formulae for the group doubling based on Cantor’s algorithm

in the case of genus-3 HEC are faster than the explicit formulae based on Harley. This

result was achieved through the choice of specific curve parameters that allow further

optimization in Cantor’s algorithm.We are aware of the fact that Harley’s approach

should always be faster compared to Cantor’s algorithm. However, even after a lot of

effort was put into the improvement of Harley’s algorithm we were not able to match

the performance numbers we achieved with the Cantor approach.

At this point we want to clarify that we applied a sequence of improvements techniques

to achieve the presented results. This is somewhat of an ad-hoc approach which does

not necessarily lead to optimal results. Rather, the complexity of the explicit formulae

presented in this chapter should be viewed as upper bound. One can most probably

improve the given group operations further, by finding new improved methods or by

restructuring the operations and using the methods given in Chapter 4.1. Hence, this

chapter presented the historical development of HECC as well as the best explicit group

operations known today. We challenge the research community as well as industry to

further improve the group operations leading to a faster computation of HECC.

4.4 Summary: HECC Group Operation 67

T
ab

le
4.

2:
G

ro
u
p

op
er

at
io

n
s

u
si

n
g

C
an

to
rs

A
lg

or
it

h
m

.

ge
n
u
s

fi
el

d
cu

rv
e

co
st

ch
ar

ac
.

p
ro

p
er

ti
es

ad
d
it

io
n

d
ou

b
li
n
g

2
C

an
to

r
[N

ag
00

]
ge

n
er

al
3I

+
70

M
/S

3I
+

76
M

/S
N

ag
ao

[N
ag

00
]

o
d
d

h
(x

)
=

0,
f i
∈
F 2

2I
+

52
M

/S
2I

+
49

M
/S

ou
r

w
or

k
ge

n
er

al
h

i
∈
F 2

,
f 4

=
0

2I
+

44
M

+
4S

2I
+

42
M

+
8S

tw
o

h
i
∈
F 2

,
f 4

=
0

2I
+

42
M

+
4S

2I
+

40
M

+
8S

tw
o

h
(x

)
=

x
,
f 4

=
0

2I
+

42
M

+
4S

I
+

23
M

+
6S

T
ab

le
A

.4
T
ab

le
A

.5
im

p
ro

ve
m

en
ts

9%
43

%

3
C

an
to

r
[N

ag
00

]
ge

n
er

al
4I

+
20

0M
/S

4I
+

20
7M

/S
N

ag
ao

[N
ag

00
]

o
d
d

h
(x

)
=

0,
f i
∈
F 2

2I
+

15
4M

/S
2I

+
13

2M
/S

ou
r

w
or

k
ge

n
er

al
h

i
∈
F 2

,
f 6

=
0

2I
+

11
8M

+
4S

2I
+

10
6M

+
19

S
tw

o
h

i
∈
F 2

,
f 6

=
0

2I
+

11
0M

+
4S

2I
+

98
M

+
13

S
tw

o
h
(x

)
=

1,
f 6

=
0

2I
+

11
0M

+
4S

I
+

1
4
M

+
1
1
S

T
ab

le
A

.8
T
ab

le
A

.9
im

p
ro

ve
m

en
ts

24
%

78
%

4
C

an
to

r
[N

ag
00

]
ge

n
er

al
6I

+
38

6M
/S

6I
+

35
9M

/S
N

ag
ao

[N
ag

00
]

o
d
d

h
(x

)
=

0,
f i
∈
F 2

3I
+

28
6M

/S
3I

+
26

0M
/S

ou
r

w
or

k
ge

n
er

al
h

i
∈
F 2

,
f 8

=
0

3I
+

22
2M

+
6S

3I
+

20
6M

+
17

S
tw

o
h

i
∈
F 2

,
f 8

=
0

3I
+

20
4M

+
6S

3I
+

18
1M

+
14

S
tw

o
h
(x

)
=

x
,
f 8

=
0

3I
+

20
4M

+
6S

2I
+

76
M

+
13

S
T
ab

le
A

.1
3

T
ab

le
A

.1
4

im
p
ro

ve
m

en
ts

26
%

64
%

4.4 Summary: HECC Group Operation 68

T
ab

le
4.

3:
G

ro
u
p

op
er

at
io

n
s

u
si

n
g

H
ar

le
y
’s

A
lg

or
it

h
m

.

ge
n
u
s

fi
el

d
cu

rv
e

co
st

ch
ar

ac
.

p
ro

p
er

ti
es

ad
d
it

io
n

d
ou

b
li
n
g

2
H

ar
le

y
[H

ar
00

]
o
d
d

h
(x

)
=

0
2I

+
27

M
/S

2I
+

30
M

/S
L
an

ge
[L

an
01

]
ge

n
er

al
h

2
=

1
2I

+
24

M
+

3S
2I

+
26

M
+

6S
M

at
su

o
et

al
.
[M

C
T

01
]

o
d
d

h
(x

)
=

0
2I

+
25

M
/S

2I
+

27
M

/S
M

iy
am

ot
o

et
al

.
[M

D
M

+
02

]
o
d
d

h
(x

)
=

0,
f 4

=
0

I
+

26
M

/S
I

+
27

M
/S

T
ak

ah
as

h
i
[T

ak
02

]
o
d
d

h
(x

)
=

0
I

+
25

M
/S

I
+

29
M

/S
S
u
gi

za
k
i
et

al
.
[S

M
C

T
02

]
ev

en
h

i
∈
F 2

I
+

25
M

+
2S

I
+

27
M

+
1S

L
an

ge
[L

an
02

a,
L
an

03
]

ge
n
er

al
f 4

=
0

I
+

22
M

+
3S

I
+

22
M

+
5S

tw
o

f 4
=

0
I

+
21

M
+

3S
I

+
20

M
+

5S
tw

o
h

2
=

0
f 4

=
0

I+
2
1
M

+
3
S

I
+

17
M

+
5S

T
ab

le
A

.1
T
ab

le
A

.2
ou

r
w

or
k

tw
o

h
(x

)
=

x
f 4

=
f 3

=
f 2

=
0

−
I+

9
M

+
6
S

T
ab

le
A

.3
im

p
ro

ve
m

en
ts

-
35

%

3
K

u
ro

k
i
et

al
.
[K

G
M

+
02

]
o
d
d

h
(x

)
=

0,
f 6

=
0

I
+

81
M

/S
I

+
74

M
/S

G
on

d
a

et
al

.
[G

M
A

+
04

]
ge

n
er

al
h
(x

)=
0,

f 6
=

0
I

+
70

M
/S

I
+

71
M

/S
ou

r
w

or
k

ge
n
er

al
h

i
∈
F 2

,
f 6

=
0

I
+

70
M

+
6S

I
+

62
M

+
10

S
tw

o
h

i
∈
F 2

,
f 6

=
0

I
+

65
M

+
6S

I
+

53
M

+
10

S
tw

o
h
(x

)
=

1,
f 6

=
0

I+
6
5
M

+
6
S

I
+

22
M

+
7S

T
ab

le
A

.6
T
ab

le
A

.7
im

p
ro

ve
m

en
ts

-
54

%

4
ou

r
w

or
k

ge
n
er

al
h

i
∈
F 2

,
f 8

=
0

2I
+

15
8M

+
6S

2I
+

19
3M

+
17

S
tw

o
h

i
∈
F 2

,
f 8

=
0

2I
+

14
6M

+
6S

2I
+

14
4M

+
17

S
tw

o
h
(x

)
=

x
,
f 8

=
0

2
I+

1
4
6
M

+
6
S

2
I+

7
2
M

+
1
3
S

T
ab

le
A

.1
1

T
ab

le
A

.1
2

im
p
ro

ve
m

en
ts

46
%

66
%

4.4 Summary: HECC Group Operation 69

T
ab

le
4.

4:
In

ve
rs

io
n
-f
re

e
gr

ou
p

op
er

at
io

n
s

fo
r

ge
n
u
s-

2
H

E
C

.
ch

ar
ac

.
cu

rv
e

ad
d
it

io
n

d
ou

b
li
n
g

m
ix

affi
n
e

p
ro

p
er

ti
es

ad
d
it

io
n

d
ou

b
li
n
g

[M
D

M
+
02

]
N

.A
.

N
.A

.
67

M
42

M
-

-
[L

an
02

b
]

o
d
d

h
2

=
0,

f 4
=

0
47

M
+

4S
38

M
+

6S
40

M
+

4S
25

M
+

5S
tw

o
h

2
=

0,
f 4

=
0

49
M

+
4S

38
M

+
7S

39
M

+
4S

ou
r

w
or

k
tw

o
h
(x

)
=

x
f 4

=
f 3

=
0

4
5
M

+
5
S

3
1
M

+
6
S

3
8
M

+
5
S

1
8
M

+
5
S

T
ab

le
A

.1
5

T
ab

le
A

.1
6

T
ab

le
A

.1
7

T
ab

le
A

.1
8

im
p
ro

v
.

8%
18

%
3%

28
%

4.4 Summary: HECC Group Operation 70

Table 4.5: Most efficient group operations for HECC.

genus addition doubling

2 I+21M+3S I+9M+6S
Table A.1 [Lan03] Table A.3

inversion-free
45M + 4S 31M + 7S
Table A.15 Table A.16

(mixed: 38M + 4S, Table A.17) (affine input: 18M + 5S, Table A.18)

3 I+65M+6S I + 14M + 11S
Table A.6 Table A.10

4 2I+146M+6S 2I+72M+13S
Table A.11 Table A.12

5 A New Complexity Metric for HECC

and ECC

In the past, providing complexity measures and, thus, comparisons between ECC and

HECC was a difficult undertaking. The operations involved in both systems were very

different (different field orders, field operations vs. operations with polynomials, etc.).

Furthermore, measures such as the bit complexity often provide very little information

about the de facto complexity in actual implementations. The underlying motivation

for the work described in the following was the development of a more accurate metric

for practical purposes. Part of this work was presented in [PWGP03].

5.1 Previous Theoretical Comparisons

In [SSI98], the authors clarified practical advantages of hyperelliptic cryptosystems when

compared to ECC and to RSA. To our knowledge this is the first and only contribution

that investigates in detail the theoretical complexity of ECC and HECC. They estimated

the cost of different cryptosystems based on the number of bit operations. In their

work they used Cantor’s formula and the cost of one multiplication in F2n was assumed

to take n2 bit operations. One of the estimated theoretical results shows that genus-

3 curves needed three times as many bit operations as elliptic curves. We want to

5.1 Previous Theoretical Comparisons 72

point out that this publication used supersingular curves [Gal01] and curves of genus

higher than 4 which today are believed to be insecure due to the attacks presented

in [FR94,Gau00b,Gal01,Thé03].

In the following years further analysis of the complexity of HECC were published.

A theoretical analysis of the computational efficiency of the arithmetic on hyperelliptic

curves is derived in [Eng99b]. In [SS00], the authors implemented hyperelliptic curve

cryptosystems and analyzed the complexity of the group law on Jacobians JC(Fp) and

JC(F2n). Moreover, they verified their theoretical complexity estimates with a HECC

implementation and with the theoretical analysis done by Enge in [Eng99b]. More

recent papers present timings for HECC using explicit formulae and compare HECC to

ECC [Lan02a,Ava04]. However, these comparisons were based on the implementation

timings.

In [Ste01], the author compared the arithmetic of hyperelliptic function fields. The

author was able to present upper bounds on the number of operations in various situa-

tions. Furthermore, the author was able to show that the group operation in imaginary

quadratic function fields and the corresponding infrastructure operation in real quadratic

function fields have identical complexity. Note that the hyperelliptic function field can

be represented as a real quadratic function field.

To our knowledge, there is no theoretical complexity comparison between ECC and

HECC published that uses the explicit formulae for HECC and compares HECC and

ECC in terms of processor instructions, such as shift and XOR operations. Hence, this

comparison is processor independent and can be adapted to any platform.

5.2 Our Metric 73

5.2 Our Metric

In this section, we introduce our new metric for HECC and ECC over characteristic two

fields which is based on an atomic operation count rather than on the (theoretical) bit

complexity or specific timings.

All operations which are computationally expensive will be expressed in terms of

atomic operations (AOPS), such as processor word-SHIFTs and XORs. In particular,

we will decompose field multiplications into AOPS. This provides a metric which allows

a comparison of fields of different sizes which is crucial for comparing ECC and HECC

with equal level of security. The approach possesses the advantage that it accurately

counts the actual elementary processor operations (as opposed to the more theoretical bit

complexity), while at the same time avoiding processor and implementation-dependent

“tricks” which can skew comparisons that are merely based on timings.

In summary, we developed a method which allows accurate predictions of the per-

formance on a given processor without the laborious task of actually implementing the

cryptosystem. The accuracy of the new metric is demonstrated by the small difference

between our theoretical and practical results (see Section 6.3.5).

In our comparison we make the following assumptions:

1. We only consider fields of characteristic two and, thus, do not need integer multi-

plications.

2. We neglect the cost of the field addition and field squaring.

3. We perform field multiplications with Algorithm 5 published1 in [LD00]. This

algorithm requires 3+2(w/4− 1) word-SHIFTs and s(11+n/4)+8(2s− 1) word-

1To our knowledge this is the fastest published multiplication algorithm for finite fields of characteristic
two.

5.3 Comparing ECC and HECC 74

XORs, where w is the word size of processor and s = d n
w
e is the number of words

needed to represent an element of the underlying field F2n .

4. We express the cost of one field inversion as x field multiplications and denote

the ratio of multiplications to inversions as MI-ratio. Note that for different

underlying fields one gets different MI-ratios. Hence, we use in the following

different variables to express different rations because of the varying field sizes for

ECC, genus-2, genus-3, and genus-4 HECC.

5.3 Comparing ECC and HECC

Based on the assumptions stated in Section 5.2, the complexity of the group operations

of HEC and EC are summarized.

Referring to Table 4.5, a divisor addition for a genus-2 curve requires 1I + 21M and

doubling needs 1I + 9M . Assuming that the cost of one field inversion is equivalent

to l field multiplications, leads to (21 + l)M and (9 + l)M for addition and doubling,

respectively. The variable l corresponds to the MI-ratio for genus-2 HECC. When using

the projective coordinates for genus-2 curves no field inversion is required and therefore

the computational complexity is not conditioned by the MI-ratio. Thus, we get 45M

for the group addition and 31M for the group doubling (see Table 4.5).

Due to the lower extension of the underlying field used for genus-3 curves, a different

MI-ratio m is used. This leads to (65+m)M for a divisor addition and (14+m)M for a

divisor doubling. In the case of genus-4 curves one gets (146+2r)M and (72+2r)M for

addition and doubling, respectively, where r denotes the MI-ration for genus-4 HEC.

The number of inversions and multiplications for a group operation on EC heavily

depends on the chosen coordinate system (like in the case of hyperelliptic curves). For

5.3 Comparing ECC and HECC 75

the sake of completeness we summarize the number of required operations in Table 5.1.

One notices that by using projective coordinates we do not need to provide inversion

and therefore the MI-ratio is not necessary. In contrary, considering affine coordinates,

we need another MI-ratio for the corresponding field sizes, denoted as j.

Table 5.1: Field operations required for ECC in each coordinate system [HHM00].
Coordinate system EC Addition EC Doubling

general mixed coord.

Affine 1I + 2M 1I + 2M
= (2 + j)M = (2 + j)M

Standard projective [CC87] 13M 12M 7M
Jacobian projective [CC87] 15M 5M
New projective [LD98] 14M 9M 4M

Table 5.2 states the total number of AOPS for the group operations of the cryptosys-

tems with different MI-ratios. In terms of ECC, affine coordinates, Jacobian projective

coordinates, and new projective coordinates are considered. The variables ni represent

the extension of the underlying field F2ni . To provide a fair comparison, one needs to

consider the same security level for all cryptosystems. Hence, we take into account the

latest attack presented in [Thé03] and therefore increase the group order for genus-3

and genus-4 curves (for more details see Table 2.1). For a given processor, Table 5.2

allows an immediate, fairly accurate prediction of the ECC and HECC performance. We

would like to remark that we did not improve the new projective coordinates for HECC

as proposed in [Lan03] and therefore we did not include them in the given comparison

(it is not fair to compare optimized formulae with non optimized formulae).

Figure 5.1 illustrates the number of operations for a scalar multiplication on a 32-bit

processor depending on the MI-ratios, considering the findings in [Thé03]. Hence, we

used the fields F281 , F257 , and F253 for HEC of genus two, three, and four, respectively,

considering 163bit security. Some of the implementations might have potential crypto-

5.3 Comparing ECC and HECC 76

Table 5.2: Total number of atomic operations for ECC and HECC (underlying field F2ni ,
processor word w, MI-ratios j, l, m, r).

ECC
affine Jacobian projective new projective (mixed)

Add (2 + j)· 15· 9·
[2w

4
+ (n1

4
+ 27)dn1

w
e − 7] [2w

4
+ (n1

4
+ 27)dn1

w
e − 7] [2w

4
+ (n1

4
+ 27)dn1

w
e − 7]

Doub (2 + j)· 5· 4·
[2w

4
+ (n1

4
+ 27)dn1

w
e − 7] [2w

4
+ (n1

4
+ 27)dn1

w
e − 7] [2w

4
+ (n1

4
+ 27)dn1

w
e − 7]

HECC
genus-2 genus-3 genus-4

Add (21 + l)· (65 + m)· (146 + 2r)·
[2w

4
+ (n2

4
+ 27)dn2

w
e − 7] [2w

4
+ (n3

4
+ 27)dn3

w
e − 7] [2w

4
+ (n4

4
+ 27)dn4

w
e − 7]

Doub (9 + l)· (14 + m)· (72 + 2r)·
[2w

4
+ (n2

4
+ 27)dn2

w
e − 7] [2w

4
+ (n3

4
+ 27)dn3

w
e − 7] [2w

4
+ (n4

4
+ 27)dn4

w
e − 7]

Inversion free HECC
Add 45· mixed add: 38·

[2w
4

+ (n2

4
+ 27)dn2

w
e − 7] [2w

4
+ (n2

4
+ 27)dn2

w
e − 7]

Doub 31· 31·
[2w

4
+ (n2

4
+ 27)dn2

w
e − 7] [2w

4
+ (n2

4
+ 27)dn2

w
e − 7]

graphical weaknesses according to [Fre98,GHS02], however, we would like to emphasize

that the implementation techniques are also applicable to fields with prime extensions,

see Page 4. The scalar multiplication with a k-bit scalar is realized by the sliding window

method with an approximated cost of n × doublings + 0.2 × k × additions for a

4-bit window size [BSS99]. Figure 5.1 allows to estimate the efficiency of an ECC or a

HECC built on top of a given field library by comparing the different MI-ratios.

In general we can draw the following conclusions from this comparison:

1. ECC with new projective coordinates is in almost all cases the most efficient cryp-

tosystem.

2. Scalar multiplication of genus-2 and genus-3 HEC and affine ECC have very similar

performance for small MI-ratios. If one uses a software library with a high ratio,

genus-2 and genus-3 HEC are preferable compared to affine ECC.

5.3 Comparing ECC and HECC 77

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2
 4
 6
 8
 10
 12
 14

MI-ratio

A
O

P
s

ECC affine

ECC Jacobian projective

ECC new projective

genus-2

genus-2 projective

genus-2 proj. + mix. add

genus-3

genus-4

Figure 5.1: Cost of a scalar multiplication for different MI-ratios and cryptosystems in
AOPS (32-bit µP, group order ≈ 2163).

3. Genus-2 curves are more efficient for low MI-rations, whereas genus-3 curves use

a smaller amount of AOPs for a higher ratio.

4. Genus-4 HEC is the cryptosystems using the most time to complete a scalar mul-

tiplication.

Note that performance of HECC using projective coordinates could be improved by

using the new projective coordinates.

6 Software Implementation of

Hyperelliptic Curve Cryptosystem

In this chapter we analyze the software performance of HEC cryptosystems. Part of the

work presented in this chapter was published in [PWGP03,PWP03,WPW+04,PWP04b,

PWP04a]. We implemented HECC on a general purpose processor (Section 6.2), namely

the Intel Pentium, as well as on popular embedded processors (ARM, ColdFire, and

PowerPC — see Section 6.3). We also implemented ECC for comparison reasons.

The overall performance of EC and HEC cryptosystems depends not only on the

specific algorithms but also on the underlying implementation and the processor type

used. In particular, we analyzed how different EC and HEC cryptosystems perform with

respect to certain settings of both the software routines and the hardware components.

6.1 Methodology for the Software Implementation

We implemented different variants of EC and HEC cryptosystems. The characteristic

of the underlying fields is two and the cardinality of the groups ranges between 2160

and 2252. All operations are implemented for 32-bit microprocessors using the C pro-

gramming language. To allow portability, the implementation was not optimized for a

6.1 Methodology for the Software Implementation 79

specific platform1. Compiler settings for optimal speed were used depending on the tools

available.

In the following, we are going to describe the hardware platforms used, the finite field

arithmetic and the group arithmetic for ECC and HECC.

6.1.1 Processors Used for the Software Implementation

The cryptosystems were implemented on the Pentium4@1.8GHz and on different hard-

ware architectures for embedded systems. ARM7, ColdFire, and PowerPC were chosen

as testing platforms for the extensive analysis of ECC and HECC. The embedded plat-

forms and features will be explained in the following paragraphs and are summarized in

Table 6.1.

ARM: ARM (Advanced RISC Machine) processors are typically used for embedded

applications such as small network devices, controllers and mobile phones.

On the ARM microprocessor [ARM00], instruction decoding is performed with static

(i.e., hard-wired) logic for a faster result. The ARM7TDMI is based on von Neuman

Architecture and is licensed by ARM Ltd. All instructions have a fixed uniform length to

simplify the decoding procedure. Since direct manipulation of data in the memory is not

possible, a load/store architecture handles data processing through registers. The simple

address mode allows to determine all load/store addresses from the register contents and

the instruction parameters. For low power consumption, the ARM7 possesses the Thumb

Instruction Set which is restricted to 16-bit and allows compact code and, thus, is feasible

for small hand held devices such as PDAs.

The ARM7TDMI consists of a program control unit, an address generator, an integer

data path, and a general-purpose register bank. The data path contains a 32-bit integer

1Significant speed gains can be achieved by implementing the core routines in assembly using processor
specific operations.

6.1 Methodology for the Software Implementation 80

ALU, a multiply-add unit, and a barrel shifter. The 32-bit arithmetic logical unit (ALU)

performs simple integer arithmetic operations such as addition and subtraction. The

core features a multi-cycle 32x32 to 64-bit multiplier. It has a total of 37 registers: 31

general-purpose 32-bit registers, and 6 status registers. Speed-critical control signals are

pipelined so that system control functions can be implemented in standard low-power

logic. The ARM7TDMI does not support floating-point arithmetic in hardware and does

not have any DSP-specific features.

ColdFire: The ColdFire microprocessor is the successor of the 68000 series. Besides

the use as low cost controller (laser printers), the ColdFire is used in general purpose

industry applications such as network elements (routers, bridges).

In version 3, the processor consists of two independent, decoupled pipeline struc-

tures [Mot00a]. The instruction fetch pipeline is a six-stage pipeline for prefetching

instructions and contains logic for branch prediction. To maximize the performance, the

4KByte on-chip SRAM provides one-cycle access for the ColdFire core. This SRAM can

store processor stack and critical code or data segments to maximize performance. The

processor core possesses a hardware integer divide unit and supports a 16x16 and 32x32

bit multiplication. The ColdFire features sixteen 32-bit general-purpose registers.

PowerPC: Typical applications for embedded PowerPCs include powerful general

purpose microcontrollers, data acquisition systems, applications in robotics, automotive

and consumer electronics.

The standard PowerPC architecture has a fully static design that consists of three

functional blocks: the integer block, hardware multiplier/divider, and load/store block

[Mot00b]. The core supports integer operations on a 32-bit internal data path and 32-bit

arithmetic hardware. Its interface to the internal and external busses is 32 bits. The

PowerPC integer block supports 32 x 32-bit fixed-point general-purpose registers and can

execute one integer instruction per clock cycle. The core is integrated with the memory

6.1 Methodology for the Software Implementation 81

management units, an instruction cache, and a data cache. The 8KByte data cache

allows single-cycle accesses. The two way 16KByte instruction cache is set-associative.

The PowerPC offers the possibility to disable the data cache as well as the instruction

cache separately. For this reason we investigate four different options for the cache:

cache enabled, data cache only, instruction cache only, and cache disabled. The timings

under these options provide information about the performance depending on the cache.

For programs with intensive memory access, the data cache may play a more significant

role than the instruction cache, whereas for projects consisting of small functions which

get called several times, the instruction cache might be more important.

The PowerPC allows disabling of the pipelining mode. If the core is in non-serialized

mode, no pipelining is applied. Hence, the next processor command is executed only

after the previous has been processed completely. In serialized mode, full pipelining is

enabled.

Table 6.1: Hardware platforms used.

board & clock rate memory/cache tools
processor [MHz] [kByte]

ARM Evaluator-7T 50 512 flash EPROM ARM Developer
KS32C50100 512 SRAM Suite 1.2

8 cache
ColdFire SBC5307 Arnewsh 90 4 SRAM SingleStep Deb. 7.6.2

MFC5307 8 cache Diab Data Comp. 4.3f.
PowerPC TQsystem 50 8 data cache SingleStep Deb. 7.6.2

MPC823E 16 instruction cache Diab Data Comp. 4.3f.

6.1.2 Finite Field Arithmetic

The speed of the underlying implementation of the field arithmetic is crucial for the

overall performance of the cryptosystem. Restricting oneself to a certain field with a fixed

6.1 Methodology for the Software Implementation 82

field extension polynomial offers the possibility to benefit from special field reduction

routines. In our work, we investigated the performance gain of such special routines

versus general routines and the resulting benefit to the overall performance. A brief

summary of the algorithms used for the field arithmetic is given below.

Field addition, multiplication, squaring, inversion, and reduction are the basis for the

group operations on elliptic and hyperelliptic curves. Adding elements in F2n is simply

accomplished by a bitwise XOR of the components. A field multiplication of m1 words

times m2 words is split up into several multiplications with a smaller number of words.

The algorithm is a modified version of Karatsuba [KO63]. For fields in even characteris-

tic, squaring can be done very fast by table lookups [SOOS95]. The modified Extended

Euclidean Algorithm (EEA) is applied for inversion in F2n [HHM00]. Furthermore, we

were able to speed up this algorithm with a small modification concerning the calculation

of the degree difference.

To represent elements of the extension field F2n = Z2/p(x), we need to choose an

irreducible polynomial. In [vzGN00], the authors conjecture that the minimal number

of terms σq(n) in irreducible polynomials of degree n over GF (q), where q is a prime

power, is for all n ≥ 1, σ2(n) ≤ 5 and σq(n) ≤ 4 for q ≥ 3. This conjecture has been

verified for q = 2 and n ≤ 10000 [BGL93,Gol67,vzGN00,Zie70,ZB68,ZB69] and for q = 3

and n ≤ 539 [vzG01]. Hence, we found extension polynomials that are either trinomials

of the form p(x) = xn+xk +1 or pentanomials of the form p(x) = xn+xk1 +xk2 +xk3 +1.

The implemented standard reduction function considers tri- and pentanomials and

is able to treat arbitrary values ki. The reduction itself is done word-wise according

to [HHM00, Algorithm 6]. In order to achieve a higher speed-up we additionally imple-

mented a special reduction function for each underlying field, where the ki are fixed. For

the remainder of this contribution, we refer to special reduction when using a fixed field

extension polynomial. Whereas the term standard reduction is used for a generically

6.1 Methodology for the Software Implementation 83

implemented reduction routine and the extension polynomial is not known in advance.

For a server with different cryptographic applications, standard routines have to be

implemented whereas implementations on constrained platforms need only specialized

settings.

6.1.3 Group Arithmetic

Group Arithmetic on Elliptic Curves

The implementation of the high level elliptic curve group operations uses projective

coordinates according to the standard IEEE P1363 [P1399]. The operations performed

are as follows:

• point addition – in general this algorithm requires 5 field squarings, 14 general

field multiplications

• point doubling – this algorithm requires 5 field squarings, 5 general field multipli-

cations

Group Arithmetic on Hyperelliptic Curves

For the group operations on hyperelliptic curves of genus-2, 3, and 4, the explicit formulae

were implemented. We applied the fastest explicit formulae (at the time of implemen-

tation) for the group operations.

Remark: The implementations were done over the last three years and at the same

time a lot of work was done in improving the group operations. Hence, we used slightly

different group operations for some implementations.

The extensive comparison of our implementation on the three embedded processors,

was done with the following underlying group operations: group addition and doubling

6.2 Hyperelliptic Curve Cryptosystem on General Purpose Processors 84

for genus-2 curves as presented in Tables A.1 and Table A.2; group addition and dou-

bling for genus-3 curves are presented in Table A.6 and Table A.7, respectively. The

implementation results are presented in sections 6.3.1, 6.3.2, and 6.3.3

After we improved the group doubling for genus-2 (Table A.3) and genus-3 (Ta-

ble A.10) hyperelliptic curves, we implemented them on the ARMulator@80MHz and

Pentium@1.8GHz. For the genus-4 implementation we used the explicit formulae for

the group addition and group doubling, Table A.11 and Table A.12, respectively. The

implementation results on the Pentium@1.8GHz can be found in Section 6.2 and for the

ARMulator@80MHz in Section 6.3.4.

For the main operation of the cryptosystem, the repeated addition of a divisor (or

scalar multiplication), we used the sliding window exponentiation algorithm [MvOV97,

Section 14.6.1].

6.2 Hyperelliptic Curve Cryptosystem on General

Purpose Processors

In this section we present our implementation results on the Pentium@1.8GHz. We

introduce our timings for ECC as well as genus-2, 3, and 4 HECC. We implemented the

best explicit formulae for characteristic two fields as summarized in Section 4. In order

to be able to compare our results with an elliptic curve cryptosystem, we implemented

ECC for some cases with the same methodology.

In Table 6.2, the performance of the different cryptosystems targeting a variety of

different underlying fields are presented. We list our timings for the group addition,

group doubling as well as for the scalar multiplication. Some of the implementations

might have potential cryptographical weaknesses according to [Fre98,GHS02], however,

6.2 Hyperelliptic Curve Cryptosystem on General Purpose Processors 85

Table 6.2: Timings for ECC and HECC on the Pentium4 @1.8GHz.

Genus Field Group order Group addition Group doubling Scalar. mult.
in µs in µs in ms

1 F2163 2163 18.3 9.4 2.60
F2167 2167 19.2 8.5 2.43
F2179 2179 16.9 9.8 2.80
F2191 2191 15.4 8.7 2.78

2 F281 2162 18.7 11.7 2.73
F283 2166 20.2 12.7 3.01
F288 2176 20.5 13.2 3.30
F291 2182 21.1 13.7 3.50
F295 2190 19.0 12.6 3.41

3 F254 2162 24.8 8.9 2.56
F255 2165 25.2 9.0 2.69
F257 2171 25.5 9.4 2.95
F259 2177 28.5 10.3 3.22
F260 2180 24.8 9.2 2.97
F261 2183 28.5 10.5 3.34
F263 2189 25.3 9.2 3.10

4 F240 2160 58.6 32.9 7.76
F241 2164 53.2 29.7 7.50
F244 2176 53.4 30.0 7.90
F246 2184 53.3 29.8 8.43
F247 2188 53.8 30.7 8.59
F253 2212 64.2 36.0 10.18
F259 2236 65.2 37.9 10.36
F263 2252 63.7 33.1 9.50

we would like to emphasize that the implementation techniques are also applicable to

fields with prime extensions, see Page 4.

It is only useful to compare cryptosystems with the same security level. Hence,

we have to take the recent progress in computing the discrete logarithm of HECC by

Thériault [Thé03] into consideration. Note, that this is a very pessimistic estimation,

since the attacks presented can not be realized because of the high complexity. The

results in [Thé03] suggest to enlarge the underlying fields of genus-3 and genus-4 curves

(see Table 2.1 for more details).

6.2 Hyperelliptic Curve Cryptosystem on General Purpose Processors 86

According to [Thé03], an identical security level of, for example, 163bit results in the

underlying fields F281 , F257 , and F253 for HEC of genus two, three, and four, respectively.

Figures 6.1 and 6.2 compare the implementation results for 160 bits and 180 bits security.

Contrary to common belief, we could show that the performance of a scalar multipli-

cation of ECC, genus-2 HECC, and genus-3 HECC are in the same range. In some cases

HECC even outperforms ECC, see Table 6.2.

It is noticeable that with increasing group order the speed of the group operations

decreases for certain field sizes. For example, examine the scalar multiplication perfor-

mance of genus-4 HEC using the fields F259 and F263 (two last rows, Table 6.2). Using

F263 results in a slightly better performance. The reason is the dependency of the field

operations on the irreducible polynomials. We used trinomials or pentanomials and the

groups using trinomials perform relatively better compared to the one using pentanomi-

als.

0

2

4

6

8

10

12

1
 2
 3
 4

genus

m
s

Figure 6.1: Comparison of the scalar multiplication implementation on the Pentium4
@1.8GHz (security ≈ 2163).

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 87

0

2

4

6

8

10

12

1
 2
 3
 4

genus

u
s

Figure 6.2: Comparison of the scalar multiplication implementation on the Pentium4
@1.8GHz (security ≈ 2180).

6.3 Hyperelliptic Curve Cryptosystem on Embedded

Processors

This section summarizes and analyzes our implementation results on the embedded

processors. Most implementation results presented in this section were published in

[WPW+04], but in part also appeared in [PWGP03,PWP03,PWP04b,PWP04a]. The

emphasis lies on the performance of the different platforms, the comparison of the tar-

geted cryptosystems with different implementation options, and on the influence of the

hardware settings. ECC and HECC are implemented using general reduction routines.

In addition, we implemented HECC with special (fixed) reduction polynomials to be

able to analyze the performance gain.

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 88

6.3.1 Implementation Results on Different Embedded Platforms

We implemented ECC and HECC on different embedded platforms with high practical

relevance, namely ARM, ColdFire, and PowerPC (Figure 6.3). All timings of the scalar

multiplication concerning group orders around 2160, 2170, 2180, and 2190 can be found

in Table 6.3. For the boards at hand we could achieve the best timings for the HECC

implementation on the PowerPC. One scalar multiplication for HECC took 117 ms and

84.9 ms for genus-2 and genus-3 curves, respectively. The scalar multiplication for ECC

can be performed fastest on the PowerPC at 50MHz resulting in 106.3 ms.

Figure 6.3: Implementation of ECC and HECC scalar multiplication on different em-
bedded platforms (group order ≈ 2160).

0

100

200

300

400

500

600

s
c
a
la

r
m

u
lt

ip
li
c
a
ti

o
n

 i
n

 m
s

ARM @ 50 MHz
 Coldfire @ 90 MHz
 PowerPC @ 50MHz
 Pentium @ 1.8 GHz

genus 1

genus 2

genus 3

genus 3 h(x) =1

We want to stress at this point that due to the different hardware architectures of

the platforms and the varying board features the actual timings can be quite different,

though the processor clock frequency is equal (see Section 6.3.3).

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 89

Table 6.3: Timings of the scalar multiplication of ECC and HECC on different embedded
platforms (in ms).

ECC HECC
group
order g = 2 g = 3 g = 3, h(x) = 1
≈ 2160 ARM @ 50MHz 469.96 446.46 515.46 316.6

ColdFire @ 90MHz 152.1 155.6 219.4 123.6
PowerPC @ 50MHz 106.3 117 141.4 84.9

≈ 2170 ARM @ 50MHz 397.12 461.36 523.12 321.12
ColdFire @ 90MHz 132.8 161.5 225.1 126.9
PowerPC @ 50MHz 94.5 121.2 145.4 87

≈ 2180 ARM @ 50MHz 515.95 516.5 577.5 356.99
ColdFire @ 90MHz 171.7 183.4 246.7 146.2
PowerPC @ 50MHz 121.8 138.1 160.1 96.8

≈ 2190 ARM @ 50MHz 436.01 542.68 581.24 360.24
ColdFire @ 90MHz 157.8 187.6 258.5 147
PowerPC @ 50MHz 112.4 141.7 167.8 101.8

6.3.2 Standard versus Special Implementation

There are two major ways of implementing a cryptographic algorithm. One way is to

allow all possible input parameters, e.g., arbitrary curves and irreducible polynomials.

This form is referred to as standard implementation and is used in server applications or

cryptographic libraries. Furthermore, it is sufficient to target specific implementations

of algorithms when constrained in memory and processor power (e.g., allowing only

standardized curves or even a single fixed curve). The more specific the implementation

the higher the efficiency. In this subsection, we focus on the impact of using the specific

versus the standard implementation.

Performance of Underlying Field Arithmetic

We implemented the frequently used finite field functions, namely modular multiplication

and modular squaring in two different ways. First we used a standard implementation

with a reduction function capable of handling arbitrary irreducible polynomials. Second,

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 90

we used a fixed (special) polynomial and therefore had to program separate reduction

routines for each of the finite fields used. Table 6.4 shows the timings for multiplica-

tion and squaring with different underlying fields using standard and special reduction

routines on the ARM microprocessor. Some of the implementations might have poten-

tial cryptographical weaknesses according to [Fre98,GHS02], however, we would like to

emphasize that the implementation techniques are also applicable to fields with prime

extensions, see Page 4.

Table 6.4: Influence of special and standard field reduction (all timings in µs, platform:
ARM @50MHz).

general red. special red. general /
special

field mult squ mult squ mult squ
254 50 28 32 10 1.56 2.8
255 50 28 32 10 1.56 2.8
259 65 42 33 11 1.97 3.82
260 59 27 32 10 1.75 2.7
261 65 42 33 11 1.97 3.82
263 50 28 32 9 1.56 3.11
281 84 35 62 13 1.35 2.69
283 103 54 62 13 1.66 4.15
288 104 56 62 13 1.68 4.31
291 104 56 62 13 1.68 4.31
295 84 35 62 12 1.35 2.92

Analyzing the throughput of the functions the special modular multiplication routine

is up to two times faster compared to the standard implementation. In the case of

squaring, the gain is even higher and an increase in performance by a factor of 4 can be

achieved. The difference in the performance gain relies on the reduction routine, playing

a crucial role in the squaring routine.

Figure 6.4 depicts the timings of the modular arithmetic for different fields. The

evaluation of this figure leads to the following conclusions:

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 91

Figure 6.4: Comparison of standard versus special implementation of the field arithmetic
(platform: ARM@50MHz).

0

10

20

30

40

50

60

70

80

90

100

110

255 260 265 270 275 280 285 290 295

T
im

e
in

 m
s

Group Order

mult w/ standard red.
squ w/ standard red.
mult w/ special red.
squ w/ special red.

1. We implemented two sets of fields: first set considers field sizes smaller than F263

and the second set consists of field sizes larger than F281 . There is an unusually rise

of the speed between these sets of fields. The increase results from the fact that

the implementation is targeted for 32-bit processors. The field elements smaller

F263 can be represented with two words, whereas in the case of at least F263 three

words have to be provided.

2. In the specific implementation uses fixed parameter, resulting in a nearly mono-

tonic slope for a constant number of words. The standard implementation de-

pends heavily on the chosen irreducible polynomial which can be seen from the

non-monotonic slope of the graphs. In our implementation we used trinomials and

pentanomials. The latter case applied when there were no irreducible trinomials

available. For example in the case of the underlying field F255 , we used a trinomial,

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 92

while a pentanomial was used for the field F259 . The larger overhead for a standard

routine using a pentanomial instead of a trinomial leads to a decrease in speed for

multiplication and squaring.

Influence on the Scalar Multiplication

Table 6.5 shows how the different implementations of the underlying library influence the

performance of the HECC. For genus-2 curves, the ratio of the standard implementation

to that of the special implementation is in the range of 1.27 to 1.48. In the case of genus-

3 curves, scalar multiplication can be accelerated by almost 50%. The performance gain

is not as huge as for the plain field operations because of additional overhead and other

underlying functions (e.g. inversion) that are not optimized.

Table 6.5: Influence of different reduction routines on HECC scalar multiplication (all
timings in ms, platform: ARM @50MHz).

standard reduction special reduction standard / special
group g=2 g=3 g=2 g=3 g=2 g=3
order h(x)=1 h(x)=1 h(x)=1
≈ 2160 565.97 449.62 749.36 446.46 316.6 515.46 1.27 1.42 1.45
≈ 2170 682.86 454.81 758.72 461.36 321.12 523.12 1.48 1.42 1.45
≈ 2180 766.64 504.75 837.71 516.5 356.99 577.5 1.48 1.41 1.45
≈ 2190 681.36 513.66 852.15 542.68 360.24 581.24 1.26 1.43 1.47

6.3.3 Influence of Cache

The performance of a cryptographic system depends a lot on the processor and on the

available resources of the board. In this subsection, we analyze the influence of different

cache settings. We choose the PowerPC board to analysis these settings. The PowerPC

provides two different caches, namely one to store data and one for instructions. Fur-

thermore, we can disabling the pipelining on the PowerPC referred to as non-serialized

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 93

mode and serialized mode achieving full pipelining.

Table 6.6: Influence of different cache options on ECC and HECC performance (all tim-
ings in ms, platform: PowerPC @50MHz, see Table 6.7 for ratios).

cache, serialized no cache
group data + instruction data
order instruction serialized not serialized

ECC 2163 106.4 271.9 626.2 828.1 1249
2167 94.5 241 553.5 732.4 1062.8
2179 122 311.4 713.7 944.6 1371.4
2191 112.5 286.3 659 871.7 1264.7

HECC, g=2 2162 117 272.8 695.8 886.1 1293
2166 121.2 280.7 722.2 916.6 1339
2176 130.5 300.9 776.2 984.9 1438
2182 138.1 317.9 821.8 1042 1521
2190 141.7 328.8 841.7 1071 1562

Table 6.6 shows the influence of the cache targeting ECC and genus-2 HECC imple-

mentations on the PowerPC. In the left part of the table we present our results targeting

different cache settings using full pipeline mode. The right part of Table 6.6 compares

the performance of the scalar multiplication providing pipelining (serialized mode) and

non-pipelining (Not serialized mode).

Normalizing these timings with respect to the obtained execution times with disabled

cache leads to the ratios stated in Table 6.7. The ratios on the left part of the table

show the improvement of adding cache compared to having no cache. The right part of

the table indicates the speed-up of using pipeline.

It is noticeable that there is almost no difference in the impact of the cache setting

for ECC and HECC. The data cache is advantageous when intensive memory access is

necessary. The utilization of the instruction cache dominates in projects consisting of

small functions which get called frequently. In our case, the latter applies: the code size

is relatively small and the functions called most frequently consist of only few commands.

This is confirmed by the timings on the PowerPC. It can be seen that the performance

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 94

Table 6.7: Ratios of the ECC and HECC scalar multiplication using different cache set-
tings (platform: PowerPC @50MHz, see Table 6.6 for the timings).

no cache / no cache / no cache / no serialized /
group data + instruction data serialized
order instruction (no cache)

ECC 2163 7.78 3.05 1.32 1.51
2167 7.75 3.04 1.32 1.45
2179 7.74 3.03 1.32 1.45
2191 7.75 3.04 1.32 1.45

HECC, g=2 2162 7.57 3.25 1.27 1.46
2166 7,56 3.27 1.27 1.46
2176 7.55 3.27 1.27 1.46
2182 7.55 3.28 1.27 1.46
2190 7.56 3.26 1.27 1.46

increases by a factor of 1.3 when using only data cache and by a factor of 3.3 when only

using instruction cache. The computation of a scalar multiplication is about a factor

of 7.7 faster if using instruction and data cache. Since we are using a 16KByte cache,

the most relevant subroutines are permanently cached. In addition, the serialized mode

compared to the non-serialized mode can speed up the design by almost 50%.

Hence, we advise using at least an instruction cache, or even better, both kinds of

cache when running ECC or HECC.

6.3.4 Comparing the Performance of the Different Cryptosystems

In this section we compare ECC and HECC on the ARM microprocessor. In order to

provide a fair comparison, we consider:

1. the same security level (analogous to Section 6.2, where we did the same using the

Pentium processor);

2. use the most efficient group operations for all cryptosystems (as proposed in Ta-

ble 4.5); and

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 95

3. implement general routines for the field arithmetic.

We enlarge the field sizes as proposed by the findings in [Thé03] for equal security.

Hence, we have to consider underlying fields F281 , F257 , and F253 for HEC of genus two,

three, and four, respectively, considering 163bit security. We proceeded in the same way

with the security level of about 180bit.

Table 6.8 presents the our timings for HECC on the ARMulator. Figure 6.5 and

Figure 6.6 show, that the performance of a scalar multiplication of ECC, genus-2 HECC,

and genus-3 HECC are in the same range. Note that some of the selected underlying

fields might have some cryptographical weaknesses and the reader is referred to Section 2

for more details.

Considering genus-4 HEC, one notices that this cryptosystem is very inefficient com-

pared to ECC, genus-2, and genus-3 HECC. Furthermore one notices that in some cases

HECC even outperforms ECC, see Table 6.8. The reason for the non linear performance

decrease with larger fields, is the use of different reduction polynomials (trinomial and

pentanomials).

Hyperelliptic curve cryptosystems show very good performance on embedded proces-

sors and are therefore well suited for applications in constrained environments.

To speed up the presented implementation results one can use special reduction rou-

tines, as investigated in earlier sections. Using the fastest group operations known today,

a genus-2 scalar multiplication for group orders of ≈ 2160 to ≈ 2190 would take 69ms to

86ms.

6.3.5 Theoretical Metric Applied to the ARM Implementation

In this subsection, we show how to use the theoretical metric introduced in Section 5

for our ARM implementation in the previous section.

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 96

0

50

100

150

200

250

300

350

400

450

500

1
 2
 3
 4

genus

m
s

Figure 6.5: Comparison of the scalar multiplication implementation on the ARMulator
ARM7TDMI @80MHz (security ≈ 2163).

0

100

200

300

400

500

600

1
 2
 3
 4

genus

m
s

Figure 6.6: Comparison of the scalar multiplication implementation on the ARMulator
ARM7TDMI @80MHz (security ≈ 2180).

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 97

Table 6.8: Timings for ECC and HECC on the ARMulator ARM7TDMI @80MHz.

Genus Field Group order Group addition Group doubling Scalar. mult.
in µs in µs in ms

1 F2163 2163 746 406 108
F2167 2167 579 342 90
F2179 2179 720 451 120
F2191 2191 598 358 100

2 F281 2162 600 376 87
F283 2166 715 449 105
F288 2176 732 463 114
F291 2182 736 468 119
F295 2190 623 399 107

3 F254 2162 914 317 90
F255 2165 917 319 91
F257 2171 918 321 94
F259 2177 1180 415 126
F260 2180 921 324 100
F261 2183 1183 417 130
F263 2189 925 329 106

4 F240 2160 2106 1176 272
F241 2164 1748 980 222
F244 2176 1756 987 250
F246 2184 1760 993 262
F247 2188 1763 995 268
F253 2212 2561 1442 437
F259 2236 2575 1456 487
F263 2252 2021 1154 413

Table 6.9 introduces the timings of the field multiplications, field inversion, and the

computed MI-ratios. To determine the most efficient cryptosystem theoretically based

on the timings given in Table 6.9, one can either use Figure 5.1 to find the number of

AOPS or calculate the necessary number using Table 5.2. In order to be able to do so, one

needs the MI-ratios for the different underlying fields used by the cryptosystems. Some

of the implementations might have potential cryptographical weaknesses according to

[Fre98,GHS02], however, we would like to emphasize that the implementation techniques

are also applicable to fields with prime extensions, see Page 4.

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 98

Table 6.9: Timings of the field library and corresponding MI-ratios (in µsec, ARM
@80MHz).

Field Inversion Multiplication MI-ratio

F2163 456.3µs 57.9µs j = 7.9
F281 119.7µs 19.2µs l = 6.2
F257 66.2µs 11.4µs m = 5.8
F253 66.4µs 15.1µs r = 4.4

Considering a finite field F2163 for an ECC using Jacobian projective coordinates,

531, 840 AOPS are needed to calculate one scalar multiplication. HECC of genus 2 with

the underlying field F281 will take 497, 837 AOPS, and genus-3 over F257 requires 497, 174

AOPS. Finally, we find that genus-4 curves (F253) need 1, 600, 403 AOPS.

Thus, we expect HECC of genus-2 to be a factor of 1.06 and genus-3 HECC a factor

of 1.07 faster than ECC. Genus-4 HECC is expected to be 3.01-times slower than ECC.

Using the timings presented in Table 6.8, we can compute the performance differ-

ence between the cryptosystems accordingly. The implementation timings for a scalar

multiplication of genus-2 curves over F281 , genus-3 curves over F257 , and genus-4 curves

over F253 are compared with the performance of the ECC scalar multiplication over F2163 .

HECC of genus 2 is a factor of 1.23, genus-3 a factor of 1.15 faster, and HECC of genus-4

is a factor of 4.05 slower than ECC.

In Table 6.10 we summarized all the given numbers above and show the deviation of

our implementation and the theoretical findings. The deviation of is at most 26%. Note,

that we normalized all the given number with respect to the ECC performance.

Similarly, we can provide the theoretical metric for any security level. In the fol-

lowing we show another example using the group order ≈ 2180. Table 6.11 shows the

corresponding MI-rations and Table 6.12.

Thus, we can conclude that our theoretical estimates were quite accurate.

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 99

Table 6.10: Derivation of our implementation and the theoretical matrix (security level
≈ 2160).

genus−2
ECC

genus−3
ECC

genus−4
ECC

theory 0.94 0.93 3.01
ARM 0.81 0.87 4.05

deviation 14% 6% 26%

Table 6.11: Timings of the field library and corresponding MI-ratios (in µsec, ARM
@80MHz).

Field Inversion Multiplication MI-ratio

F2179 428.0µs 63.5µs j = 6.7
F291 150.6µs 24.2µs l = 6.2
F263 69.4µs 11.4µs m = 6.1
F259 71.1µs 15.1µs r = 4.7

Table 6.12: Derivation of our implementation and the theoretical matrix (security level
≈ 2180).

genus−2
ECC

genus−3
ECC

genus−4
ECC

theory 0.93 0.92 2.96
ARM 0.99 0.88 4.06

Derivation 6% 4% 27%

6.3.6 Low Cost Security

In many low cost embedded applications lower security margins are adequate. In prac-

tice, if a group order of 2128 is sufficient, the operations can be performed with an

operand length of 32-bit in the case of genus-4 HEC. Thus, the underlying field oper-

ations can be implemented very efficiently using one word arithmetic if working with

32-bit microprocessors (e.g., ARM). For genus-2 and genus-3 curves however, we need

to perform the underlying field operation using two words of a 32-bit processor. It is

important to point out that the small field sizes and the resulting short operand size of

HECC compared to other cryptosystems makes HECC specially promising for the use

6.3 Hyperelliptic Curve Cryptosystem on Embedded Processors 100

in embedded environments.

Security of 128-bit HECC

In [LV01], Lenstra and Verheul argue that for commercial security in the year 2004, 138-

bit ECC should be considered. Furthermore, the authors state that ECC using 138-bit

keys are as secure as 1108-bit keys for RSA or DSS. This notion of commercial security

is based on the hypothesis that a 56-bit block cipher offered adequate security in 1982.

Recently, Certicom announced that Chris Monico and his team of mathematicians

from the University of Notre Dame solved the Certicom ECCp-109 Challenge [Cor02].

The underlying curve was randomly generated over prime fields p of order 2109. The

challenge was solved by utilizing 10,000 computers running 549 days. Note that in our

low security HECC implementations we used a group order of 2128. Therefore, HECC

is by a factor of
√

219 ≈ 724 harder to break than the ECCp-109 challenge which would

mean 1089 years, assuming the computational resources of the ECCp-109 attack.

It is also worth to point out that the factorization of the 512-bit RSA challenge took

only about 2% of the time required to break the ECC2K-108 [Cor02] challenge (or to

break DES). This implies that ECC or HECC in groups of order 2128 offer far more

security than a 512-bit RSA system. Nevertheless, RSA with a 512-bit key is still in use,

for example, in fielded smart card applications.

Remark: we did not considers the attacks on HEC and the underlying fields proposed

in [Fre98, GHS02, Thé03] as a threat for low cost application. Low cost security ap-

plication may require to secure a message only for some minutes or a few hours. The

proposed attack does not appear to be a threat because of the high complexity and the

huge processor power and memory necessary.

6.4 Summary of the Software Implementation 101

Low Cost Implementation Results

In contrast to the facts mentioned in Section 6.3.4, there is a benefit of using genus-4

HECC over a 32-bit finite field. The processor word is optimally utilized and the cryp-

tosystem does not need additional multi-precision arithmetic. Analyzing the results for

a group order of around 2128 as presented in Table 6.13, genus-4 low cost implementa-

tions are in the same range as genus-2 and genus-3 curves (contrary to the results in

Section 6.3.4).

Table 6.13: Timings on the ARM7TDMI@80MHz and Pentium4 @1.8GHz for group
order ≈ 2128 (explicit formulae).

ARMulator ARM7TDMI@80MHz
Genus Field Group order Group addition Group doubling Scalar. mult.

in µs in µs in ms
2 F263 2126 538 326 60
3 F243 2129 966 327 75
4 F232 2128 914 524 97

Pentium4@1,8GHz
2 F263 2126 16.5 10.2 1.93
3 F243 2129 25.5 9.0 2.15
4 F232 2128 21.7 13.3 2.57

As a result of this comparison, we suggest the use of genus-4 HECC for applications

with short term security needs, if one is not worried about the attacks mentioned before.

Despite the high number of required field operations compared to HEC with genus g ≤ 3,

group operations on genus-4 HEC are easier to implement. This relies on the fact that

field arithmetic based on operands of length no longer than 32 bits are relatively simple.

6.4 Summary of the Software Implementation

Software performance depends on the specific algorithms, on the underlying implemen-

tation, and the processor type used. The contribution of this chapter was the implemen-

6.4 Summary of the Software Implementation 102

tation of ECC and HECC on general purpose processors and embedded processors using

the same methodology. The same methodology allows a relative fair comparison between

the two cryptosystems on the given platforms. In the case of HECC we considered curves

with genus two, three, and four. Our analysis targets the different cryptosystems with

respect to certain software settings and different hardware components.

Considering the same security level, we showed that the performance of a scalar multi-

plication of ECC, genus-2 HECC, and genus-3 HECC are in the same range. Considering

genus-4 HEC, one notices that this cryptosystem is very inefficient compared to ECC,

genus-2 and genus-3 HECC. Furthermore one notices that in some cases HECC even

outperforms ECC. Considering lower security margins, we were able to implement the

underlying field operations efficiently for genus-4 HEC using 32-bit microprocessors (e.g.,

ARM). However, one should keep in mind the security limitations of genus-4 HECC.

At this point we want to clarify that the performance is based on certain curve param-

eters and implementation options. Changing these parameters could result in different

performance numbers. Furthermore, one should be aware of the fact that processor

speeds are increasing rapidly and that one can achieve much higher speeds in the future.

We conclude from this chapter that ECC and HECC show similar performance on gen-

eral purpose processors as well as on embedded processors. Hence, these cryptosystems

are well suited for applications in constrained environments.

7 Finding an Optimized Parallel

Architectures for HECC

Most general purpose processors are designed to execute instructions essentially sequen-

tially and the instruction set is bound to the word length of the processor (e.g. 32-bits).

Hence, there are only limited option for parallelizing the execution of cryptographic

algorithms. In custom-built hardware the designer can choose to perform instruction

in parallel and to process larger operands. Exploiting this parallelism can result in a

major performance increase. Cryptographic hardware accelerators are built exactly for

this reason, i.e., allowing hardware parallelism, as they can provide a high throughput

for the arithmetic-intensive public-key cryptographic primitives. An example are high-

end smart cards, where a cryptographic coprocessor takes over all the expensive (area

and time) computations. However, application areas of cryptographic chips exceed far

beyond smart card applications. These hardware accelerators are used for web servers,

for Virtual Private Networks, for wireless gateways, for ATM machines, and for secure

satellite communications, to name only a few.

In this chapter we present optimized parallel architecture for a HECC considering

the most recent explicit formulae to compute group operations. This is achieved by

theoretically evaluating a variety of different architectures. In order to do so, we wrote

a software tool capable of scheduling the necessary operations. The parallelization of

Finding an Optimized Parallel Architectures for HECC 104

the scalar multiplication of HECC was investigated at the following three levels: the

field operation level, the group operation level, and the scalar multiplication level. At

the field operation level we used multipliers that handle different numbers of bits in

parallel. At the group operation level we used different numbers of field multipliers. Our

investigation of the parallelism reachable for the scalar multiplication level was achieved

by overlapping the computation of consecutive group operations, i.e., by pipelining the

group operations.

In [MS03] the authors proposed, for the first time, a parallelization of the explicit

group operation of HECC. The authors developed a general methodology for obtaining

parallel algorithms. The methodology guarantees that the obtained parallel version

requires a minimum number of rounds. They show that for the inversion free arithmetic

using 4, 8 and 12 multipliers in parallel, scalar multiplication can be carried out in 27,

14 and 10 parallel rounds, respectively. When using affine coordinates and 8 multipliers

it can be performed in 11 rounds, including an inversion round.

Note that for an effective implementation it is impractical to use so many multipliers

in parallel as stated in [MS03]. The work at hand attempts to consider not only the

minimum number of rounds (speed), but also the necessary devices (area) as well as

practical applications.

In the following, we focus on the theoretical analysis of the parallelism of HECC and

present the optimal architecture for HECC1. We first present the methodology leading

to our results. Next, we present our results of parallelizing system using affine and

projective coordinates. Afterwards, we compare and analyze the two systems in order to

find the best architecture realizing HECC. We end this chapter with a short summary

and outlook.

1This is joint work with Dr. Guido Bertoni and Prof. Luca Breveglieri from the Politecnico di Milano.
Guido Bertoni did the implementation of the scheduler in C language.

7.1 Methodology 105

7.1 Methodology

The discussion in this chapter are based on a standard architecture, see Figure 7.1,

consisting of a 3-bus loop scheme connecting a set of function units with a register file.

A control unit drives the various function units and the register file. The register file

stores temporary intermediate values and final results. The size of each register is the

dimension of the field, namely 81 bits. The register file has two output ports to feed the

operators to the function units and one input port to receive the result. The processor

allows to load two elements and store one element at any clock cycle. This guarantees

feasibility and ease of implementation. However, at any given clock cycle only one field

operation can start. If the operation is unary, such as inversion, one input bus remains

idle.

Operation results

Operation inputs

Control signals

Mult. IControl
Unit

Register

File
SquarerInverter AdderMult. II

Figure 7.1: Architecture of the HECC coprocessor.

The following list is a summary of how we implemented the field arithmetic operations

(F (x) denotes the irreducible polynomial of the field F):

• Addition. Adding two elements requires the modulo 2 sum of the coefficients of

the field elements.

7.1 Methodology 106

• Squaring. Squaring a field element A =
∑m−1

i=0 aix
i is ruled by the following equa-

tion: A2 ≡ ∑m−1
i=0 aix

2i mod F (x); further details can be found in [OP00].

• Multiplication. We decided to use digit multipliers, introduced in [SP97] for fields

of type F2m . This type of multiplier allows a trade-off between speed, area and

power consumption. It works by processing several multiplicand coefficients at the

same time. The number of coefficients processed in parallel is the digit-size D ≥ 1.

Given the parameter D, we denote by d = dm/De the total number of digits in

a polynomial of degree m − 1. Hence, C ≡ AB mod F (x) ≡ A
∑d−1

i=0 Bix
Di mod

F (x).

• Inversion. It is computed using the algorithm proposed in [BCH93], which is based

on a modification of Euclid’s algorithm for computing the GCD of two polynomials.

The asymptotic complexity is linear with the modulus both in time and area.

In Table 7.1 we give the area and latency for each arithmetic function unit we used. The

given estimates assume 2-input gates and optimal field generator polynomials F (x) =

xm +
∑t

i=0 fix
i, where m− t ≥ D.

One observes that the gate-consuming function units are multiplier and inverter, while

in comparison the area used for the adder and squarer are negligible. In case of the

multiplier and the inverter the number of XOR gates and AND gates are the same.

Hence, their ratios are the same and justifies why in our estimate we identify XOR and

AND gates.

Now, we describe briefly our approach to design the best suited architecture.

1. Input. First we evaluated the most recent achievements regarding the group op-

eration of HECC. The given formulae were then prepared for the scheduler.

7.1 Methodology 107

Table 7.1: Area and time complexity of the arithmetic operations (underlying field F2m ,
irreducible polynomial F (x) = xm +

∑t
i=0 fix

i, where m− t ≥ D).

Area Latency
Total number [clock

of gates cycles]

Add [m] XOR [m] 1
Sqr [OP00] [m + t + 1] XOR [m + t + 1] 1
Mul [SP97] [D ·m] AND &

[D ·m] XOR [2Dm] dm/De
Inv [BCH93] [6 ·m + log2m] AND &

[6 ·m + log2m] XOR [2(6m + log2m)] 2 ·m

2. Scheduler. Our own software library, especially developed to schedule the HECC

group operations, is the heart of our methodology. The scheduler is based on the

method known as Operation Scheduling [Gov03] and works accordingly to the As

Soon As Possible (ASAP) policy. There is a list of operations that should be

executed by the architecture. The scheduler takes one operation at a time and

searches for the earliest time slot where the operation can be executed. It is con-

strained by the number of available resources and by the different times required to

execute each operation. The same methodology is used by programming language

compilers for scheduling machine instructions.

Schedulers fall into two broad families: unconstrained or resource limited. We

choose to upper bound the number of resources for busses and arithmetic units,

while that of registers is unbounded. Once the operations are scheduled, we count

the number of live registers and compute the overall register usage.

It should be noted that our methodology is heuristic and does not necessarily

guaranty optimal results, but it is quite natural, easy to design and efficient. In

order to reach the globally optimal scheduling it is necessary to use other methods

instead, see [Gov03].

The scheduler has the following input parameters:

7.1 Methodology 108

• HECC formulae (i.e., the sequence of operations to schedule).

• Latencies of the function units.

• Number of multiplication units.

• Different digit-sizes of the multiplication units.

• Properties (latency and size) of the busses.

• Memory access time (latency for register read / write).

3. Testing. The results of the scheduler were tested on test vectors. In order to do,

so we implemented HECC group operations with the NTL library [Sho01].

4. Analysis. The results were analyzed and, if needed, the underlying architecture

was changed in order to find a better structure for the parallel coprocessor.

We investigated different designs in order to find an optimal architecture. We varied

the number of multipliers (one, two, three, or four), as well as their digit-size D (D =

2, 4, 8, 16, or 32). Representing the parallelism on the field operation level and group

operation level, respectively. Furthermore, we investigated the parallelism on the scalar

multiplication level, by computing two consecutive group operations in parallel. We

will refer to this parallel computation in the following as overlapping. We timed the

overlapping of two group operations as the difference between a) the time when the last

field operation of the former group operation ends execution and b) the time when the

first field operation of the latter starts. This is possible because the outputs of the first

group operation, namely four field elements in the case of genus-2 HEC, are neither

produced at the same time nor necessary to start the next group operation. Hence we

start the second group operation after computing one field element. If one considers

overlapping and uses the double-and-add algorithm for the scalar multiplication the

following consecutive group operations should be scheduled: addition after doubling,

doubling after doubling, and doubling after addition.

7.1 Methodology 109

Our design goal for the optimal architecture is to implement a simple controller com-

puting group operations with a fixed execution order. Hence, we look at a static schedule.

The alternative would be to implement a finite state machine executing the schedule di-

rectly, controlling the availability of resources and deciding which operation should be

executed. This solution is feasible but we consider it as too complex and expensive

compared to a simple controller executing the operations in a fixed order.

We supposed that all the different modules of the system work always at the same

frequency. This is a worst-case assumption. In fact, usually the complexity of the

multiplication unit dominates the frequency, and a smaller digit-size will yield a higher

clock frequency and thus will speed-up the system. Furthermore we omitted the register

file area in the estimation. We decided to do so after noticing that the required number

of registers is almost the same in all the configurations, and that the area consumed by

a register can vary considerably depending on the implementation technology.

Our results are based on the following considerations: i) we choose a set of keys to

schedule the operations; ii) we scheduled group addition and doubling, accordingly to the

values of the key; iii) we considered a long sequence of concatenated group operations.

For the latency evaluation of the scalar multiplication kD reported, we examined it in

an average case. This means that 80 and 160 additions and doublings were performed,

respectively. Half of the 160 doublings are computed after another doubling and half

after an addition.

The group operations were implemented using the up-to-date fastest formulae for

genus-2 HEC, as are given in Table 4.5. Hence, the curve parameters are given as h = x

and f = x5 + f1x + f0 and we used the underlying finite field GF(281). The implemen-

tations of the field GF(281) might have potential cryptographical weaknesses according

to [Fre98,GHS02], however, we would like to emphasize that the implementation tech-

niques are also applicable to fields with prime extensions, see Page 4.

7.2 Analysis of Parallel Architectures Using Affine Coordinates 110

We changed for the different architecture options the processing power by adding

resources. Increasing the processing power yields a speed up of the group operations,

but also causes a growth in area. Thus there must exist an optimal architecture, where

the area-time product is minimal.

7.2 Analysis of Parallel Architectures Using Affine

Coordinates

In this section we present the results for the different architectures using affine coor-

dinates. Results of this subsection were partly published in [BBWP04a, BBWP04b].

Genus-2 HEC defined over a field of characteristic 2 was used and the group operations

represented in Tables A.1 and A.3 were used. We are going to evaluate different design

options and examine the different levels of parallelism. Our software tool is capable of

scheduling the necessary operations, resulting in an optimal architecture with respect to

area and speed.

The various system options need between 18 and 20 registers in the best and worst

case, respectively. If a designer wants to lower register usage, he/she can trade the

number of registers for additional latency. In order to do so, the designer should avoid

overlapping and start a group operation only when the previous has finished. We noted

that a single group operation uses from 8 to 10 registers, while the maximum register

number is reached when two group operations overlap.

7.2.1 Parallelism on the Scalar Multiplication Level

In the usual cases the genus-2 HEC group operation outputs one polynomial of degree two

and one monic polynomial of degree three. Hence the output consists of four coefficients,

7.2 Analysis of Parallel Architectures Using Affine Coordinates 111

namely four field elements. They are neither produced at the same time nor are all

necessary to start the next group operation. This means that when one field element

(one coefficient) is computed, it can be used by the next group operation. Hence, we

overlap the computation of two consecutive group operations.

Table 7.2: Overlapping of doubling after addition(in clock cycles, affine coordinates).
Digit-size Number of multipliers

1 2 3 4

2 333 172 169 140
4 173 92 89 80
8 93 48 48 48
16 50 30 33 33

Table 7.3: Overlapping of doubling after doubling (in clock cycles, affine coordinates).
Digit-size Number of multipliers

1 2 3 4

2 214 96 96 96
4 114 56 56 56
8 64 36 36 36
16 39 26 26 26

Table 7.4: Overlapping of addition after doubling (in clock cycles, affine coordinates).
Digit-size Number of multipliers

1 2 3 4

2 214 96 96 96
4 114 56 56 56
8 64 36 36 36
16 39 26 26 26

Table 7.2 shows the overlapping time interval for doubling after addition. Overlapping

decreases as the speed and the number of multipliers increase. Similar behaviors have

been observed in the other two cases: doubling after doubling (Table 7.3) and doubling

followed by an addition (Table 7.4). This decrease is due to the increase of the parallelism

7.2 Analysis of Parallel Architectures Using Affine Coordinates 112

in the tail of the operation. In the best scenario we were able to compute the two

operations for 333 clock cycles in parallel (Table 7.2, first cell).

7.2.2 Performances of the Group Operations and Scalar

Multiplication

Tables 7.5 and 7.6 show the clock cycles necessary for performing a group addition and

group doubling, respectively, for different system configurations. Table 7.7 presents the

latency numbers for the scalar multiplication.

We examined all different cases of consecutive group operations, in order to determine

whether we could schedule them in a way to gain speed and to achieve a higher hardware

utilization. Our results show that addition is always scheduled in the same way. In the

case of doubling, one should use two different ways to execute it depending on the

previous operation. We have to allow negligible extra hardware for the controller to

decide which option to choose. Thus, we get two latency numbers for the doubling

operation. The leftmost timing in each cell of Table 7.6 is the number of clock cycles

necessary to compute doubling after doubling. The rightmost one instead is the time

latency of doubling after addition.

Table 7.5: Latency of group addition (in clock cycles, affine coordinates).
Digit-size Number of multipliers

1 2 3 4

2 1, 259 739 664 635
4 739 479 444 435
8 479 349 335 335
16 356 289 288 288

Considering only the performance, one concludes from Tables 7.5 and 7.6 that the

design option using one inverter, two multipliers (D = 16), one adder and one squarer

7.2 Analysis of Parallel Architectures Using Affine Coordinates 113

Table 7.6: Latency of group doubling after doubling / after addition (in clock cycles,
affine coordinates).

Digit-size Number of multipliers
1 2 3 4

2 724 / 846 486 / 560 458 / 490 458 / 484
4 464 / 526 346 / 380 338 / 350 338 / 344
8 334 / 366 278 / 286 278 / 279 278 / 279
16 274 / 284 248 / 247 248 / 250 248 / 250

is preferable. The architecture can perform group doubling and addition in 289 and 248

clock cycles, respectively. Whereas, when analyzing the scalar multiplication number

(Table 7.7), one would chose the architecture using three multipliers. In this setup the

scalar multiplication is performed in 56, 139 clock cycles.

Table 7.7: Latency of the scalar multiplication (in clock cycles, group order ≈ 2160, affine
coordinates).

Digit-size Number of multipliers
1 2 3 4

2 1659, 87 113, 948 100, 345 99, 836
4 106, 527 80, 228 74, 625 74, 136
8 76, 797 63, 524 61, 844 61, 844
16 62, 969 56, 216 56, 139 56, 139

One can see that by increasing the digit-size and the number of multipliers, the time

necessary to execute a group operation decreases, as expected. For group addition, our

results show that in some cases the performance does not increase, when augmenting

the resources of the system. For example, focusing on the speed of addition, using

three rather than four digit-size multipliers with D = 8 (Table 7.5, third row), does not

result in any performance difference. The same behavior can be observed for 2, 3 and 4

multipliers with digit-size D = 16. The reason for this behavior is that the structure of

the group operation does not allow additional parallelism. When focusing on doubling,

there is almost no performance gain in moving from 3 to 4 multipliers (Table 7.6, the

7.2 Analysis of Parallel Architectures Using Affine Coordinates 114

two rightmost columns). Additionally, there is no performance gain in providing 3 or

4 multipliers of digit-size D = 8 or D = 16 instead of two. Similar facts hold for the

scalar multiplication latency (Table 7.7). Hence, we do not gain any performance when

changing from three to four multipliers for all genera. Even adding the third multiplier

increases the performance only slightly or not at all.

In an ideal scenario all components, but most importantly the multipliers should be

used uniformly. The reason being resource usage and side channel attacks. Hence, when

examining our results for the group operations and the scalar multiplication, we conclude

that the third and fourth multiplier, and in some cases also the second one, are used

very infrequently. Hence, for most applications it will be unreasonable to provide these

extra hardware units.

Note that the ASAP scheduling policy used in our software tool does not guaranty an

optimal solution; as discussed in Section 7.1. Analysis of the performance of doubling

shows that for D = 16 the speed drops slightly when increasing the hardware from two

to three multipliers.

7.2.3 Area-Time Product

In Table 7.8 we used the normalized area-time product to find the optimal architecture.

The figures are derived from those of Table 7.1, where m = 81 bits. The optimal

architecture will achieve the highest throughput consuming the smallest area (contrary

to some traditional cryptographic implementations, where only best performance was

evaluated). Table 7.8 shows that the architecture using one inversion, one multiplication

(D = 8), one addition and one squaring achieves the best area-time product. Note, that

there are many architecture options that have very similar area-time product.

7.3 Analysis of Parallel Architectures Using Projective Coordinates 115

Table 7.8: Normalized area-time product (group order ≈ 2160, affine coordinates).
Digit-size Number of multipliers

1 2 3 4

2 1.3552 1.1148 1.1442 1.3000
4 1.0422 1.0447 1.2133 1.4454
8 1 1.2385 1.6063 2.0067
16 1.2277 1.8241 2.5487 3.2758

7.3 Analysis of Parallel Architectures Using Projective

Coordinates

In this section we are analyzing the parallelism of HECC using projective coordinates.

We target genus-2 HECs defined over a field of characteristic 2 using the newly derived

group operations over projective coordinates, as reported in Tables A.15 and A.16.

All the results presented here target systems directly based on projective coordinates

and, therefore, coordinate conversion is unnecessary. For applications where conversions

to and from affine coordinates are necessary, discussion and figures will be provided at

the end of Section 7.4.

All the considered system configurations require 21 registers for storing temporary

values, where each register stores a field element of 81 bits. One could reduce the

number of registers at the cost of some additional latency by avoiding the overlapping of

two consecutive group operations, exactly as in the case where affine coordinates were

used.

7.3.1 Parallelism on the Scalar Multiplication Level

We show the degree of parallelization considering consecutive group operations (par-

allelism at the scalar multiplication level). When implementing scalar multiplication

7.3 Analysis of Parallel Architectures Using Projective Coordinates 116

using the double-and-add algorithm, one has to evaluate the parallelization of three dif-

ferent cases: i) addition after doubling, ii) doubling after doubling and iii) doubling after

addition.

Table 7.9: Overlapping of doubling after doubling (in clock cycles, projective coordi-
nates).

Digit-size Number of multipliers
1 2 3 4

2 167 85 85 91
4 87 45 30 24
8 47 25 20 23
16 27 17 10 8
32 14 12 7 4

In Table 7.9 we show the number of clock cycles where two consecutive doubling oper-

ations can be computed in parallel. The tables for addition after doubling and doubling

after addition show similar figures and can be found in Table 7.11 and Table 7.10, re-

spectively. One notices that overlapping decreases as the digit size and the number of

multipliers increase. Larger digit sizes and numbers of multiplier units yield a higher

parallelism at this level, which results in a smaller overlap for the group operations. In

the best case we could schedule two consecutive group operations for 167 clock cycles in

parallel (Table 7.9, first cell).

Table 7.10: Overlapping of addition after doubling (in clock cycles, projective coordi-
nates).

Digit-size Number of multipliers
1 2 3 4

2 164 82 46 41
4 84 42 26 21
8 44 22 30 21
16 24 23 17 4
32 11 4 2 4

7.3 Analysis of Parallel Architectures Using Projective Coordinates 117

Table 7.11: Overlapping of doubling after addition (in clock cycles, projective coordi-
nates).

Digit-size Number of multipliers
1 2 3 4

2 126 51 44 45
4 66 33 24 25
8 36 21 25 12
16 21 12 10 10
32 11 5 7 6

7.3.2 Performances of the Group Operations and Scalar

Multiplication

In this subsection we present our results targeting the latency of group addition, group

doubling and of the complete scalar multiplication. Table 7.12 provides the figures for

group addition and doubling, and Table 7.13 those for the scalar multiplication. Note

that we did not include a second performance number for doubling and addition, as we

did for doubling in our analysis using affine coordinates (Section 7.2). The reason being

that for projective coordinates the group operations are almost scheduled in the same

way. Hence, it is not worth to chose the sequence of field operations dependent on the

previous group operation.

The conclusion one can draw from the two tables is that with increasing hardware

resources (more multiplier units and higher digit size), the latency drops. Thus we can

compute the group operations and the scalar multiplication of HECC in a shorter time.

Without constraints in terms of silicon area, group addition and group doubling can be

executed most efficiently by using three or four multipliers (D = 32), respectively. These

group operations can be computed in 99 and 81 clock cycles, respectively (Table 7.12,

bottom two rows). Scalar multiplication can be performed most efficiently in 19, 769

clock cycles providing three field multipliers (of type D = 32), one field adder and one

7.3 Analysis of Parallel Architectures Using Projective Coordinates 118

Table 7.12: Latency of group addition and doubling (in clock cycles, projective coordi-
nates).

Digit-size Number of multipliers
1 2 3 4

2 addition 1876 1008 704 553
doubling 1465 793 545 417

4 addition 976 528 384 293
doubling 765 413 286 237

8 addition 526 290 220 170
doubling 415 221 165 138

16 addition 296 166 127 115
doubling 241 149 106 99

32 addition 170 113 101 99
doubling 132 90 81 94

field squarer (Table 7.13, bottom row).

Table 7.13: Latency of the scalar multiplication (in clock cycles, group order ≈ 2160,
projective coordinates).

Digit-size Number of multipliers
1 2 3 4

2 348210 188693 127690 96726
4 181670 97355 69730 55646
8 98400 53243 38935 31953
16 56525 32835 24747 22974
32 31702 21209 19769 20490

Our scheduler is based on the method known as Operation Scheduling and works

according the ASAP scheduling policy thus does not guarantee an optimal solution

[Gov03]; this is evident in the case of 4 multipliers of type D = 32 (Table 7.13, 5-th

row). Whereas latency is higher than with only 3 multipliers. This happens as the

scheduler could not find an efficient way of performing group doubling, as it can be seen

in the bottom row of Table 7.12.

When carefully inspecting the results, we see that adding extra hardware resources

might be unreasonable. For example, consider the group addition using multipliers of

7.3 Analysis of Parallel Architectures Using Projective Coordinates 119

type D = 2 (Table 7.12, first row). We get a 46 % speed-up when using 4 instead

of 2 multipliers. Hence, in this case we double the number of multipliers and get a

50% improvement in the performances. Examine the same setting for multipliers of

type D = 32 (Table 7.12, second to bottom row): we get only a 8% improvement

when moving from 2 to 4 multipliers. In real applications where hardware resources are

limited the latter scenario would be inefficient. Thus, we provide in the next section the

area-time products to find the optimal solutions.

0

50000

100000

150000

200000

250000

300000

350000

1
 2
 3
 4

number of multiplier

c
lo

c
k

 c
y

c
le

s

D = 2

D = 4

D = 8

D = 16

D = 32

Figure 7.2: Latency of the scalar multiplication using projective coordinates (group order
≈ 2160).

In order to find an easy way of examining the performance improvement considering

the different architectures, we added Figure 7.2. The figure shows the latency of the

scalar multiplication (x-axis) with respect to different numbers of multipliers (y-axis).

7.3 Analysis of Parallel Architectures Using Projective Coordinates 120

Each line corresponds to a different digit size. Hence, if the line joining two values

declines sharply, it can be interpreted as a considerable decrease of the computation

time obtained by means of the additional resources. Going back to our example, the

line for D = 2 falls more steeply than that for D = 32.

7.3.3 Area-Time Product

The optimal implementation will achieve the highest throughput consuming the smallest

area. Hence, we consider both the hardware requirements and the time constraints of

the cryptographic application.

Table 7.14: Normalized area-time product for scalar multiplication (in clock cycles,
group order ≈ 2160, projective coordinates).

Digit-size Number of multipliers
1 2 3 4

2 1.4533 1.1813 1.0659 1.0093
4 1.1374 1.0158 1.0186 1.0451
8 1.0267 1 1.0563 1.1336
16 1.0616 1.1649 1.2911 1.5821
32 1.1247 1.4606 2.0215 2.7794

In Table 7.14 we show the area-time product for the different design options. The

analysis uses the normalized area-time product with respect to the lowest area-time

product. Table 7.14 shows that the architecture using two multipliers (of type D = 8),

one adder and one squarer achieves the best area-time product and therefore is the

optimal architecture.

7.4 Optimum Architecture 121

7.4 Optimum Architecture

The main contribution of this section is to identify which coordinate system, affine or

projective, is best for the architecture for a parallel architecture. In order to do so we

need to compare the different architectures for the affine and projective group operations.

0

50000

100000

150000

200000

250000

300000

350000

1
 2
 3
 4

number of multipliers

c
lo

c
k

 c
y

c
le

s

D = 2

D = 4

D = 8

D = 16

D = 32

0

50000

100000

150000

200000

250000

300000

350000

1
 2
 3
 4

number of multipliers

c
lo

c
k

 c
y

c
le

s

D = 2

D = 4

D = 8

D = 16

D = 32

affine
coordinates
 projective
 coordinates

Figure 7.3: Latency comparison of the scalar multiplication between the architectures
based on affine and projective coordinates (group order ≈ 2160).

Figure 7.3 compares the latency between the architectures based on affine and projec-

tive coordinates. The lowest bars corespond to lower latency, hence better performance.

One can draw the following conclusions:

• In both coordinate systems, latency drops by providing additional hardware re-

sources (increasing the digit size and the number of multiplier units)

• If the context allows to use projective coordinates, they are always preferable in

terms of latency and area. However, affine coordinates might find an appropriate

7.4 Optimum Architecture 122

use in low area applications.

• One very important result is that high speed implementations should definitely

based on projective coordinates. As it can be seen in Figure 7.3, projective coor-

dinates and large digit sizes result in the lowest latency.

In Figure 7.4 we compare the five best area-time product figures using the two dif-

ferent coordinate systems. For each system configuration the area-time product and

the latency is reported and both measures are normalized to the minimum value (in

our case the configuration with the best area-time product is even the fastest). The

leftmost bars show the figures for affine coordinates and the right-most bars show those

for the projective case. The design option used is given under each bar (M denotes the

multipliers).

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

2,2

2,4

1M

D=8

1M

D=4

2M

D=4

2M

D=2

3M

D=2

2M

D=8

4M

D=2

2M

D=4

3M

D=4

1M

D=8

Affine
 Projective

N
o

rm
a
li
z
e
d

 v
a
lu

e

Area Time product

Latency

Figure 7.4: Comparison of the best five area-time product figures using affine and pro-
jective coordinates (group order ≈ 2160).

It is interesting to analyze the implicit parallelism using projective formulae. Analysis

of the best five area-time products shows there is only one system configuration with one

multiplier (in addition this is the worst architecture under the five best using projective

7.4 Optimum Architecture 123

coordinates). In the case of affine coordinates we see that the two best solutions contain

only one multiplier. Hence, potentially we cannot parallelize as many field operations in

the affine case.

Examine the two best design options of using one multiplier of type D = 8 for affine

coordinates versus two multipliers of type D = 8 for the projective case. In Figure 7.4

these cases are represented by the two leftmost bars for each coordinate system. We

realize that there is a gap of about 30% in the area-time product between affine and

projective coordinates. Comparing now for the same configurations the two bars rep-

resenting the latency (second bar for each coordinate system), we realize that in the

projective case we get a performance almost 50% better than in the affine case. This

speed-up was obtained on the basis of an already 30% better area-time product. We

can safely conclude that projective coordinates are preferable at parallel hardware is

available.

All the results considering projective coordinate system presented so far target an

application using only projective coordinates. Thus, one does not need to convert be-

tween coordinate systems. If a change of coordinates is strictly required one has to

compute an inversion and four additional multiplication operations. In terms of latency

one inversion costs ≈ 160 clock cycles, while the inclusion of an inversion function unit

increases the area from 4% to 152%, depending on the number and type of multipliers

in the architecture.

Figure 7.5 shows the area-time product of the two coordinate systems, whereas in

the figures related to projective coordinates we included the conversion. Note that the

top five design options using projective coordinates are not the same as the previous

case, where the coordinate conversion was not included. The reason is the relatively

high area increase for small system, due to the presence of inversion. However, the total

computation time remains practically unchanged since the conversion has a very low

7.5 Summary and Outlook 124

impact on the scalar multiplication time. Hence, fast and large implementations exhibit

a relatively better area-time product.

Analyzing Figure 7.5 we see that the best system configurations using affine and

projective coordinates have almost the same area-time product (1% difference for the

best case). Comparing the two latency bars for the best solutions of the two coordinate

systems we realize that the projective case is 50% faster than the affine case. This

speed-up was obtained on the basis of the same area-time product. Hence, even when

including the conversion between coordinate systems, the use of projective coordinates

is still preferable.

This result of this theoretical comparison is quite surprising considering the fact that

using projective instead of affine coordinates one has to trade one inversion operation

with up to 24 multiplications. Hence, projective coordinates are not at all attractive for

sequential processing like in most embedded and general purpose processors. However,

our results show that the larger number of multiplications allows a higher degree of

parallelization. Therefore, HECC realized in hardware can result in a better performance

and in a lower area-time product.

7.5 Summary and Outlook

In this section we analyzed the different parallel architectures for genus-2 HECC. In

the first part of the chapter we described the methodology used. After an extensive

treatment of a variety of architectural options using affine and projective coordinates

in the second and third part of the chapter, respectively, we compared the architecture

options in last part of the chapter. Hence, we were able to find the best architecture

realizing HECC.

The main finding of this theoretical analysis is that architecture based on projective

7.5 Summary and Outlook 125

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1M

D=8

1M

D=4

2M

D=4

2M

D=2

3M

D=2

3M

D=8

1M

D=32

2M

D=8

4M

D=8

2M

D=16

Affine
 Projective

N
o

rm
a
li
z
e
d

 V
a
lu

e

Area Time product

Latency

Figure 7.5: Comparison of the best five area-time products using affine and projective co-
ordinates (projective numbers includes the conversion of coordinates, group
order ≈ 2160).

coordinates are more flexible than those based on affine coordinates, allowing the de-

signer to chose the best compromise in terms of required latency and silicon area. If the

application imposes data conversion between the different coordinate systems, the archi-

tecture based on affine coordinates become attractive for their low area requirements.

We want to point out that the above presented results are based on our scheduling

optimization software. We did not implement any of the architectures introduced in

actual hardware. In general, hardware designers face the problem that VLSI designs

and the manufacturing of prototypes are very complex and costly. Hence, the given

results provide a theoretical basis, on which one can built when starting to design a

HECC VLSI coprocessor. We would also want to mention that we fixed the underlying

field and used certain curve parameters.

In the future, further analysis using different field sizes as well as different genera

and curve parameters should be done. Furthermore, one should try to actually realize a

HECC coprocessor prototype. This prototype can help to investigate further improve-

7.5 Summary and Outlook 126

ments to the HECC coprocessor design.

8 A High Speed HECC Coprocessor on

FPGAs

FPGA (Field Programmable Gate Arrays) are an interesting target platform for cryp-

tographic algorithms. Not surprisingly, one can find many companies already devel-

oping cryptographic IP cores for FPGAs (for example, ALMA Technologies, Amphion,

Bisquare Systems Private Ltd., Helion Technologies, Ocean Logic Pty Ltd). In this chap-

ter, we present our implementation results of HECC on a FPGA. We propose a genus-2

hyperelliptic curve cryptographic coprocessor using affine coordinates. We provide three

prototype implementations of the coprocessor aiming for high performance.

FPGAs have some potential advantages compared to ASIC implementations in cryp-

tographic applications: algorithm agility, algorithm upload, architecture efficiency, re-

source efficiency, algorithm modification, throughput, and cost efficiency. More details

and a description to each item can be found in [WGP04, WP04]. However, the listed

advantages of FPGAs for cryptographic applications can only be exploited if the poten-

tial security shortcomings of FPGAs have been addressed. Potential shortcomings are

Black Box Attack, Cloning of SRAM FPGAs, Readback Attack, Reverse-Engineering of

the Bitstreams, Side Channel Attacks, and Physical Attacks [WGP04,WP04].

Black box attacks do not seem to be feasible for state-of-the-art FPGAs. However,

it seems very likely for an attacker to get the secret information stored in a FPGA,

A High Speed HECC Coprocessor on FPGAs 128

when combining readback and fault induction attacks. Cloning of SRAM FPGA and

reverse engineering depend on the specifics of the system under attack, will probably

involve a lot of effort, but are not entirely impossible. Physical attacks against FPGAs

are very complex due to the physical properties of the semiconductors in the case of

flash/SRAM/EEPROM FPGAs and the small size of AF cells. It appears that such

attacks are even harder than the analogous ones against ASICs. Even though FPGA

have different internal structures than ASICs with the same functionality, we believe that

side-channel attacks against FPGAs, in particular power-analysis attacks, will be feasible

too. More detailed information about security aspects of FPGAs and the prevention of

them can be found in [WP03b,WGP04,WP04].

It seems from our previous remarks that FPGAs might be out of question for security

applications. We do not think that is the right conclusion, however. It should be noted

that many commercial ASICs with cryptographic functionality are also vulnerable to

attacks similar to the ones discussed here. A common approach to prevent these attacks

is to put the ASIC in a secure environment. A secure environment could, for instance, be

a box with tamper sensors which triggers what is called “zeroization” of cryptographic

keys, when an attack is being detected. Similar approaches are certainly possible for

FPGAs too.

In the following we present our approach to implementing HECC on a FPGA1. We

first present the HECC coprocessor (Section 8.1). Then, we are going to outline our

methodology and the different design options (Section 8.2). At the end of this chapter

we put our results in perspective to previous ECC and HECC FPGA implementations.

1This is joint work with Dr. HoWon Kim who did the VHDL implementation of the HECC coprocessor.

8.1 HECC Coprocessor on FPGA 129

8.1 HECC Coprocessor on FPGA

The coprocessor has to compute the scalar multiplication kD for the HECC. Efficient

algorithms are needed to implement the group operations as well as the field arith-

metic. This work proposes three different processor architectures that are well suited

for implementation on Field Programmable Gate Arrays (FPGAs).

The HEC coprocessor consists of three main components: main control unit (MC),

arithmetic unit (AU), and register file or memory (RF), see Figure 8.1. MC is the main

control unit of the coprocessor. It computes the scalar multiplication kD for HECC

and interacts with the host system as well as with the other components. It generates

control signals for RF, interconnection block, and AU. The interconnection block, which

is mainly composed of multiplexers, takes care of the data exchange between the RF

and the AU. The AU performs the field and group operations. In the following, we are

going to describe the individual components in more detail.

����

������	

���

����

����������	�������������
��

���������������

���	������������
����

�����������
������
�

��������

������	

�����������

�����

���������

Figure 8.1: Architecture of the HECC coprocessor on FPGAs.

8.1.1 Field Operation Units

The AU in the HECC coprocessor has field operation units for addition, squaring, mul-

tiplication and inversion over F281 . The implementations of the field F281 might have

potential cryptographical weaknesses according to [Fre98, GHS02], however, we would

8.1 HECC Coprocessor on FPGA 130

like to emphasize that the implementation techniques are also applicable to fields with

prime extensions, see Page 4.

In existing literature one can find a variety of ways to implement the field operations.

We provide a short description of the implementation and give references pointing to

more detailed information.

Field Adder: The addition of two elements requires the modulo 2 operation of the

coefficients of the field elements. Hence, we use 81 exclusive OR gates to add two field

elements in one clock cycle.

Field Squarer: The squaring of a field element A =
∑m−1

i=0 aix
i is ruled by the follow-

ing equation: A2 ≡ ∑m−1
i=0 aix

2i mod F (x), where F (x) denotes the defining polynomial

of the field F. The squarer is implemented with combinatorial logic and we use a fixed

underlying polynomial F (x). Squaring can be performed within one clock cycle and

further details can be found in [OP00].

Field Inversion: The inversion was implemented using the Modified Almost Inverse

Algorithm (MAIA) [HHM00] rewritten in Algorithm 1. In addition, we increased the

performance by using the techniques described in [CKK02, SK98]. These techniques

allow executing of Steps 2 to 5 of Algorithm 1 in nearly one clock cycle. In order to

do so, we a) unrolled the loop (Step 2) and b) merged Step 5 in Step 2. To realize

the improvement a) we had to replicate and expand the conditional statement for all

cases. The replication number of the loop body was decided by considering the tradeoff

between the hardware complexity and performance.

The field inversion can be performed in an average time of 1.01µs (see Table 8.1).

The input data that was used to measure the execution time had an hamming weight

of n/2, where n is the bit size of the input data. The reason being the performance of

the inversion varies with the input data.

8.1 HECC Coprocessor on FPGA 131

Algorithm 1. Modified Almost Inverse Algorithm for inversion in F2m

INPUT : a ∈ F2m , a 6= 0.
OUTPUT : a−1 mod F (x)

1. b ← 1, c ← 0, u ← a, v ← f.
2. While x divides u do:

2.1 u ← u/x
2.2 If x divides b then b ← b/x; else b ← (b + f)/x.

3. If u = 1 then return(b).
4. If deg(u) < deg(v) then: u ↔ v, b ↔ c.
5. u ← u + v, b ← b + c.
6. Goto step 2.

Table 8.1: Performance of field multiplication and field inversion logic (FPGA Xilinx
Virtex II XC2V4000 ff1517-6, F281).

Type DigitSize slices Frequency [MHz] Clock cycles Time [µs]
LSD D=4 219 98.0 21 0.214

D=8 342 108.7 11 0.101
D=16 554 87.5 6 0.069
D=27 882 71.0 3 0.042
D=32 1,010 70.0 3 0.043

MSD D=4 215 98.6 21 0.213
D=8 339 109.9 11 0.100
D=16 551 71.1 6 0.084
D=27 868 70.1 3 0.043
D=32 1,066 69.6 3 0.043

MAIA - 663 87.8 89 1.014

Field Multiplication: For the field multiplication we use the digit multiplier in-

troduced in [SP97]. This kind of multiplier allows a trade-off between speed, area and

power consumption. This can be achieved by varying the number of multiplicand co-

efficients that are processed in parallel, denoted as digit-size D. Given D, we denote

by d = dm/De the total number of digits in a polynomial of degree m − 1. Hence,

C ≡ AB ≡ A
∑d−1

i=0 Bix
Di mod F (x).

We investigated the performance of the field multiplication in more depth because it

is a crucial field operation in the HECC. The digit multipliers come in two flavors: Least

8.1 HECC Coprocessor on FPGA 132

Significant Digit (LSD) first and Most Significant Digit (MSD) first multipliers [SP97].

Additionally, one can vary the digit size depending on the application. Table 8.1 shows

the latency and the area requirement of the two different types of multiplier as well as

varying digit sizes.

One would expect the frequency of the multipliers to be decreased with higher digit

size. However, examining Table 8.1 one notices the lower frequency for D=4 multiplier

compared to D=8. Careful analysis shows that the critical path of the D=4 multipliers

are dominated by the control logic, more specifically from the 5 bit comparator logic and

additional logic (such as multiplexers). For all the other multipliers the critical path is

conditioned by the data path. The data path includes the parallel multiplication, the

accumulation of the partial results and the reduction (for more detail see [SP97]).

The choice of the ideal multiplier for our HECC coprocessor largely depends on fre-

quency of the total design and secondly, on the latency of the multiplier. The frequency

of the coprocessor is limited by the interconnection network and does not exceed 61 MHz

(see Table 8.3). Hence, the multipliers using digit size D=27 are the best choice. The

reason being it can be clocked with a high enough frequency and computes the multipli-

cation in only three cycles, at the same time requiring lower area compared to the D=32

multiplier. Note that LSD and MSD multipliers using digit size 27 have very similar

performance and, therefore, both types are applicable.

8.1.2 Arithmetic Unit

Figure 8.2 shows the arithmetic unit (AU) that performs the group addition and group

doubling operations. The AU consists of the field operation units and the group opera-

tion logic. The control logic is in charge of scheduling the right sequence of operations

to perform the HEC group operations. Necessarily, the control unit has to interact with

the main control unit (MC) and the register files (RF). In addition, we had to provide

8.2 Design Methodology for the HECC Coprocessor on FPGA 133

internal control logic for the multiplier and inversion logic.

Field addition and field squaring are the least expensive operations and, therefore, we

decided to integrate them into the data path between RF and the multipliers. However,

we still can compute the operation without consecutive multiplication by setting the

right multiplexer options.

��������	

��
���

�����

�����

�����
���

��
���

�����

�����
����������������������

���
���
������

����

��
���
�

���
���

���
�����

��
�

�

���
���

 !"���#�$���#�%

��& ��&

��� ��� '(�

��
���
�

��&

���

 �
��������
���

����
����&����

Figure 8.2: Arithmetic Unit of the HECC coprocessor on FPGA.

8.1.3 Interconnection Network

The interconnection network, consisting of a multiplexer, handles the data transfer be-

tween the RF and AU. Note that for our high performance design (see Section 8.2), we

included the capability to load the input data in parallel. This results in the possibility

to start two multipliers and the inversion logic at the same time.

8.2 Design Methodology for the HECC Coprocessor on

FPGA

In this section, we will briefly describe our design methodology that resulted in the HECC

coprocessor. The primary goal for all presented design options was to reach the best

8.2 Design Methodology for the HECC Coprocessor on FPGA 134

possible performance. However, we tried (where possible) at the same time to reduce

overall hardware complexity. In order to do so, we examined the parallelism within the

group operations, minimized the number of registers, and reduced the complexity of the

interconnection network.

8.2.1 Parallel Architecture for the Group Operations

We used the Data Dependence Graph (DDG) to design the architecture for computing

the group operations. We found that the multiplication and the inversion operations are

the dominant components and, therefore, crucial for the overall performance. Hence, we

designed our graph where the nodes of the DDG represent the multiplications and the

inversions and the addition and squaring are an edge of the DDG.

We can describe the DDG as G(F) = (V, E), where V is the set of multiplication and

inversion operations, F is the HECC explicit formulae, and E is the data flow between

multiplication, inversion, and registers.

Our analysis using the DDG resulted in the choice of using two parallel multipliers

for the genus-2 HECC coprocessor. This choice considered the hardware complexity as

well as the performance. The utilization rate of the two multipliers for group addition

and group doubling is 91% and 50%, respectively. Therefore, adding additional multipli-

ers would not provide any advantages considering the increasing hardware complexity.

Hence, we used two multipliers and sped up the performance of the HECC coprocessor

by choosing a large digit size (D=27).

As mentioned already, there has been a previous contribution studying the parallelism

of the genus-2 HECC group operations [MS03]. In [MS03], the authors develop a general

methodology for obtaining parallel algorithm for the HECC. However, this work only

focused on theoretical aspects on the parallelism of the HECC. Furthermore, they did

8.2 Design Methodology for the HECC Coprocessor on FPGA 135

not consider the register allocation and interconnection network complexity problems,

which are important factors in practical implementations.

8.2.2 Minimizing the Number of Registers

We have designed the HECC coprocessor with an effort to minimize the number of

registers. We used eight 81-bit registers to store two divisor values which are updated

during the computation of the group operations with the output result. Additionally, we

needed some extra registers to store intermediate values. We found the optimal number

of extra registers by efficiently reusing these resources. This was done manually with

the help of register allocation tables.

8.2.3 Reduction of the Complexity of the Interconnection Network

After we found the minimum number of registers, we tried to reduce the complexity of

the interconnection network. We did this by looking at the inputs and outputs of the

different units (field operations and RF) involved in the computation. The minimum

complexity would be achieved by a) always storing a designated output into the same

register and b) loading a certain input value every time from the same register. Looking

at the complexity of the HECC group operations, it is obvious that there will not be a

fixed register for loading inputs or storing the output of one unit. However, by trying

to use this method we were able to reduce the size of the interconnection multiplexers.

8.2.4 Various Design Options for the HECC Coprocessor

We now introduce the three prototype implementations for HECC coprocessors. Our

Type 1 coprocessor is designed for high performance, whereas in the case of the Types 2

8.2 Design Methodology for the HECC Coprocessor on FPGA 136

and 3 we also tried to lower the hardware complexity. The characteristics of the various

types of HECC coprocessors are summarized in Table 8.2.

At this point we would like to stress, that the two main factors limiting the per-

formance of the HEC coprocessor are the AU and the interconnection network (see

discussion in previous sections).

Type 1 Design: High Performance

Our Type 1 design aims for a high performance implementation and is shown in

Figure 8.3(a). This design has two independent arithmetic units: one for group addition

and one for group doubling. The independency of the two group operations results from

separate field operation units, registers, interconnection networks, and control units.

Thus, we can compute the group operations in parallel by using a modified version of

the double-and-add scalar multiplication. In the case of group addition we used two

multipliers and one inversion logic, whereas for group doubling we provided only one

multiplier and one inversion logic.

��������

�������� ����	

�

���
�����
�����

���
�����
�����

�������
�� �������
�	���

��������������

�����

���� ��!

��������������

���������� ��!

"#

"#

���
�����
�����

�

"#

�������� ����	

�����

$%&

�
�"�
�����

$%&

�
�"�

�����

$%&

�
�"�

�'�

#������
��

Figure 8.3: Various design options for the HECC coprocessor.

Type 2 Design: Resource Sharing

Our Type 2 HECC coprocessor provides only one AU shared by the group addition

and group doubling (see Figure 8.3(b)). Hence, the two group operations share the

field arithmetic unit, the register file, the interconnection network, and the control logic.

8.2 Design Methodology for the HECC Coprocessor on FPGA 137

Another difference is that a more complex interconnection network is needed to handle

the computation. These differences result in a slower operating frequency, however, the

total hardware complexity is smaller compared to Type 1.

Type 3 Design: Reduced Area

Type 3 HECC coprocessor also uses, like in the case of the Type 2 design, shared

resources (see Figure 8.3(b)). The difference between Type 2 and Type 3 design is

the usage of memory for storing the intermediate data needed during the computation

of the group operations and the scalar multiplication. When we use memory instead

of registers, the decoding logic for reading (writing) data from (to) the RF unit is

intrinsically implemented inside the memory.

We have used distributed memory with dual ports (DIST MEM V6), which is in-

ternally provided by the Xilinx FPGAs. We have chosen the smallest memory block

available, namely of the size 1,536 bits, however we are currently using only 1,134 bits

to store 14 field elements.

Trading memory versus registers, results in higher frequency and smaller area, how-

ever, there are two disadvantages: a) we use specific memory which will be costly when

converting the system to an ASIC and b) the number of clock cycles for the overall com-

putation increases, because of the expensive data movement from and to the memory.

The latter disadvantage was partially removed by applying pipelining to the HECC co-

processor. For example, one can move data to or from the memory while simultaneously

performing a field multiplication.

In Chapter 7, we provided a theoretical analysis of the parallelism in HECC in order

to find the optimal architecture. The implementation results presented in this chapter

primarily aim high performance. This was achieved by using a more efficient inversion

and multiplication. Additionally, we adjusted the architecture to obtain a higher perfor-

mance by including the addition/squaring into the data path and by using input buses to

8.3 Results of HECC Coprocessor on FPGA 138

Table 8.2: Architectural characteristics of the different HECC coprocessor types.

logic interconnection scalar mult. Storage for RF
Type 1 addition: 2 MUL, 1 INV Multiplexers Right to Left 13 registers

doubling: 1 MUL, 1 INV (parallel) 10 registers
Type 2 2 MUL, 1 INV Multiplexers Left to Right 14 Registers

(shared)
Type 3 2 MUL, 1 INV Multiplexers Left to Right Memory

(shared) (1,536 bits)

transfer the field elements to the arithmetic units. We also targeted the implementation

so that we could start more than one field operation in each clock cycle. The previous

chapter considered architectures with different numbers of multipliers. However, a gen-

eral result was using two multipliers is a good choice for high performance and moderate

area increase. The FPGA implementations described in this chapter use two or three

multipliers and therefore are in the same line with Chapter 7.

8.3 Results of HECC Coprocessor on FPGA

In this section we present our implementation results using the methodology stated

above. We show the throughput results of different designs.

We implemented the HECC coprocessor using the best known formulae for the group

operations (for more details see Section 4.4). It was modeled using VHDL language

and then implemented a Xilinx Virtex II Pro V20 FPGA (XC2V P20ff1152-7). The

VHDL code was synthesized using Synplicity’s Synplify Pro 7.3.1 and Xilinx Foundation

5.2.03i to implement the modeled HECC coprocessor onto the target FPGA. Our HECC

coprocessor used between 43% and 83% of the slices available in the FPGA.

Table 8.3 shows the area and time requirements for the three different design options.

Type 1 corresponds to our high performance implementation. We were able to compute

8.4 Summary and Analysis of our FPGA Implementation 139

the scalar multiplication in 387µs, which is about 81% faster than the best known

implementation presented in [EMY04]. The area requirements decrease almost 50%

changing from Type 1 to Type 3. Hence, our Type 3 design utilizes 81% less area than

the smallest design described in [EMY04].

Table 8.3: Performance of the scalar multiplication on the HECC coprocessors (Xilinx
FPGA XC2VP20 ff1152-7, group order 2162).

Size [slices] Frequency [MHz] Clock cycles Time [µs]
Type 1 7,737 60.7 23,509 387
Type 2 5,674 51.4 34,012 662
Type 3 4,039 57.0 44,848 787

8.4 Summary and Analysis of our FPGA Implementation

In this chapter we presented our approach to implement HECC on FPGA. The HECC

coprocessor, our design methodology, and the different design options were introduced.

The main focus of this section is to put our results in perspective to previous published

ECC and HECC implementations.

We evaluated the performance of cryptographic implementations by comparing not

only the throughput of the implementation but also using the area-time product. There-

fore, the optimal implementation will achieve the highest throughput in the least amount

of area and, thus, the lowest area-time product. At this point, we must caution the reader

against using the area-time product to compare implementations on different FPGA de-

vices. This is because even within the same family, one may get different timing results

based on available logic and routing resources.

In order to be able to provide a fair comparison between our work and the ones

previously presented, we also did the place and routing for the HECC coprocessor with

8.4 Summary and Analysis of our FPGA Implementation 140

Table 8.4: Comparison of the ECC and HECC scalar multiplication implementations on
FPGAs (target device is Xilinx FPGA XC2V4000, except in [OP00]).

scalar group digit slices f Time area-time
mult. order size slices [MHz] [µs] product

genus-2 HECC
Clancy affine coord. 2166 D=1 22,000 - 10,000 68.10
[Cla03] binary 2166 D=4 60,000 - 9,000 167.14
Elias et al. proj. coord. 2226 D=1 21,550 45.6 7,390 49.29
[EMY04] NAF 2226 D=4 25,271 45.3 2,030 15.88
our work affine coord.

Type 1 binary 2162 D=27 7,785 56.7 415 1
Type 2 2162 D=27 5,604 47.0 724 1.26
Type 3 2162 D=27 3,955 54.0 831 1.02

ECC
Orlando et al. proj. coord. 2167 D=16
[OP00] Montgomery 1,501 76.7 210 -
Gura et al. proj. coord. 2163 D=64
[EGCS03] Montgomery 11,845 66.4 143 0.52

a target FPGA, Xilinx Virtex II FPGA (XC2V4000ff1517-6). In the case of XC2V4000,

our designs used between 17% and 34% of the available slices. Table 8.4 shows all HECC

hardware numbers and the two best known FPGA implementation of ECC.

Note that we did not calculate the area-time product for one of the ECC implementa-

tions, because in [OP00], the authors used a different type of FPGA, namely the Xilinx

FPGA XCV400E. However, for completeness and in order to put our work in perspective

with state-of-the-art research on ECC we think it is useful to include these numbers.

Analyzing the area-time product numbers of our designs, we noticed that they are

fairly similar. Thus, considering different application scenarios, e.g., high speed or low

area, we are able to provide an adequate solution. Comparing our results to the previ-

ously published shows that our designs are an order of magnitude better. Our implemen-

tations perform between a factor of 16 and 167 better than previous implementations.

Note that the authors in [EMY04] used a different underlying field and, therefore, the

8.4 Summary and Analysis of our FPGA Implementation 141

factor will be smaller when changing the field. Considering our HECC coprocessors we

are now approaching the performance range of ECC FPGA implementations. Consid-

ering the area-time product, ECC is only about a factor of two better than HECC.

At this point we would like to clarify that this is only a prototype implementation.

Higher speed and lower area could most likely be achieved when further optimizing the

VHDL code as well as the design methodology. In addition, one will obtain better results

with new FPGA releases and tool versions. Furthermore, when designing a HECC ASIC

coprocessor the results are expected to be better. However, the presented results give a

trend of the performance and area usage of implementing genus-2 HECC on a state-of-

the-art FPGA family.

We want to point out that the presented results using a fixed underlying field and the

HECC coprocessor is targeted for the genus-2 HEC group operation using certain curve

parameters.

9 Discussion

This chapter summarizes research finding of the thesis. A summary of the main results

as well as some recommendations for future research will be provided.

9.1 Conclusions

Today most cryptographic protocols use RSA [RSA78] for public key encryption. How-

ever, ECC increasingly used in practice as well. The reason being the short operant

length of ECC resulting in a much higher speed for the encryption compared to RSA.

ECC is the fastest used public-key primitive known today. HECC was thought to be out

of scope for any practical use because of the complex structure of the group operations

and the resulting low performance.

We were able to increase the performance of HECC. The newly derived group oper-

ations are up to 78% more efficient than the previous known operations. Furthermore,

we showed the influence of the algorithm, group order, and curve parameters on the

performance for a given application. We demonstrated with our implementations in

software and hardware that HECC reaches the speed of ECC. In some cases we could

even outperform ECC.

Based on the results presented in this contribution, explicit formulae based on Harley’s

algorithm should be used when implementing genus-2 and genus-4 curves. In the case

9.1 Conclusions 143

of genus-3 curves the doubling operation should be implemented using explicit formulae

based on Cantor and for the addition we advise the use of Harley’s algorithm.

Our software implementations show that ECC, genus-2, and genus-3 HECC have a

similar performance. This was verified with various implementations on embedded and

general processors using different underlying fields. Hence, the stated result holds for

applications with different security levels. The best timings for the scalar multiplica-

tion considering a group order of approximately 2163 for HEC cryptosystems could be

achieved on the ARM7TDMI@80MHz, resulting in 87 and 94 milliseconds for genus 2

and 3, respectively. The fastest scalar multiplication for ECC on the same platform

was performed in 108 ms. For the same security level, the scalar multiplication on

an Pentium@1.8GHz could be performed in 2.60 ms, 2.73 ms, and 2.95 ms for ECC,

genus-2 HECC, and genus-3 HECC, respectively. Hence, ECC and HECC can be the

cryptosystem of choice for general purpose processors as well as for embedded processors.

We did a theoretical investigation of various parallel architectures for a genus-2 HECC

using affine and projective coordinate systems. We studied the parallelism of the HECC

at the field operation level, the group operation level, and the scalar multiplication level.

The main finding of this theoretical analysis is that the architecture based on projective

coordinates are preferable compared to affine ones. Our fastest scalar multiplication was

performed in 19, 769 clock cycles. It uses three field multipliers (of type D = 32), one

field adder and one field squarer.

Analyzing the encryption speed of HECC implemented on FPGA leads to the same

conclusions as stated before, namely that HECC reaches the performance ECC. Our fast

version of HECC implemented on FPGA can perform one scalar multiplication in 415µs

and is therefore 81% faster than the best previous implementation. Thus, one can use

HECC coprocessor as an alternative encryption scheme for cryptographic accelerators.

In summary, we presented a variety of engineering aspects of HECC improving their

9.2 Further Research 144

acceptance. This was achieved by increasing the performance of HECC group operation

and by presenting similar speed for ECC and HECC considering software and hardware

implementations.

9.2 Further Research

This thesis concentrated on the improvement of the HECC as well as on the implemen-

tation in software and hardware. This section will provide the reader with an overview

of possible areas in which further work could be pursued. The presented ideas came up

during the research and implementation that was done. These recommendations provide

opportunities to investigate further the engineering aspects of HECC.

Further optimization of the explicit group operation: In Sections 4.1 and 4.2 we

introduced all our techniques used to improve the explicit formulae for the HECC group

operation. The resulting efficient group operations are introduced in Section 4.3. The

group operation for higher genus HECC are very complex and therefore probably one

can improve them further, by a) repeating the proposed techniques or by b) finding new

techniques for improvement.

Deriving projective coordinates for genus-3 and genus-4 HECC: In [MDM+02,

Lan02b,Lan03], the authors introduced the HEC group operation using projective coor-

dinates for genus-2 curves. Hence, one can encrypt without having to provide inversion

operations in the underlying field. In our contribution we improved the genus-2 HECC

using projective coordinates, as shown in Table 4.4. Taking this contribution for genus-

2 curves as a starting point, one can formulate projective group operations for higher

genus HECC. In addition this formulae could be improved, by the techniques presented

in Sections 4.1 and 4.2.

FPGA implementation using projective coordinates: In [EMY04], the authors

9.2 Further Research 145

did a HECC implementation on FPGA using projective coordinates. However, they

did not use our optimized formulae. In addition, one could inspect the features of

the FPGA to target the implementation specifically for this platform. One should also

consider various design options for this implementation targeting different cryptographic

applications, similarly to the work presented in Section 8.

Software and hardware implementation of HECC using underlying prime

fields: Many high security applications, e.g. for government use, require the use of

prime fields when implementing curve based cryptographic algorithms. Hence, it is

very important to get reliable performance numbers for HECC using prime fields. The

software as well as the hardware implementation presented in this contribution is based

on fields of characteristic two. In [Ava04], the author implemented HECC using prime

fields on a AMD Athlon running at 1GHz. These results, even though limited to software

implementation on a general purpose processor, parallel the results in this theses nicely.

In addition, implementations on embedded processors, as well as on more hardware-

oriented platforms such as FPGAs could be investigated.

Assembly implementation of HECC on embedded processors: The efficiency

of compilers has improved a lot over the last years, and it can be expected that it

will further advance in the future. However, the tools will never be perfect and one

can always get a significant speed-up by rewriting the core routines in assembly. This

is especially important for embedded application, because the performance is already

limited by the processor.

Implementation of HECC on 8bit and 16bit processors: Our contribution clearly

shows that ECC and HECC are the cryptosystems for embedded processors at least as

far as binary fields are used. In Section 6.3 we extensively studied the performance of a

variety of important 32-bit processors. We think that HECC can also be implemented

with acceptable performance on 8bit and 16bit embedded processors. These kinds of

9.2 Further Research 146

processors play a important role in many cryptographic applications.

Implementation of HECC using Koblitz Curves: In [Kob91], the author presented

Koblitz curves to perform a scalar multiplication in the case of ECC more efficiently.

We implemented the Frobenius map using Koblitz curves targeting a group order of

approximately 2160 for ECC and obtained very competitive timings. Hence, it seems

very interesting to investigate the performance of Koblitz curves for HECC.

A Explicit Formulae for the Group
Operations over GF(p)

Table A.1: Explicit formulae for adding on a HEC of
genus two (Harley) [Lan02a].

Input Weight two reduced divisors D1 = (u1, v1) and D2 =
(u2, v2) with
u1 = x2 + u11x + u10;
u2 = x2 + u21x + u20;
v1 = v11x + v10;
v2 = v21x + v20;
furthermore:
h = h2x

2 + h1x + h0; where hi ∈ {0, 1};
f = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0; where f4 ∈ {0, 1};
Output A weight two reduced divisor D′ = (u′, v′) = D1 + D2 with

u′ = x2 + u′1x + u′0;
v′ = v′1x + v′0;

Step Procedure Cost
1 Compute resultant r of u1 and u2:

z1 = u11 − u21, z2 = u20 − u10, z3 = u11z1 + z2

r = z2z3 + z1
2u10

3M + 1S

2 Compute almost inverse inv = r/u2 mod u1:
inv1 = z1, inv0 = z3

−

3 Compute s′ = rs ≡ (v1 − v2)inv mod u1:
w1 = v10 − v20, w2 = v11 − v21, w3 = inv0w1, w4 = inv1w2

s′1 = (inv0 + inv1)(w1 + w2) − w3 − w4(1 + u11), s′0 =
w3 − u10w4

If s1 = 0 perform Cantor

5M

4 Compute s′′ = x + s0/s1 = x + s′0/s
′
1 and s1:

w1 = (rs′1)
−1, w2 = rw1(= 1/s′1), w3 = s′1

2w1(= s1)
w4 = rw2(= 1/s1), w5 = w2

4

s′′0 = s′0w2

I + 5M + 2S

5 Compute l′ = s′′u2 = x3 + l′2x
2 + l′1x + l′0:

l′2 = u21 + s′′0, l′1 = u20 + u21s
′′
0, l′0 = u20s

′′
0

2M

Explicit Formulae for the Group Operations over GF(p) 148

Table A.1: (continued)

Step Procedure Cost
6 Compute u′ = (s(l + h + 2v1)− k)u−1

1 = x2 + u′1x + u′0:
u′1 = h2w4 + s′′0 + l′2 − u11 − w5

u′0 = (s′′0−u11)(l
′
2 +h2w4−u11)−u10 + l′1 +(h1 +2v21)w4 +

(u11 + u21 − f4)w5

3M

7 Compute v′ ≡ −(h + l + v2) mod u′:
w1 = l′2 − u′1, w2 = u′1w1 + u′0 − l′1
v′1 = w3w2 − v21 − h1 + h2u

′
1

w4 = u′0w1 − l′0
v′0 = w3w4 − v20 − h0 + h2u

′
0

4M

Total fields of arbitrary characteristic, hi ∈ F2, f4 = 0 I + 22M + 3S
fields of characteristic two, hi ∈ F2, f4 = 0 I + 21M + 3S

Table A.2: Explicit formulae for doubling on a HEC of
genus two (Harley) [Lan02a].

Input Weight two reduced divisors D = (u, v) with
u = x2 + u1x + u0;
v = v1x + v0;
furthermore:
h = h2x

2 + h1x + h0; where hi ∈ {0, 1};
f = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0; where f4 ∈ {0, 1};
Output A weight two reduced divisor D′ = (u′, v′) = [2]D with

u′ = x2 + u′1x + u′0;
v′ = v′1x + v′0;

Step Procedure Cost
1 Compute resultant r of u and h + 2v:

let ṽ ≡ h + 2v mod u:
ṽ1 = h1 + 2v1 − h2u1; ṽ0 = h0 + 2v0 − h2u0;
w0 = v2

1; w1 = u2
1; w2 = ṽ2

1; w3 = u1ṽ1;
r = u0w2 + ṽ0(ṽ0 − w3);

3M + 2S

2 Compute almost inverse inv ≡ r/ṽ mod u1:
inv1 = −ṽ1; inv0 = ṽ0 − w3;

−

3 Compute k ≡ [(f − hv − v2)/u] mod u:
w3 = f3 + w1; w4 = 2u0;
k1 = 2(w1 − f4u1) + w3 − w4 − v1h2;
k0 = u1(2w4−w3+f4u1+v1h2)+f2−w0−2f4u0−v1h1−v0h2;

1M

Explicit Formulae for the Group Operations over GF(p) 149

Table A.2: (continued)

Step Procedure Cost
4 Compute s′ = kinv mod u:

w0 = k0inv0; w1 = k1inv1;
s′1 = (inv0 + inv1)(k0 + k1)− w0 − w1 − u1w1;
s′0 = w0 − u0w1;
If s′1 = 0 perform Cantor’s Algorithm

5M

5 Compute s = x + s′0/s
′
1 and s1:

w1 = (rs′1)
−1; w2 = rw1(= 1/s′1); w3 = s′1

2w1(= s1);
w4 = rw2(= 1/s1); w5 = w2

4;
s0 = s′0w2;

I + 5M + 2S

6 Compute l = su:
l2 = u1 + s0; l1 = u1s0 + u0; l0 = u0s0

2M

7 Compute u′ = [l2 + w4l(2v + h)− w5(f − vh− v2)]/u2:
u′1 = 2s0 + w4h2 − w5;
u′0 = s2

0 + w4(h2(s0 − u1) + 2v1 + h1) + w5(2u1 − f4);

2M + 1S

8 Compute v′ ≡ −(h + w3l + v) mod u′:
w1 = l2 − u′1; w2 = u′1w1 + u′0 − l1;
v′1 = w2w3 − v1 − h1 + h2u

′
1;

w4 = u′0w1 − l0;
v′0 = w3w4 − v0 − h0 + h2u

′
0;

4M

Total fields of arbitrary characteristic, hi ∈ F2, f4 = 0 I + 22M + 5S
fields of characteristic two, hi ∈ F2, f4 = 0 I + 20M + 5S
fields of characteristic two, hi ∈ F2, h2 = 0, f4 = 0 I + 17M + 5S
fields of characteristic two, h(x) = x, f4 = f3 = f2 = 0, see
Table A.3

I + 9M + 6S

Table A.3: Optimized explicit formulae for doubling a
divisor on special curves of genus two over F2n with
h(x) = x.

Input Weight two reduced divisors D = div(u, v) with
u = x2 + u1x + u0

v = v1x + v0

furthermore:
h = x and f = x5 + f1x + f0

Output A weight two reduced divisor D′ = div(u′, v′) = [2]D with
u′ = x2 + u′1x + u′0;
v′ = v′1x + v′0;

Step Procedure Cost
1 Compute resultant r of u and h + 2v:

r = u0;
−

Explicit Formulae for the Group Operations over GF(p) 150

Table A.3: (continued)

Step Procedure Cost
2 Compute almost inverse inv ≡ r/ṽ mod u1:

inv1 = 1; inv0 = u1;
−

3 Compute k ≡ [(f − hv − v2)/u] mod u:

w0 = v2
1; w1 = u2

1; k1 = w1;
t1 = u1k1; k0 = t1 + w0 + v1;

1M + 2S

4 Compute s′ = kinv mod u:
t2 = u0k0; s′1 = k0; s′0 = (u0 + u1)(k0 + k1) + t1 + t2;
If s′1 = 0 perform Cantor’s Algorithm

2M

5 Compute s1 and s0u1:

t3 = t−1
2 (= 1/(rs′1)); w3 = r2t3(= 1/s1); w4 = w2

3;
s1 = s′21 t3; t6 = t1 + k1s1(= s0u1);

I + 3M + 3S

6 Compute z = su (Karatsuba):
z0 = s′0; z1 = t6 + s′1; z2 = w1; z3 = s1;

−

7 Compute u′ = 1/s2
1((su + h + v)2 + f)/u2:

u′2 = 1; u′1 = w4; u′0 = w4k
2
1 + k1 + w3;

M + S

8 Compute v′ ≡ h + z + v mod u′ (Karatsuba):
t4 = w3; t7 = t4 + z2; t5 = t7u

′
0;

v′1 = (z3+t7)(u
′
0+u′1)+t4+t5+1+z1+v1; v′0 = t5+z0+v0;

2M

Total I + 9M + 6S

Table A.4: Explicit formulae for adding on a HEC of
genus two (Cantor).

Input Weight two reduced divisors D1 = (u1, v1) and D2 =
(u2, v2) with
u1 = x2 + ax + b;
u2 = x2 + cx + d;
v1 = ix + j;
v2 = kx + l;
furthermore:
h = h2x

2 + h1x + h0; where hi ∈ {0, 1};
f = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0; where f4 ∈ {0, 1};
Output A weight two reduced divisor D′ = (u′, v′) = D1 + D2 with

u′ = x2 + a3x + b3;
v′ = i3x + j3;

Step Procedure Cost
1 Compute gcd(u1, u2) = 1 = s1u1 + s2u2: I + 8M + 2S

r21 = a− c; r20 = b− d; t20 = −1;
r31 = r21 · c− r20; r30 = r21 · d; t30 = r21; t31 = 1;

Explicit Formulae for the Group Operations over GF(p) 151

Table A.4: (continued)

Step Procedure Cost
r40 = r31 · r20 − r21 · r30; s20 = −r31 − r2

21; s21 = −r21;
t0 = r−1

40 ; s20 = s20 · t0; s21 = s21 · t0;
s11 = −s21; s10 = −s21 · c− s20 − a · s11;

2 Compute u′ = u1u2 = x4 + u′3x
3 + u′2x

2 + u′1x + u′0:
t0 = b · d; t1 = a · c; t2 = (a + b) · (c + d); u′0 = t0;
u′1 = t2 − t0 − t1; u′2 = t1 + b + d; u′3 = a + c;

2M

3 Compute v′ = s1u1v2 + s2u2v1 mod u′: 22M
t0 = b · s10; t1 = a · s11; t2 = (a + b) · (s11 + s10); su10 = t0;
su11 = t2 − t0 − t1; su12 = t1 + s10; su13 = s11;
t0 = l · su10; t1 = k · su11; t2 = (k + l) · (su10 + su11);
d00 = t0; d01 = t2 − t0 − t1; d02 = t1; t0 = l · (su10 + su12);
t1 = k ·(su11+su13); t2 = (k+ l) ·(su10+su11+su12+su13);
d20 = t0; d21 = t2 − t0 − t1; d22 = t1; suv10 = d00; suv11 =
d01; suv12 = d02 + d20 − d00; suv13 = d21 − d01; suv14 =
d22 − d02; t0 = d · s20; t1 = c · s21; t2 = (c + d) · (s21 + s20);
su20 = t0; su21 = t2 − t0 − t1; su22 = t1 + s20; su23 = s21;
t0 = j · su20; t1 = i · su21; t2 = (i + j) · (su20 + su21);
d00 = t0; d01 = t2 − t0 − t1; d02 = t1; t0 = j · (su20 + su22);
t1 = i · (su21 + su23); t2 = (i + j) · (su20 + su21 + su22 +
su23); d20 = t0; d21 = t2 − t0 − t1; d22 = t1; suv20 = d00;
suv21 = d01; suv22 = d02 + d20 − d00; suv23 = d21 − d01;
suv24 = d22− d02; v′3 = suv13 + suv23− u′3 · (suv14 + suv24);
v′2 = suv12+suv22−u′2 ·(suv14+suv24); v′1 = suv11+suv21−
u′1 · (suv14 +suv24); v′0 = suv10 +suv20−u′0 · (suv14 +suv24);

4 Compute monic u3 = (f − v′h− v′2)/u′ = x2 + a3x + b3:

t1 = −v′3
2; a3 = −2 · v′3 · v′2 + 1− v′3 · h2 − t1 · u′3;

b3 = −v′2 ·h2− v′3 ·h1− 2 · v′3 · v′1 + f4− v′2
2− t1 ·u′2− a3 ·u′3;

t0 = t1
−1; a3 = a3 · t0; b3 = b3 · t0;

I + 7M + 2S

5 Compute v3 = −(h + v′) mod u3 = i3x + j3:
t0 = −v′3; t1 = −(v′2 + h2)− t0 · a3; i3 = −(v′1 + h1)− (t0 +
t1) · (b3 + a3) + t1 · b3 + t0 · a3; j3 = −(v′0 + h0)− t1 · b3;

5M

Total fields of arbitrary characteristic, hi ∈ F2, f4 = 0 2I +44M +4S
fields of characteristic two, hi ∈ F2, f4 = 0 2I +42M +4S

Explicit Formulae for the Group Operations over GF(p) 152

Table A.5: Explicit formulae for doubling on a HEC of
genus two (Cantor).

Input Weight two reduced divisors D = (u, v) with
u = x2 + ax + b;
v = ix + j;
furthermore:
h = h2x

2 + h1x + h0; where hi ∈ {0, 1};
f = x5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0; where f4 ∈ {0, 1};
Output A weight two reduced divisor D′ = (u′, v′) = [2]D with

u′ = x2 + a2x + b2;
v′ = i2x + j2;

Step Procedure Cost
1 Compute gcd(u1, h + 2v1) = 1 = s1u1 + s3(h + 2v1):

r11 = h1+2·i−h2 ·a; r10 = h0+2·j−h2 ·b; r21 = r11 ·a−r10;
r20 = r11 · b; r30 = r21 · r10 − r11 · r20; s31 = r11; s30 = r21;
t0 = r−1

30 ; s31 = s31 · t0; s30 = s30 · t0; s11 = −s31 · h2;
s10 = −2 · s31 · i− s31 · h1 − s30 · h2 − a · s11;

I + 8M

2 Compute u′ = u1
2 = x4 + u′3x

3 + u′2x
2 + u′1x + u′0:

t0 = b2; t1 = a2; t2 = (a + b)2; u′0 = t0; u′1 = t2 − t0 − t1;
u′2 = 2 · b + t1; u′3 = 2 · a;

3S

3 Compute v′ = s1u1v1 + s3(v1
2 + f) mod u′1:

t0 = j · s10; t1 = i · s11; t2 = (i + j) · (s10 + s11); sv0 = t0;
sv1 = t2 − t1 − t0; sv2 = t1; t0 = b · sv0; t1 = a · sv1;
t2 = (a + b) · (sv0 + sv1); d00 = t0; d01 = t2 − t0 − t1;
d02 = t1; d10 = sv2; t0 = (b + 1) · (sv0 + sv2); t1 = a · sv1;
t2 = (a+b+1) ·(sv0 +sv1 +sv2); d20 = t0; d21 = t2−t0−t1;
d22 = t1; suv0 = d00; suv1 = d01; suv2 = d02+d20−d00−d10;
suv3 = d21 − d01; suv4 = d10 + d22 − d02; t0 = j2; t1 = i2;
t2 = (i + j)2; vq0 = t0; vq1 = t2 − t0 − t1; vsq2 = t1;
vsf3 = f3 − u′2 − f4 · u′3 + u′3

2; vsf2 = vsq2 + f2 − u′1 −
f4 · u′2 + u′3 · u′2; vsf1 = vsq1 + f1 − u′0 − f4 · u′1 + u′3 · u′1;
vsf0 = vsq0+f0−f4·u′0+u′3·u′0; t0 = s30·vsf0; t1 = s31·vsf1;
t2 = (s30 + s31) · (vsf0 + vsf1); d00 = t0; d01 = t2 − t0 − t1;
d02 = t1; t0 = (vsf2 + vsf0) · s30; t1 = (vsf3 + vsf1) · s31;
t2 = (vsf3 + vsf2 + vsf1 + vsf0) · (s30 + s31); d20 = t0;
d21 = t2 − t0 − t1; d22 = t1; svf0 = d00; svf1 = d01;
svf2 = d02 + d20 − d00; svf3 = d21 − d01; svf4 = d22 − d02;
v′3 = suv3 + svf3 − u′3 · (suv4 + svf4); v′2 = suv2 + svf2 −
u′2 · (suv4 + svf4); v′1 = suv1 + svf1 − u′1 · (suv4 + svf4);
v′0 = suv0 + svf0 − u′0 · (suv4 + svf4);

22M + 4S

Explicit Formulae for the Group Operations over GF(p) 153

Table A.5: (continued)

Step Procedure Cost
4 Compute monic u3 = (f − v′h− v′2)/u′ = x2 + a2x + b2:

t1 = −v′3; a2 = −2 · v′3 · v′2 + 1− v′3 · h2 − t1 · u′3;
b2 = −v′2 ·h2− v′3 ·h1− 2 · v′3 · v′1 + f4− v′2

2− t1 ·u′2− a2 ·u′3;
t0 = t1

−1; a2 = a2 · t0; b2 = b2 · t0;

I + 7M + S

5 Compute v3 = −(h + v′) mod u3 = i2x + j2:
t0 = −vs3; t1 = −(v′2 +h2)− t0 ·a2; i2 = −(v′1 +h1)− (t0 +
t1) · (b2 + a2) + t1 · b2 + t0 · a2; j2 = −(v′0 + h0)− t1 · b2;

5M

Total fields of arbitrary characteristic, hi ∈ F2, f4 = 0 2I +42M +8S
fields of characteristic two, hi ∈ F2, f4 = 0 2I +40M +8S
fields of characteristic two, h(x) = x, f4 = 0 I + 23M + 6S

Table A.6: Explicit formulae for adding on a HEC of
genus three (Harley).

Input Weight three reduced divisors D1 = (u1, v1) and D2 =
(u2, v2) with
u1 = x3 + ax2 + bx + c;
u2 = x3 + dx2 + ex + f ;
v1 = kx2 + lx + m;
v2 = nx2 + ox + p;
furthermore:
h = h3x

3 + h2x
2 + h1x + h0 where hi ∈ {0, 1};

f = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0 where

f6 ∈ {0, 1};
Output A weight three reduced divisor D3 = (u3, v3) = D1 + D2

with
u3 = x3 + a3x

2 + b3x + c3;
v3 = k3x

2 + l3x + m3;
Step Procedure Cost
1 Compute resultant r of u1 and u2 (Bezout):

t1 = ae; t2 = bd; t3 = bf ; t4 = ce; t5 = af ; t6 = cd;
t7 = (f − c)2; t8 = (e− b)2;
t9 = (d− a)(t3 − t4);
t10 = (d− a)(t5 − t6);
t11 = (e− b)(f − c);
r = (f−c+t1−t2)(t7−t9)+(t5−t6)(t10−2t11)+t8(t3−t4);

12M + 2S

2 Compute almost inverse inv = r/u1 mod u2:
inv2 = (t1 − t2 − c + f)(d− a)− t8;
inv1 = inv2d− t10 + t11;
inv0 = inv2e− d(t10 − t11) + t9 − t7

4M

Explicit Formulae for the Group Operations over GF(p) 154

Table A.6: (continued)

Step Procedure Cost
3 Compute s′ = rs ≡ (v2 − v1)inv mod u2 (Karatsuba):

t12 = (inv1 + inv2)(n− k + o− l); t13 = (o− l)inv1;
t14 = (inv0 + inv2)(n− k + p−m); t15 = (p−m)inv0;
t16 = (inv0 + inv1)(o− l + p−m); t17 = (n− k)inv2;
r′0 = t15; r′1 = t16 − t13 − t15; r′2 = t13 + t14 − t15 − t17;
r′3 = t12 − t13 − t17; r′4 = t17; t18 = dr′4 − r′3;
s′0 = r′0 + ft18; s′1 = r′1 − (e + f)(r′4 − t18) + er′4 − ft18;
s′2 = r′2 − er′4 + dt18;
If s′2 = 0 perform Cantor

11M

4 Compute s = (s′/r) and make s monic:

w1 = (rs′2)
−1; w2 = rw1; w3 = w1s

′
2
2; w4 = rw2; w5 = w2

4;
s0 = w2s

′
0; s1 = w2s

′
1;

I + 6M + 2S

5 Compute z = su1:
z0 = s0c; z1 = s1c+s0b; z2 = s0a+s1b+c; z3 = s1a+s0+b;
z4 = a + s1;

6M

6 Compute u′ = [s(z + w4(h + 2v1))

−w5((f − v1h− v2
1)/u1)]/u2:

u′3 = z4 + s1 − d; u′2 = −du′3 − e + z3 + s0 + w4h3 + s1z4;
u′1 = w4(h2+2k+s1h3)+s1z3+s0z4+z2−w5−du′2−eu′3−f ;
u′0 = w4(s1h2 + h1 + 2l + 2s1k + s0h3) + s1z2 + z1 + s0z3 +
w5(a− f6)− du′1 − eu′2 − fu′3

15M

7 Compute v′ = −(w3z + h + v1) mod u′:
t1 = u′3 − z4; v′0 = −w3(u

′
0t1 + z0)− h0 −m;

v′1 = −w3(u
′
1t1 − u′0 + z1)− h1 − l;

v′2 = −w3(u
′
2t1 − u′1 + z2)− h2 − k;

v′3 = −w3(u
′
3t1 − u′2 + z3)− h3;

8M

8 Reduce u′, i.e. u3 = (f − v′h− v′2)/u′:

a3 = f6 − u′3 − v′3
2 − v′3h3;

b3 = −u′2 − a3u
′
3 + f5 − 2v′2v

′
3 − v′3h2 − v′2h3;

c3 = −u′1−a3u
′
2−b3u

′
3+f4−2v′1v

′
3−v′2

2−v′2h2−v′3h1−v′1h3;

5M + 2S

9 Compute v3 = −(v′ + h) mod u3:
k3 = −v′2 + (v′3 + h3)a3 − h2;
l3 = −v′1 + (v′3 + h3)b3 − h1;
m3 = −v′0 + (v′3 + h3)c3 − h0;

3M

Total fields of arbitrary characteristic, hi ∈ F2, f6 = 0 I + 70M + 6S
fields of characteristic two, hi ∈ F2, f6 = 0 I + 65M + 6S

Explicit Formulae for the Group Operations over GF(p) 155

Table A.7: Explicit formulae for doubling on a HEC of
genus three (Harley).

Input A weight three reduced divisors D1 = (u1, v1) with
u1 = x3 + ax2 + bx + c;
v1 = kx2 + lx + m;
furthermore:
h = h3x

3 + h2x
2 + h1x + h0 where hi ∈ {0, 1};

f = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0 where

f6 ∈ {0, 1};
Output A weight three reduced divisor D2 = (u2, v2) = [2]D1 with

u2 = x3 + a2x
2 + b2x + c2;

v2 = k2x
2 + l2x + m2;

Step Procedure Cost
1 Compute resultant r of u1 and h + 2v1 (Bezout): 6M + 2S

let h̃ = h + 2v1:

t1 = ah̃1; t2 = bh̃2; t3 = bh̃0; t4 = ch̃1; t5 = ah̃0; t6 = ch̃2;

t7 = (h̃0 − h3c)
2; t8 = (h̃1 − h3b)

2;

t9 = (h̃2 − h3a)(t3 − t4);

t10 = (h̃2 − h3a)(t5 − t6);

t11 = (h̃1 − h3b)(h̃0 − h3c);

r = (h̃0 − h3c + t1 − t2)(t7 − t9) + (t5 − t6)[(t5 − t6)(h̃2 −
h3a)− 2t11] + t8(t3 − t4);

2 Compute almost inverse inv = r/(h + 2v1) mod u1:

inv2 = −(t1 − t2 − h3c + h̃0)(h̃2 − h3a) + t8;
inv1 = inv2a + t10 − t11;
inv0 = inv2b + a(t10 − t11)− t9 + t7

4M

3 Compute z = ((f − hv1 − v2
1)/u1) mod u1:

t12 = k2; z′3 = f6 − a; t13 = z′3b; z′2 = f5 − h3k − b − az′3;
z′1 = f4 − h2k − h3l − t12 − c− t13 − z′2a;
z2 = f5 − h3k − 2b + a(a− 2z′3);
z1 = z′1 − t13 + ab− c;
z0 = f3 − h2l − h1k − 2kl − h3m + c(a− 2z′3)− z′2b− z′1a;

7M + 2S

4 Compute s′ = zinv mod u1 (Karatsuba):
t12 = (inv1 + inv2)(z1 + z2); t13 = z1inv1;
t14 = (inv0 + inv2)(z0 + z2); t15 = z0inv0;
t16 = (inv0 + inv1)(z0 + z1); t17 = z2inv2;
r′0 = t15; r′1 = t16 − t13 − t15; r′2 = t13 + t14 − t15 − t17;
r′3 = t12 − t13 + t17; r′4 = t17; t18 = ar′4 − r′3;
s′0 = r′0 + ct18; s′1 = r′1 − (b + c)(r′4 − t18) + br′4 − ct18;
s′2 = r′2 − br′4 + at18;
If s′2 = 0 perform Cantor

11M

Explicit Formulae for the Group Operations over GF(p) 156

Table A.7: (continued)

Step Procedure Cost
5 Compute s = (s′/r) and make s monic:

w1 = (rs′2)
−1; w2 = w1r; w3 = w1(s

′
2)

2; w4 = w2r; (=
r/s′2); w5 = w2

4

s0 = w2s
′
0; s1 = w2s

′
1;

I + 6M + 2S

6 Compute G = su1:
g0 = s0c; g1 = s1c+s0b; g2 = s0a+s1b+c; g3 = s1a+s0+b;
g4 = a + s1;

6M

7 Compute u′ = u−2
1 [(G + w4v1)

2 + w4hG + w5(hv1 − f)]:
u′3 = 2s1;
u′2 = s2

1 + 2s0 + w4h3;
u′1 = 2s0s1 + w4(2k + h3s1 + h2 − h3a)− w5;
u′0 = w4[2l + h1 + h3s0 − h3b + 2ks1 + a(ah3 − 2k − h2 −
s1h3) + h2s1] + w5(−f6 + 2a) + s2

0;

6M + 2S

8 Compute v′ = −(Gw3 + h + v1) mod u′:
t1 = u′3 − g4;
v′3 = −(t1u

′
3 − u′2 + g3)w3 − h3;

v′2 = −(t1u
′
2 − u′1 + g2)w3 − h2 − k;

v′1 = −(t1u
′
1 − u′0 + g1)w3 − h1 − l;

v′0 = −(t1u
′
0 + g0)w3 − h0 −m;

8M

9 Reduce u′, i.e. u2 = (f − v′h− v′2)/u′:

a2 = f6 − u′3 − v′3
2 − v′3h3;

b2 = −u′2 − a2u
′
3 + f5 − 2v′2v

′
3 − v′3h2 − v′2h3;

c2 = −u′1−a2u
′
2−b2u

′
3+f4−2v′1v

′
3−v′2

2−v′2h2−v′3h1−v′1h3;

5M + 2S

10 Compute v2 = −(v′ + h) mod u2:
k2 = −v′2 + (v′3 + h3)a2 − h2;
l2 = −v′1 + (v′3 + h3)b2 − h1;
m2 = −v′0 + (v′3 + h3)c2 − h0;

3M

Total fields of arbitrary characteristic, hi ∈ F, f6 = 0 I +62M +10S
fields of characteristic two, hi ∈ F, f6 = 0 I +53M +10S
fields of characteristic two, h(x) = 1, f6 = 0 I + 22M + 7S

Explicit Formulae for the Group Operations over GF(p) 157

Table A.8: Explicit formulae for adding on a HEC of
genus three (Cantor).

Input Weight three reduced divisors D1 = (u1, v1) and D2 =
(u2, v2) with
u1 = x3 + ax2 + bx + c;
u2 = x3 + dx2 + ex + f ;
v1 = kx2 + lx + m;
v2 = nx2 + ox + p;
furthermore:
h = h3x

3 + h2x
2 + h1x + h0 where hi ∈ {0, 1};

f = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0 where

f6 ∈ {0, 1};
Output A weight three reduced divisor D3 = (u3, v3) = D1 + D2

with
u3 = x3 + a3x

2 + b3x + c3;
v3 = k3x

2 + l3x + m3;
Step Procedure Cost
1 Compute gcd(u1, u2) = s1u1 + s2u2 (EEA):

r22 = a − d; r21 = b − e; r20 = c − f ; t20 = −1; r32 =
r22 · d − r21; r31 = r22 · e − r20; r30 = r22 · f ; t31 = 1;
t30 = r22; r41 = r32 · r21 − r22 · r31; r40 = r32 · r20 − r22 · r30;
t41 = −r22 · t31; t40 = r32 · t20− r2

22; r51 = r41 · r31− r32 · r40;
r50 = r41 · r30; t52 = −r32 · t41; t51 = r41 · t31 − r32 · t40;
t50 = r41 ·t30; r60 = r51 ·r40−r41 ·r50; s22 = r51 ·t42−r41 ·t52;
s21 = r51 · t41 − r41 · t51; s20 = r51 · t40 − r41 · t50; t0 = r−1

60 ;
s22 = s22 · t0; s21 = s21 · t0; s20 = s20 · t0; s12 = −s22; s11 =
−s22 ·d−s21−a·s12; s10 = −s22 ·e−s21 ·d−s20−a·s11−b·s12;

I + 33M + S

2 Compute u′ = u1u2/d
2 = u1u2 (Karatsuba):

t0 = c · f ; t1 = b · e; t2 = (c + b) · (e + f); d00 = t0;
d01 = t2 − t1 − t0; d02 = t1; d10 = a · d; d11 = 0; d12 = 0;
t0 = (a + c) · (d + f); t1 = d02; t2 = (a + b + c) · (d + e + f);
d20 = t0; d21 = t2 − t1 − t0; d22 = t1; u′0 = d00; u′1 = d01;
u′2 = d20 − d10 − d00 + d02; u′3 = d21 − d01 + c + f ; u′4 =
d10 + d22 − d02 + b + e; u′5 = a + d;

6M

3 Compute v′ = s1u1v2 + s2u2v1 mod u′: 45M
t0 = c · s10; t1 = b · s11; t2 = (c + b) · (s10 + s11); d00 = t0;
d01 = t2 − t1 − t0; d02 = t1; d10 = a · s12; d11 = 0; d12 = 0;
t0 = (a + c) · (s12 + s10); t1 = d02; t2 = (a + b + c) · (s12 +
s11 + s10); d20 = t0; d21 = t2 − t1 − t0; d22 = t1; su10 = d00;
su11 = d01; su12 = d20−d10−d00+d02; su13 = d21−d01+s10;
su14 = d10 + d22 − d02 + s11; su15 = s12;

Explicit Formulae for the Group Operations over GF(p) 158

Table A.8: (continued)

Step Procedure Cost
t0 = su10 · p; t1 = su11 · o; t2 = (su10 + su11) · (o + p);
d00 = t0; d01 = t2− t1− t0; d02 = t1; d10 = su12 ·n; d11 = 0;
d12 = 0; t0 = (p + n) · (su10 + su12); t1 = d02;
t2 = (n+o+p)·(su12+su11+su10); d20 = t0; d21 = t2−t1−t0;
d22 = t1; d100 = d00; d101 = d01; d102 = d02 +d20−d10−d00;
d103 = d21 − d01; d104 = d10 + d22 − d02;
t0 = (su10 + su13) · p; t1 = (su11 + su14) · o; t2 = (su10 +
su13 + su11 + su14) · (o + p); d00 = t0; d01 = t2 − t1 − t0;
d02 = t1; d10 = (su12 + su15) · n; d11 = 0; d12 = 0; t0 =
(su10+su13+su12+su15)·(n+p); t1 = d02; t2 = (su10+su13+
su11+su14+su12+su15)·(n+o+p); d20 = t0; d21 = t2−t1−t0;
d22 = t1; d120 = d00; d121 = d01; d122 = d02 +d20−d10−d00;
d123 = d21 − d01; d124 = d10 + d22 − d02; suv10 = d100;
suv11 = d101; suv12 = d102; suv13 = d120 − d100 + d103;
suv14 = d121 − d101 + d104; suv15 = d122 − d102; suv16 =
d123 − d103; suv17 = d124 − d104;
t0 = f · s20; t1 = e · s21; t2 = (f + e) · (s20 + s21); d00 = t0;
d01 = t2 − t1 − t0; d02 = t1; d10 = d · s22; d11 = 0; d12 = 0;
t0 = (d + f) · (s22 + s20); t1 = d02; t2 = (d + e + f) · (s22 +
s21 + s20); d20 = t0; d21 = t2 − t1 − t0; d22 = t1; su20 = d00;
su21 = d01; su22 = d20−d10−d00+d02; su23 = d21−d01+s20;
su24 = d10 + d22 − d02 + s21; su25 = s22;
t0 = su20 · m; t1 = su21 · l; t2 = (su20 + su21) · (l + m);
d00 = t0; d01 = t2 − t1 − t0; d02 = t1; d10 = su22 · k;
d11 = 0; d12 = 0; t0 = (m + k) · (su20 + su22); t1 = d02; t2 =
(k + l+m) · (su22 +su21 +su20); d20 = t0; d21 = t2− t1− t0;
d22 = t1; d100 = d00; d101 = d01; d102 = d02 +d20−d10−d00;
d103 = d21 − d01; d104 = d10 + d22 − d02;
t0 = (su20+su23)·m; t1 = (su21+su24)·l; t2 = (su20+su23+
su21 + su24) · (l + m); d00 = t0; d01 = t2 − t1 − t0; d02 = t1;
d10 = (su22 + su25) · k; d11 = 0; d12 = 0; t0 = (su20 + su23 +
su22 + su25) · (k + m); t1 = d02; t2 = (su20 + su23 + su21 +
su24 + su22 + su25) · (k + l +m); d20 = t0; d21 = t2− t1− t0;
d22 = t1; d120 = d00; d121 = d01; d122 = d02 +d20−d10−d00;
d123 = d21 − d01; d124 = d10 + d22 − d02; suv20 = d100;
suv21 = d101; suv22 = d102; suv23 = d120 − d100 + d103;
suv24 = d121 − d101 + d104; suv25 = d122 − d102; suv26 =
d123 − d103; suv27 = d124 − d104;

Explicit Formulae for the Group Operations over GF(p) 159

Table A.8: (continued)

Step Procedure Cost
c0 = suv10 + suv20; c1 = suv11 + suv21; c2 = suv12 + suv22;
c3 = suv13 + suv23; c4 = suv14 + suv24; c5 = suv15 + suv25;
c6 = suv16 + suv26; c7 = suv17 + suv27; t0 = c7; t2 = t0 · u′5;
t1 = c6 − t2; t3 = t1 · u′4; t4 = t0 · u′3; t5 = t1 · u′2; t6 =
t0 · u′1; t7 = t1 · u′0; v′5 = c5 − (t0 + t1) · (u′4 + u′5) + t3 + t2;
v′4 = c4 − t4 − t3; v′3 = c3 − (t0 + t1) · (u′2 + u′3) + t5 + t4;
v′2 = c2 − t6 − t5; v′1 = c1 − (t0 + t1) · (u′0 + u′1) + t7 + t6;
v′0 = c0 − t7;

4 Compute u3 = (f − v′h− v′2)/u′ = u34x
4 + u33x

3

+u32x
2 + u31x + u30 and make u3 monic:

u34 = −v′5
2; u33 = −2 · v′5 · v′4 − u34 · u′5;

u32 = −v′4
2 − v′5 · h3 − 2 · v′5 · v′3 − u34 · u′4 − u33 · u′5;

u31 = −2 · v′5 · v′2 + 1 − 2 · v′4 · v′3 − v′4 · h3 − v′5 · h2 − u33 ·
u′4 − u32 · u′5 − u34 · u′3;
u30 = −v′3 − 2 · v′5 · v′1 − v′3 · h3 − v′5 · h1 + f6 − 2 · v′4 · v′2 −
v′4 · h2 − u34 · u′2 − u32 · u′4 − u31 · u′5 − u33 · u′3; t0 = u−1

34 ;
u33 = u33 · t0;
u32 = u32 · t0; u31 = u31 · t0; u30 = u30 · t0;

I + 20M + 2S

5 Compute v3 = −(v′ + h) mod u3,

where v3 = v33x
3 + v32x

2 + v31x + v30 :
t0 = −v′5; t2 = t0·u33; t1 = −v′4−t2; t3 = t1·u32; t4 = t0·u31;
t5 = t1 ·u30; v33 = −(v′3 +h3)−(t0 + t1) ·(u32 +u33)+ t3 + t2;
v32 = −(v′2 + h2) − t4 − t3; v31 = −(v′1 + h1) − (t0 + t1) ·
(u30 + u31) + t5 + t4; v30 = −(v′0 + h0)− t5;

6M

6 Compute u4 = (f − v3h− v2
3)/u3 = x3 + a3x

2 + b3x + c3:
a3 = −v33 · h3− v33 + f6− u33; b3 = −v32 · h3− v33 · h2− 2 ·
v33 · v32 + f5 − u32 − a3 · u33; c3 = −v32 · h2 − 2 · v33 · v31 −
v33 · h1 − v31 · h3 + f4 − v2

32 − u31 − a3 · u32 − b3 · u33;

5M + S

7 Compute v4 = −(v3 + h) mod u4 = k3x
2 + l3x + m3:

t0 = −(v33 + h3); k3 = −(v32 + h2)− t0 · a3;
l3 = −(v31 + h1)− t0 · b3; m3 = −(v30 + h0)− t0 · c3;

3M

Total fields of arbitrary characteristic, hi ∈ F2, f6 = 0 2I + 118M +
4S

fields of characteristic two, hi ∈ F2, f6 = 0 2I + 110M +
4S

Explicit Formulae for the Group Operations over GF(p) 160

Table A.9: Explicit formulae for doubling on a HEC of
genus three (Cantor).

Input A weight three reduced divisors D1 = (u1, v1) with
u1 = x3 + ax2 + bx + c; v1 = kx2 + lx + m;
furthermore:
h = h3x

3 + h2x
2 + h1x + h0 where hi ∈ {0, 1};

f = x7 + f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x + f0 where

f6 ∈ {0, 1};
Output A weight three reduced divisor D2 = (u2, v2) = [2]D1 with

u2 = x3 + a2x
2 + b2x + c2; v2 = k2x

2 + l2x + m2;
Step Procedure Cost
1 Compute gcd(u1, 2v1 + h) = s1u1 + s3(2v1 + h): I + 27M

r12 = h2 + 2 · k − h3 · a; r11 = h1 + 2 · l − h3 · b; r10 =
h0 + 2 ·m− h3 · c;
r22 = r12 · a − r11; r21 = r12 · b − r10; r20 = r12 · c; t20 = 0;
t21 = −1;
r31 = r22 · r11 − r12 · r21; r30 = r22 · r10 − r12 · r20; t31 = r12;
t30 = r22;
r41 = r31 · r21 − r22 · r30; r40 = r31 · r20; t42 = −r22 · t31;
t41 = −r31 − r22 · t30; t40 = 0; r50 = r41 · r30 − r31 · r40;
s32 = −r31 · t42; s31 = r41 · t31 − r31 · t41; s30 = r41 · t30;
t0 = r−1

50 ; s32 = s32 · t0; s31 = s31 · t0; s30 = s30 · t0; s12 =
−s32 · h3; s11 = −2 · s32 · k − s32 · h2 − s31 · h3 − a · s12;
s10 = −2·s32·l−s32·h1−2·s31·k−s31·h2−s30·h3−a·s11−b·s12;

2 Compute u1 = u2 = x6 + u15x
5 + u14x

4 + u13x
3 + u12x

2

+u11x + u10:
d00 = c2; d02 = b2; d01 = (b + c)2 − d00 − d02; d10 = a2;
d12 = 1;
d11 = (a + 1)2 − d10 − d12; d20 = (a + c)2; d22 = (b + 1)2;
d21 = (a + b + c + 1)2 − d20 − d22; u10 = d00; u11 = d01;
u12 = d02 + d20 − d10 − d00; u13 = d21 − d11 − d01;
u14 = d22 − d12 − d02 + d10; u15 = d11;

8S

3 Compute v′ = s1u1v1 + s3(v
2
1 + f) mod u1: 44M + 7S

t0 = m · s10; t1 = l · s11; t2 = (s11 + s10) · (l + m); d00 = t0;
d01 = t2 − t0 − t1; d02 = t1; t0 = k · s12; t1 = 0; t2 = t0;
d10 = t0; d11 = 0; d12 = 0; t0 = (s10+s12)·(m+k); t1 = d02;
t2 = (s12 +s11 +s10) ·(k+ l+m); d20 = t0; d21 = t2− t0− t1;
d22 = t1; sv0 = d00; sv1 = d01; sv2 = d02 + d20 − d10 − d00;
sv3 = d21 − d01; sv4 = d10 + d22 − d12 − d02;

Explicit Formulae for the Group Operations over GF(p) 161

Table A.9: (continued)

Step Procedure Cost
t0 = c · sv0; t1 = b · sv1; t2 = (sv1 + sv0) · (b + c); d00 = t0;
d01 = t2 − t0 − t1; d02 = t1; d10 = a · sv2; d11 = 0; d12 = 0;
t0 = (sv0 + sv2) · (a+ c); t1 = sv1 · b; t2 = (sv0 + sv1 + sv2) ·
(a + b + c); d20 = t0; d21 = t2− t0− t1; d22 = t1; d100 = d00;
d101 = d01; d102 = d02 + d20 − d10 − d00; d103 = d21 − d01;
d104 = d10 + d22 − d12 − d02;
t0 = c · (sv0 + sv3); t1 = b · (sv1 + sv4); t2 = (sv1 + sv4 +
sv0 + sv3) · (c + b); d00 = t0; d01 = t2 − t0 − t1; d02 = t1;
d10 = d10; d11 = 0; d12 = 0; t0 = (sv0 + sv3 + sv2) · (a + c);
t1 = d02; t2 = (sv2 + sv1 + sv4 + sv0 + sv3) · (a + b + c);
d20 = t0; d21 = t2 − t0 − t1; d22 = t1; d120 = d00; d121 = d01;
d122 = d02 + d20 − d10 − d00; d123 = d21 − d01; d124 =
d10 + d22− d12− d02; suv0 = d100; suv1 = d101; suv2 = d102;
suv3 = d103+d120−d100+sv0; suv4 = d104+d121−d101+sv1;
suv5 = d122 − d102 + sv2; suv6 = d123 − d103 + sv3; suv7 =
d124 − d104 + sv4;
d00 = m2; d02 = l2; d01 = (l+m)2−d00−d02; d10 = k2; d12 =
0; d11 = 0; d20 = (m + k)2; d22 = d02; d21 = (k + l + m)2 −
d20−d22; vsq0 = d00; vsq1 = d01; vsq2 = d02+d20−d10−d00;
vsq3 = d21 − d01; vsq4 = d10 + d22 − d02; vf5 = f5 − u14 −
(f6 − u15) · u15; vf4 = (vsq4 + f4) − u13 − (f6 − u15) · u14;
vf3 = (vsq3 +f3)−u12− (f6−u15) ·u13; vf2 = (vsq2 +f2)−
u11−(f6−u15) ·u12; vf1 = (vsq1 +f1)−u10−(f6−u15) ·u11;
vf0 = (vsq0 + f0)− (f6 − u15) · u10;
t0 = s30 · vf0; t1 = s31 · vf1; t2 = (vf0 + vf1) · (s31 + s30);
d00 = t0; d01 = t2 − t0 − t1; d02 = t1; d10 = s32 · vf2;
d11 = 0; d12 = 0; t0 = (vf0 +vf2) · (s30 +s32); t1 = d02; t2 =
(vf0+vf1+vf2)·(s30+s31+s32); d20 = t0; d21 = t2−t0−t1;
d22 = t1; d100 = d00; d101 = d01; d102 = d02 +d20−d10−d00;
d103 = d21 − d01; d104 = d10 + d22 − d12 − d02;
t0 = s30 · (vf0 + vf3); t1 = s31 · (vf1 + vf4); t2 = (s30 +
s31) · (vf0 + vf3 + vf1 + vf4); d00 = t0; d01 = t2 − t0 − t1;
d02 = t1; d10 = s32 · (vf2 + vf5); d11 = 0; d12 = 0; t0 =
(vf0 + vf3 + vf2 + vf5) · (s32 + s30); t1 = (vf1 + vf4) · s31;
t2 = (vf0 + vf1 + vf2 + vf3 + vf4 + vf5) · (s30 + s31 + s32);
d20 = t0; d21 = t2 − t0 − t1; d22 = t1; d120 = d00; d121 = d01;
d122 = d02 + d20 − d10 − d00; d123 = d21 − d01; d124 =
d10 + d22 − d12 − d02; svf0 = d100; svf1 = d101; svf2 = d102;
svf3 = d103 + d120 − d100; svf4 = d104 + d121 − d101; svf5 =
d122 − d102; svf6 = d123 − d103; svf7 = d124 − d104;

Explicit Formulae for the Group Operations over GF(p) 162

Table A.9: (continued)

Step Procedure Cost
t0 = suv7 + svf7; t2 = t0 · u15; t1 = (suv6 + svf6) − t2;
t3 = t1 · u14; t4 = t0 · u13; t5 = t1 · u12; t6 = t0 · u11;
t7 = t1·u10; v15 = (suv5+svf5)−(t0+t1)·(u14+u15)+t2+t3;
v14 = (suv4 + svf4) − t4 − t3; v13 = (suv3 + svf3) − (t0 +
t1) · (u12 + u13) + t4 + t5; v12 = (suv2 + svf2) − t6 − t5;
v11 = (suv1 + svf1)− (t0 + t1) · (u11 + u10) + t6 + t7; v10 =
(suv0 + svf0)− t7;

4 Compute u3 = (f − v1h− v2
1)/u1 and make u3 monic,

u3 = x4 + u33x
3 + u32x

2 + u31x + u30:
u34 = −v2

15; u33 = −2 · v15 · v14 − u34 · u15;
u32 = −v2

14 − v15 · h3 − 2 · v15 · v13 − u34 · u14 − u33 · u15;
u31 = −2 · v15 · v12 + 1 − 2 · v14 · v13 − v14 · h3 − v15 · h2 −
u33 · u14 − u32 · u15 − u34 · u13;
u30 = −v13 − 2 · v15 · v11 − v13 · h3 − v15 · h1 + f6 − 2 · v14 ·
v12 − v14 · h2 − u34 · u12 − u32 · u14 − u31 · u15 − u33 · u13;
t0 = u−1

34 ; u33 = u33 · t0; u32 = u32 · t0; u31 = u31 · t0;
u30 = u30 · t0;

I + 20M + 2S

5 Compute v3 = −(v′ + h) mod u3,

where v3 = v33x
3 + v32x

2 + v31x + v30:
t0 = −v15; t2 = t0 · u33; t1 = −v14 − t2; t3 = t1 · u32;
t4 = t0 · u31; t5 = t1 · u30; v33 = −(v13 + h3) − (t0 + t1) ·
(u32+u33)+t3+t2; v32 = −(v12+h2)−t4−t3; v31 = −(v11+
h1)− (t0 + t1) · (u30 + u31) + t5 + t4; v30 = −(v10 + h0)− t5;

6M

6 Compute u4 = (f − v3h− v2
3)/u3 = x3 + a2x

2 + b2x + c2:

a2 = −v33 · h3 − v2
33 + f6 − u33;

b2 = −v32 · h3 − v33 · h2 − 2 · v33 · v32 + f5 − u32 − a2 · u33;
c2 = −v32 · h2 − 2 · v33 · v31 − v33 · h1 − v31 · h3 + f4 − v2

32 −
u31 − a2 · u32 − b2 · u33;

6M + 2S

7 Compute v4 = −(v3 + h) mod u4 = k2x
2 + l2x + m2:

t0 = −(v33 + h3); k2 = −(v32 + h2) − t0 · a2; l2 = −(v31 +
h− 1)− t0 · b2; m2 = −(v30 + h− 0)− t0 · c2;

3M

Total fields of arbitrary characteristic, hi ∈ F2, f6 = 0 2I + 106M +
19S

fields of characteristic two, hi ∈ F2, f6 = 0 2I + 98M +
13S

fields of characteristic two, h(x) = 1, f6 = 0, see Table A.10 I +14M +11S

Explicit Formulae for the Group Operations over GF(p) 163

Table A.10: Explicit formulae for doubling on special
curves of genus three over F2n with h(x) = 1 (Cantor).

Input A weight three reduced divisors D1 = (u1, v1) with
u1 = x3 + ax2 + bx + c;
v1 = kx2 + lx + m;
furthermore:
h = h0 = 1
f = x7 + f6x

6 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x + f0 where
f6 ∈ {0, 1};

Output A weight three reduced divisor D2 = (u2, v2) = [2]D1 with
u2 = x3 + a2x

2 + b2x + c2;
v2 = k2x

2 + l2x + m2;
Step Procedure Cost
1 Compute d = gcd(u1, 1) = 1 = s1a + s3h (s3 = 1, s1 = 0):

s3 = 1; s1 = 0;
−

2 Compute u′ = u2
1:

t1 = a2; t2 = b2; t3 = c2;

3S

3 Compute v′ = v2
1 + f mod u′:

t4 = k2; t5 = l2; t6 = m2; v′5 = f5 + t1; v′4 = f4 + t4;
v′3 = f3 + t2; v′2 = f2 + t5; v′1 = f1 + t3; v′0 = f0 + t6;

3S

4 Compute u′′ = ((f − hv′ − v′2)/u′):

u′4 = v′5
2; u′3 = 0; u′2 = v′4

2 + t1 · u′4; u′1 = 1; u′0 = v′3 + t2 ·
u′4 + t1 · u′2;

3M + 3S

5 Compute u2 = u′′ made monic = x4 + u22x
2 + u21x + u20:

u21 = u′4
−1; u22 = u′2 · u21; u20 = u′0 · u21;

1I + 2M

6 Compute v2 = −(v′ + h) mod u2,

where v2 = v23x
3 + v22x

2 + v21x + v20:
t1 = v′5 · u22; t2 = v′4 · u21; t3 = (v′5 + v′4) · (u22 + u21);
v23 = v′3 + t1; v22 = t3 + t1 + t2 + v′2; v21 = t2 + v′5 · u20 + v′1;
v20 = v′4 · u20 + v′0 + 1;

5M

7 Compute u3 := (f − v2h− v2
2)/u2 = x3 + u32x

2

+u31x + u30:
a2 = v2

23; b2 = u22 + f5; c2 = u22 · a2 + f4 + v2
22 + u21;

1M + 2S

8 Compute v3 := −(v2 + h) mod u3 = v32x
2 + v31x + v30:

k2 = v22 + v23 · a2; l2 = v21 + v23 · b2; m2 = v20 + v23 · c2 + 1;
3M

Total I +14M +11S

Explicit Formulae for the Group Operations over GF(p) 164

Table A.11: Explicit formulae for adding on a HEC of
genus four (Harley).

Input Weight four reduced divisors D1 = (u1, v1) and D2 =
(u2, v2)
u1 = x4 + ax3 + bx2 + cx + d; v1 = ix3 + jx2 + kx + l
u2 = x4 + ex3 + fx2 + gx + h; v2 = mx3 + nx2 + ox + p
h = h4x

4 + h3x
3 + h2x

2 + h1x + h0 where hi ∈ {0, 1};
f = x9+f8x

8+f7x
7+f6x

6+f5x
5+f4x

4+f3x
3+f2x

2+f1x+f0

where f8 ∈ {0, 1};
Output A weight four reduced divisor D3 = (u3, v3) = D1 + D2

u3 = x4 +a3x
3 + b3x

2 + c3x+d3; v3 = i3x
3 + j3x

2 +k3x+ l3
Step Procedure Cost
1 Almost inverse inv = r/u1 mod u2,

wher u2 = inv3x
3 + inv2x

2 + inv1x + inv0:
r23 = a− e; r22 = b− f ; r21 = c− g; r20 = d− h;
r33 = r23 · a − r22; r32 = r23 · b − r21; r31 = r23 · c − r20;
r30 = r23 · d;
r42 = r33 · r22 − r23 · r32; r41 = r33 · r21 − r23 · r31; r40 =
r33 · r20 − r23 · r30;
t41 = r23; t40 = r33 − r2

23; r52 = r42 · r32 − r33 · r41;
r51 = r42 · r31 − r33 · r40; r50 = r42 · r30; t52 = −r33 · t41;
t51 = −r42− r33 · t40; t50 = r42 · r23; r61 = r52 · r41− r42 · r51;
r60 = r52 ·r40−r42 ·r50; t62 = −r42 ·t52; t61 = r52 ·t41−r42 ·t51;
t60 = r52 ·t40−r42 ·t50; r71 = r61 ·r51−r52 ·r60; r70 = r61 ·r50;
t73 = −r52 ·t62; t72 = r61 ·t52−r52 ·t61; t71 = r61 ·t51−r52 ·t60;
t70 = r61 · t50; r80 = r71 · r60 − r61 · r70; inv3 = −r61 · t73;
inv2 = r71 · t62 − r61 · t72; inv1 = r71 · t61 − r61 · t71;
inv0 = r71 · t60 − r61 · t70;
If inv0 = 0 call Cantor’s Algorithm;

45M + 1S

2 s′ = r · s ≡ (v2 − v1)inv mod u2 = s′3x
3 + s′2x

2 + s′1x + s0

(Karatsuba):
23M

ta = m− i; tb = n− j; tc = o− k; td = p− l; te = inv3;
tf = inv2; tg = inv1; th = inv0; t0 = tc · tg; t1 = tb · tf ;
t2 = ta · te; t3 = tb · tg; t4 = tc · tf ; t10 = td · th;
t11 = (tc + td) · (tg + th)− t0− t10; t12 = (tb + td) · (tf + th)−
t10 − t1 + t0;
t13 = (ta + td) · (te + th)− t10 − t2 + t3 + t4; t14 = (ta + tc) ·
(te + tg)− t2 − t0 + t1;
t15 = (ta + tb) · (te + tf)− t2− t1; t16 = t2; t17 = t15− e · t16;
t18 = e · t17 + t16 · f − t14; s′3 = e · t18 − f · t17 − g · t16 + t13;
s′2 = f · t18 − g · t17 − h · t16 + t12; s′1 = g · t18 − h · t17 + t11;
s′0 = h · t18 + t10;

Explicit Formulae for the Group Operations over GF(p) 165

Table A.11: (continued)

Step Procedure Cost
3 s = s′ made monic = x3 + s2x

2 + s1x + s0:
t1 = r80 · s′3; w6 = t−1

1 ; w7 = r80 · w6; w4 = r80 · w7;
w3 = s′23 ·w6; w5 = w2

4; s0 = s′0 ·w7; s1 = s′1 ·w7; s2 = s′2 ·w7;

I + 7M + 2S

4 z = s · u1 = z7x
7 + z6x

6 + z5x
5 + z4x

4 + z3x
3 + z2x

2

+z1x + z0:
t0 = c·s1; t1 = b·s2; z0 = s0·d; z1 = (c+d)·(s1+s0)−t0−z0;
z2 = (b+d) · (s2 + s0)− z0− t1 + t0; z3 = (a+d) · (1+ s0)−
z0 − a + b · s1 + c · s2;
z4 = (a + c) · (1 + s1)− a− t0 + t1 + s0; z5 = (a + b) · (1 +
s2)− a− t1 + s1;
z6 = a + s2; z7 = 1;

10M

5 u′ = [s(z + w4(h + 2v1))− w5((f − v1h− v2
1)/u1)]/u2

= x6 + u′5x
5 + u′4x

4 + u′3x
3 + u′2x

2 + u′1x + u′0:
t1 = s2 · w4; t2 = s1 · w4;
diff4 = s2 · z6 + z5 + s1 − f ; diff3 = −g + z4 + s0 + w4 ·
h4 + s2 · z5 + s1 · z6;
diff2 = −h+z3+s2·(w4·h4+z4)+w4·(h3+2·i)+s1·z5+s0·z6;
diff1 = t1 · (h3 + 2 · i) + s1 · (w4 · h4 + z4) + w4 · (h2 + 2 ·
j) + s2 · z3 + s0 · z5 + z2 − w5;
diff0 = t1 · (h2 + 2 · j) + t2 · (h3 + 2 · i) + s0 · (w4 ·h4 + z4) +
w4 · (h1 + 2 · k) + s2 · z2 + s1 · z3 − w5 · (f8 − a) + z1;
u′5 = z6+s2−e; u′4 = diff4−e·u′5; u′3 = diff3−e·u′4−f ·u′5;
u′2 = diff2 − e · u′3 − f · u′4 − g · u′5; u′1 = diff1 − e · u′2 −
f · u′3 − g · u′4 − h · u′5;
u′0 = diff0 − e · u′1 − f · u′2 − g · u′3 − h · u′4;

35M

6 v′ = −(w3z + h + v1) mod u′ = v′5x
5 + v′4x

4 + v′3x
3

+v′2x
2 + v′1x + v′0:

t1 = u′5 − z6; v′5 = −w3 · (u′5 · t1 − u′4 + z5); v′4 = −w3 · (u′4 ·
t1 − u′3 + z4)− h4;
v′3 = −w3 · (u′3 · t1 − u′2 + z3)− h3 − i; v′2 = −w3 · (u′2 · t1 −
u′1 + z2)− h2 − j;
v′1 = −w3 · (u′1 · t1 − u′0 + z1)− h1 − k; v′0 = −w3 · (u′0 · t1 +
z0)− h0 − l;

12M

7 u′3 = (f − v′h− v′2)/u′ = u34x
4 + u33x

3 + u32x
2

+u31x + u30:
16M + 3S

diff3 = 1− v′5 · (h4 + 2 · v′4); diff2 = f8− v′5 · (h3 + 2 · v′3)−
v′4 · h4 − v′24 ;
diff1 = f7 − v′5 · (h2 + 2 · v′2)− v′4 · (h3 + 2 · v′3)− v′3 · h4;
diff0 = f6−v′5·(h1+2·v′1)−v′4·(h2+2·v′2)−v′3·h3−v′2·h4−v′23 ;

Explicit Formulae for the Group Operations over GF(p) 166

Table A.11: (continued)

Step Procedure Cost
u34 = −v′25 ; u33 = diff3 − u34 · u′5; u32 = diff2 − u34 · u′4 −
u33 · u′5;
u31 = diff1 − u34 · u′3 − u33 · u′4 − u32 · u′5;
u30 = diff0 − u34 · u′2 − u33 · u′3 − u32 · u′4 − u31 · u′5;

8 u3 = u′3 made monic = x4 + a3x
3 + b3x

2 + c3x + d3:

t0 = u−1
34 ; a3 = u33 · t0; b3 = u32 · t0;

c3 = u31 · t0; d3 = u30 · t0;

I + 4M

9 v3 = −(v′ + h) mod u3 = i3x
3 + j3x

2 + k3x + l3
(Almost Karatsuba):
t0 = −v′5; t2 = t0 · a3; t1 = −v′4 − h4 − t2; t3 = t1 · b3;
t4 = t0 · c3; t5 = t1 · d3;
i3 = −(t0 + t1) · (a3 + b3) + t3 + t2 − v′3 − h3; j3 = −t3 −
t4 − v′2 − h2;
k3 = −(t0+t1)·(c3+d3)+t5+t4−v′1−h1; l3 = −t5−v′0−h0;

6M

Total fields of arbitrary characteristic, hi ∈ F2, f8 = 0 2I + 158M +
6S

fields of characteristic two, hi ∈ F2, f8 = 0 2I + 146M +
6S

Table A.12: Explicit formulae for doubling on a HEC of
genus four (Harley).

Input A weight four reduced divisor D1 = (u1, v1)
u1 = x4 + ax3 + bx2 + cx + d; v1 = ix3 + jx2 + kx + l
h = h4x

4 + h3x
3 + h2x

2 + h1x + h0 where hi ∈ {0, 1};
f = x9+f8x

8+f7x
7+f6x

6+f5x
5+f4x

4+f3x
3+f2x

2+f1x+f0

where f8 ∈ {0, 1};
Output A weight four reduced divisor D2 = (u2, v2) = [2]D1

u2 = x4 +a2x
3 + b2x

2 + c2x+d2; v2 = i2x
3 + j2x

2 +k2x+ l2
Step Procedure Cost
1 Almost inverse inv = r80/(h + 2v1) mod u1

= inv3x
3 + inv2x

2 + inv1x + inv0 (EEA):

I + 44M

r13 = h3 + 2 · i − h4 · a; r12 = h2 + 2 · j − h4 · b; r11 =
h1 + 2 · k − h4 · c; r10 = h0 + 2 · l − h4 · d;
r23 = r13 · a − r12; r22 = r13 · b − r11; r21 = r13 · c − r10;
r20 = r13 · d;
t21 = −1; t20 = 0; r32 = r23 · r12 − r13 · r22; r31 = r23 · r11 −
r13 · r21;
r30 = r23 · r10 − r13 · r20; t31 = r13; t30 = r23;
r42 = r32 · r22 − r23 · r31;

Explicit Formulae for the Group Operations over GF(p) 167

Table A.12: (continued)

Step Procedure Cost
r41 = r32 · r21 − r23 · r30; r40 = r32 · r20;
t42 = −r23 · t31; t41 = r32 · t21 − r23 · t30; t40 = 0;
r51 = r42·r31−r32·r41; r50 = r42·r30−r32·r40; t52 = −r32·t42;
t51 = r42 · t31−r32 · t41; t50 = r42 · t30; r61 = r51 ·r41−r42 ·r50;
r60 = r51 · r40; t63 = −r42 · t52; t62 = r51 · t42 − r42 · t51;
t61 = r51 · t41 − r42 · t50;
t60 = r51 · t40; r80 = r61 · r50 − r51 · r60; inv3 = −r51 · t63;
inv2 = r61 · t52 − r51 · t62;
inv1 = r61 · t51 − r51 · t61; inv0 = r61 · t50 − r51 · t60;
If r80 = 0 call Cantor’s Algorithm;

2 z = ((f − hv1 − v2
1)/u1) mod u1,

where z = z4x
4 + z3x

3 + z2x
2 + z1x + z0:

diff3 = f7 − i · h4 − b; diff2 = f6 − i2 − i · h3 − j · h4 − c;
diff1 = f5 − i · h2 − j · h3 − k · h4 − 2 · i · j − d; diff0 =
f4 − j2 − i · h1 − j · h2 − k · h3 − l · h4 − 2 · i · k;
z′4 = f8 − a; z′3 = diff3 − a · z′4; z′2 = diff2 − a · z′3 − b · z′4;
z′1 = diff1 − a · z′2 − b · z′3 − c · z′4; z′0 = diff0 − a · z′1 − b ·
z′2 − c · z′3 − d · z′4;
z3 = a · (a − z′4) − b + z′3; z2 = b · (a − z′4) − c + z′2; z1 =
c · (a− z′4)− d + z′1;
z0 = d · (a− z′4) + z′0;

12M + 3S

3 s′ = z · inv mod u1 = s′3x
3 + s′2x

2 + s′1x + s′0 (Karatsuba):
t1 = z1 · inv1; t2 = z2 · inv2; t10 = z0 · inv0; t16 = z3 · inv3;
t15 = (z3 + z2) · (inv3 + inv2) − t16 − t2; t14 = (z3 + z1) ·
(inv3 + inv1)− t16 − t1 + t2;
t13 = (z3 + z0) · (inv3 + inv0)− t10− t16 + z2 · inv1 + z1 · inv2;
t12 = (z2 + z0) · (inv2 + inv0)− t10− t2 + t1; t11 = (z1 + z0) ·
(inv1 + inv0)− t1 − t10;
t3 = t15 − a · t16; t4 = a · t3 + b · t16 − t14; s′0 = d · t4 + t10;
s′1 = c · t4 − d · t3 + t11; s′2 = b · t4 − c · t3 − d · t16 + t12;
s′3 = a · t4 − b · t3 − c · t16 + t13;

23M

4 s = s′ made monic = x3 + s2x
2 + s1x + s0:

t1 = r80 · s′3; w6 = t−1
1 ; w7 = r80 · w6; w4 = r80 · w7;

w3 = s′23 ·w6; w5 = w2
4; s0 = s′0 ·w7; s1 = s′1 ·w7; s2 = s′2 ·w7;

I + 7M + 2S

Explicit Formulae for the Group Operations over GF(p) 168

Table A.12: (continued)

Step Procedure Cost
5 G = su1 = x7 + g6x

6 + g5x
5 + g4x

4 + g3x
3 + g2x

2

+g1x + g0 (Karatsuba):
t0 = c·s1; t1 = b·s2; g0 = s0·d; g1 = (c+d)·(s1+s0)−t0−g0;
g2 = (b+d) · (s2 + s0)− g0− t1 + t0; g3 = (a+d) · (1+ s0)−
g0 − a + b · s1 + c · s2;
g4 = (a + c) · (1 + s1)− a− t0 + t1 + s0; g5 = (a + b) · (1 +
s2)− a− t1 + s1; g6 = a + s2;

10M

6 u′ = u−2
1 [(G + w4v1)

2 + w4hG + w5(hv1 − f)]

= x6 + u′5x
5 + u′4x

4 + u′3x
3 + u′2x

2 + u′1x + u′0:
sa = a2; ssa = sa2; sma = sa · a; ab = a · b;
ac = a · c; bc = b · c; sb = b2; sc = c2; sg5 = g2

5;
sg6 = g2

6; g5g6 = g5 · g6; diff4 = 2 · g5 + sg6 − 2 · b− sa;
diff3 = 2·g6 ·(g5−sa)+2·g4+w4 ·h4−2·c−2·a·b+2·ssa);
diff2 = sa ·(−2 ·g5−sg6+6 ·b)+g6 ·(4 ·sma+2 ·g4−4 ·ab+
w4 ·h4)−2 ·d+sg5+2 ·g3−2 ·ac−3 ·ssa−sb+w4 ·(2 ·i+h3);
diff1 = sa ·(6 ·c−2 ·g4 +12 ·b ·g6−2 ·g5g6−w4 ·h4)+sma ·
(−12 ·b+4 ·g5 +2 ·sg6)+ssa ·(−6 ·g6 +4 ·a)+w4 ·(2 ·g6 · i+
h4 ·g5+h3 ·g6+h2+2·j)+g6 ·(−4·ac−2·sb+2·g3)+ab·(−4·
g5−2 ·sg6)+a · (−2 ·d+6 ·sb)+2 ·g2−w5 +2 ·g5 ·g4−2 ·bc;
diff0 = g6 ·(−4·bc−4·d·a+w4 ·h2+2·w4 ·j+2·g2−24·sma·
b+12·sa·c−2·sa·g4+8·ssa·a−sa·w4·h4+12·a·sb)+sa·(+6·
b·sg6+12·b·g5−2·w4 ·i−2·g3−sg5+6·d−18·sb−w4 ·h3)+
ssa·(−6·g5−3·sg6+20·b)+sma·(−12·c+4·g4+2·w4 ·h4+
4 ·g5g6−5 ·sma)+sb ·(2 ·b−2 ·g5−sg6)+w4 ·(+2 ·g5 ·i+h4 ·
(g4−2·ab)+h1+2·k+h3 ·g5)+ab·(−4·g5g6+12·c−4·g4)+
ac·(−4·g5−2·sg6)+2·g1−w5 ·f8+2·g5 ·g3−2·b·d+g2

4−sc;
u′5 = 2 · (g6 − a); u′4 = diff4 − 2 · a · u′5; u′3 = diff3 − 2 · a ·
u′4 − 2 · b · u′5;
u′2 = diff2− 2 · a · u′3− 2 · b · u′4− 2 · c · u′5; u′1 = diff1− 2 ·
a · u′2 − 2 · b · u′3 − 2 · c · u′4 − 2 · d · u′5;
u′0 = diff0 − 2 · a · u′1 − 2 · b · u′2 − 2 · c · u′3 − 2 · d · u′4;

56M + 7S

7 v′ = −(w3z + h + v1) mod u′ = v′5x
5 + v′4x

4 + v′3x
3

+v′2x
2 + v′1x + v′0:

t1 = u′5 − g6; v′5 = −w3 · (u′5 · t1 − u′4 + g5); v′4 = −w3 · (u′4 ·
t1 − u′3 + g4)− h4;
v′3 = −w3 · (u′3 · t1 − u′2 + g3)− h3 − i; v′2 = −w3 · (u′2 · t1 −
u′1 + g2)− h2 − j;
v′1 = −w3 · (u′1 · t1 − u′0 + g1)− h1 − k; v′0 = −w3 · (u′0 · t1 +
g0)− h0 − l;

12M

Explicit Formulae for the Group Operations over GF(p) 169

Table A.12: (continued)

Step Procedure Cost
8 u′2 = (f − v′h− v′2)/u′ = u24x

4 + u23x
3 + u22x

2

+u21x + u20:
diff3 = 1− v′5 · (h4 + 2 · v′4); diff2 = f8− v′5 · (h3 + 2 · v′3)−
v′4 · h4 − v′24 ;
diff1 = f7 − v′5 · (h2 + 2 · v′2)− v′4 · (h3 + 2 · v′3)− v′3 · h4;
diff0 = f6−v′5·(h1+2·v′1)−v′4·(h2+2·v′2)−v′3·h3−v′2·h4−v′23 ;
u24 = −v′25 ; u23 = diff3 − u24 · u′5; u22 = diff2 − u24 · u′4 −
u23 · u′5;
u21 = diff1 − u24 · u′3 − u23 · u′4 − u22 · u′5;
u20 = diff0 − u24 · u′2 − u23 · u′3 − u22 · u′4 − u21 · u′5;

16M + 3S

9 u2 = u′2 made monic = x4 + a2x
3 + b2x

2 + c2x + d2:

t0 = u−1
24 ; a2 = u23 ·t0; b2 = u22 ·t0; c2 = u21 ·t0; d2 = u20 ·t0;

I + 4M

10 v2 = −(v′ + h) mod u2 = i2x
3 + j2x

2 + k2x + l2
(Almost Karatsuba):
t0 = −v′5; t2 = t0 · a2; t1 = −v′4 − h4 − t2; t3 = t1 · b2;
t4 = t0 · c2; t5 = t1 · d2;
i2 = −(t0 + t1) · (a2 + b2) + t3 + t2 − v′3 − h3; j2 = −t3 −
t4 − v′2 − h2;
k2 = −(t0+t1)·(c2+d2)+t5+t4−v′1−h1; l2 = −t5−v′0−h0;

6M

Total fields of arbitrary characteristic, hi ∈ F2, f8 = 0 2I + 193M +
17S

fields of characteristic two, hi ∈ F2, f8 = 0 2I + 144M +
17S

fields of characteristic two, h(x) = x, f8 = 0 2I + 72M +
13S

Table A.13: Explicit formulae for adding on a HEC of
genus four (Cantor).

Input Weight four reduced divisors D1 = (u1, v1) and D2 =
(u2, v2)
u1 = x4 + ax3 + bx2 + cx + d; v1 = ix3 + jx2 + kx + l
u2 = x4 + ex3 + fx2 + gx + h; v2 = mx3 + nx2 + ox + p
h = h4x

4 + h3x
3 + h2x

2 + h1x + h0 where hi ∈ {0, 1};
f = x9+f8x

8+f7x
7+f6x

6+f5x
5+f4x

4+f3x
3+f2x

2+f1x+f0

where f8 ∈ {0, 1};
Output A weight four reduced divisor D3 = (u3, v3) = D1 + D2

u3 = x4 +a3x
3 + b3x

2 + c3x+d3; v3 = i3x
3 + j3x

2 +k3x+ l3
Step Procedure Cost
1 Compute gcd(u1, u2) = s1u1 + s2u2 (EEA): I + 59M + S

Explicit Formulae for the Group Operations over GF(p) 170

Table A.13: (continued)

Step Procedure Cost
r23 = a − e; r22 = b − f ; r21 = c − g; r20 = d − h; r33 =
r23 ·a−r22; r32 = r23 · b−r21; r31 = r23 ·c−r20; r30 = r23 ·d;
r42 = r33 · r22 − r23 · r32; r41 = r33 · r21 − r23 · r31; r40 =
r33 · r20 − r23 · r30; t41 = r23; t40 = r33 − r2

23;
r52 = r42 ·r32−r33 ·r41; r51 = r42 ·r31−r33 ·r40; r50 = r42 ·r30;
t52 = −r33 · t41; t51 = −r42 − r33 · t40; t50 = r42 · r23;
r61 = r52·r41−r42·r51; r60 = r52·r40−r42·r50; t62 = −r42·t52;
t61 = r52 · t41 − r42 · t51; t60 = r52 · t40 − r42 · t50;
r71 = r61 · r51 − r52 · r60; r70 = r61 · r50; t73 = −r52 · t62;
t72 = r61 · t52−r52 · t61; t71 = r61 · t51−r52 · t60; t70 = r61 · t50;
r80 = r71 ·r60−r61 ·r70; s13 = −r61 ·t73; s12 = r71 ·t62−r61 ·t72;
s11 = r71 · t61 − r61 · t71; s10 = r71 · t60 − r61 · t70;
If r80 = 0 call Cantor’s Algorithm;
t0 = r−1

80 ; s13 = s13 · t0; s12 = s12 · t0; s11 = s11 · t0; s10 =
s10 · t0;
s23 = −s13; s22 = −s13 · a − s12 − e · s23; s21 = −s13 · b −
s12 · a− s11 − e · s22 − f · s23; s20 = −s13 · c− s12 · b− s11 ·
a− s10 − e · s21 − f · s22 − g · s23;

2 Compute u′ = u1 · u2/d
2 = u1 · u2

= x8 + u′7x
7 + u′6x

6 + u′5x
5 + u′4x

4 + u′3x
3 + u′2x

2

+u′1x + u′0 (Karatsuba):
t00 = d · h; t01 = c · g; t02 = (c + d) · (g + h); t10 = b · f ;
t11 = a · e; t12 = (a + b) · (e + f); t20 = (b + d) · (h + f);
t21 = (a + c) · (e + g); t22 = (a + b + c + d) · (e + f + g + h);
u′0 = t00; u′1 = t02 − t01 − t00; u′2 = t01 + t20 − t10 − t00;
u′3 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00; u′4 =
d + h + t21 − t11 − t01 + t10; u′5 = c + g + t12 − t10 − t11;
u′6 = b + f + t11; u′7 = a + e;

9M

3 Compute v′ = s1u1v2 + s2u2v1 mod u′ (Karatsuba): 81M

t00 = d·s10; t01 = c·s11; t02 = (c+d)·(s10+s11); t10 = b·s12;
t11 = a·s13; t12 = (a+b)·(s12+s13); t20 = (b+d)·(s12+s10);
t21 = (a + c) · (s11 + s13); t22 = (a + b + c + d) · (s10 + s11 +
s12+s13); su10 = t00; su11 = t02−t01−t00; su12 = t01+t20−
t10−t00; su13 = t22−t21−t20−t12 +t11 +t10−t02 + t01 + t00;
su14 = s10 + t21− t11− t01 + t10; su15 = s11 + t12− t10− t11;
su16 = s12 + t11; su17 = s13;

Explicit Formulae for the Group Operations over GF(p) 171

Table A.13: (continued)

Step Procedure Cost
t00 = p · su10; t01 = o · su11; t02 = (su11 + su10) · (o + p);
t10 = n · su12; t11 = m · su13; t12 = (su13 + su12) · (m + n);
t20 = (su12 + su10) · (n + p); t21 = (su13 + su11) · (m + o);
t22 = (su10 + su11 + su12 + su13) · (m + n + o + p); d100 =
t00; d101 = t02 − t00 − t01; d102 = t01 + t20 − t10 − t00;
d103 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d104 = t21 − t11 − t01 + t10; d105 = t12 − t10 − t11; d106 = t11;
t00 = p · (su10 + su14); t01 = o · (su11 + su15); t02 = (su10 +
su14 + su11 + su15) · (p + o); t10 = n · (su12 + su16); t11 =
m · (su13 + su17); t12 = (su13 + su17 + su12 + su16) · (m+n);
t20 = (su12 + su16 + su10 + su14) · (n + p); t21 = (su13 +
su17 + su11 + su15) · (m + o); t22 = (su10 + su11 + su12 +
su13 + su14 + su15 + su16 + su17) · (m + n + o + p); d120 =
t00; d121 = t02 − t00 − t01; d122 = t01 + t20 − t10 − t00;
d123 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d124 = t21 − t11 − t01 + t10; d125 = t12 − t10 − t11; d126 = t11;
suv10 = d100; suv11 = d101; suv12 = d102; suv13 = d103;
suv14 = d104+d120−d100; suv15 = d105+d121−d101; suv16 =
d106 + d122 − d102; suv17 = d123 − d103; suv18 = d124 − d104;
suv19 = d125 − d105; suv1a = d126 − d106;
t00 = h·s20; t01 = g·s21; t02 = (g+h)·(s20+s21); t10 = f ·s22;
t11 = e·s23; t12 = (e+f)·(s22+s23); t20 = (f+h)·(s22+s20);
t21 = (e + g) · (s21 + s23); t22 = (e + f + g + h) · (s20 + s21 +
s22+s23); su20 = t00; su21 = t02−t01−t00; su22 = t01+t20−
t10−t00; su23 = t22−t21−t20−t12 +t11 +t10−t02 + t01 + t00;
su24 = s20 + t21− t11− t01 + t10; su25 = s21 + t12− t10− t11;
su26 = s22 + t11; su27 = s23;
t00 = l · su20; t01 = k · su21; t02 = (su21 + su20) · (k + l);
t10 = j · su22; t11 = i · su23; t12 = (su23 + su22) · (i + j);
t20 = (su22 + su20) · (j + l); t21 = (su23 + su21) · (i + k);
t22 = (su20 + su21 + su22 + su23) · (i + j + k + l); d100 =
t00; d101 = t02 − t00 − t01; d102 = t01 + t20 − t10 − t00;
d103 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d104 = t21 − t11 − t01 + t10; d105 = t12 − t10 − t11; d106 = t11;

Explicit Formulae for the Group Operations over GF(p) 172

Table A.13: (continued)

Step Procedure Cost
t00 = l · (su20 + su24); t01 = k · (su21 + su25); t02 = (su20 +
su24 + su21 + su25) · (k + l); t10 = j · (su22 + su26); t11 =
i · (su23 + su27); t12 = (su23 + su27 + su22 + su26) · (i + j);
t20 = (su22 + su26 + su20 + su24) · (j + l); t21 = (su23 +
su27 + su21 + su25) · (i + k); t22 = (su20 + su21 + su22 +
su23 + su24 + su25 + su26 + su27) · (i + j + k + l); d120 =
t00; d121 = t02 − t00 − t01; d122 = t01 + t20 − t10 − t00;
d123 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d124 = t21 − t11 − t01 + t10; d125 = t12 − t10 − t11; d126 = t11;
suv20 = d100; suv21 = d101; suv22 = d102; suv23 = d103;
suv24 = d104+d120−d100; suv25 = d105+d121−d101; suv26 =
d106 + d122 − d102; suv27 = d123 − d103; suv28 = d124 − d104;
suv29 = d125 − d105; suv2a = d126 − d106;
c0 = suv10 + suv20; c1 = suv11 + suv21; c2 = suv12 + suv22;
c3 = suv13 + suv23; c4 = suv14 + suv24; c5 = suv15 + suv25;
c6 = suv16 + suv26; c7 = suv17 + suv27; c8 = suv18 + suv28;
c9 = suv19+suv29; c10 = suv1a+suv2a; t0 = c10; t2 = t0 ·u′7;
t1 = c9 − t2; v′8 = c8 − (t0 + t1) · (u′6 + u′7) + t2 + t1 · u′6;
v′7 = c7 − t0 · u′5 − t1 · u′6 − v′8 · u′7; v′6 = c6 − (t0 + t1) · (u′4 +
u′5)+ t0 ·u′5 + t1 ·u′4−v′8 ·u′6; v′5 = c5− t0 ·u′3− t1 ·u′4−v′8 ·u′5;
v′4 = c4 − (t0 + t1) · (u′2 + u′3) + t1 · u′2 + t0 · u′3 − v′8 · u′4;
v′3 = c3− t0 · u′1− u′1 · u′2− v′8 · u′3; v′2 = c2− (t0 + t1) · (u′0 +
u′1) + t0 · u′1 + t1 · u′0 − v′8 · u′2; v′1 = c1 − t1 · u′0 − v′8 · u′1;
v′0 = c0 − v′8 · u′0;

4 Comp. u3 = (f − v′h− v′2)/u′

= x6 + u35x
5 + u34x

4 + u33x
3 + u32x

2 + u31x + u30:

I + 38M + 3S

u36 = −v′7
2; u35 = −2 · v′7 · v′6− u36 · u′7; u34 = −v′6

2− 2 · v′7 ·
v′5 − u35 · u′7 − u36 · u′6; u33 = −v′7 · h4 − 2 · v′7 · v′4 − 2 · v′6 ·
v′5−u36 ·u′5−u35 ·u′6−u34 ·u′7; u32 = −v′5

2− v′6 ·h4− 2 · v′7 ·
v′3− v′7 ·h3− 2 · v′6 · v′4−u35 ·u′5−u36 ·u′4−u33 ·u′7−u34 ·u′6;
u31 = −v′5 · h4 − 2 · v′5 · v′4 − 2 · v′7 · v′2 − v′7 · h2 + 1− 2 · v′6 ·
v′3− v′6 · h3− u35 · u′4− u36 · u′3− u33 · u′6− u34 · u′5− u32 · u′7;
u30 = −v′5·h3−v′7·h1−v′4

2−2·v′5·v′3−v′4·h4−2·v′6·v′2−2·v′7·v′1+
f8−v′6·h2−u35·u′3−u36·u′2−u32·u′6−u33·u′5−u34·u′4−u31·u′7;
t0 = u−1

36 ; u35 = u35 · t0; u34 = u34 · t0; u33 = u33 · t0;
u32 = u32 · t0; u31 = u31 · t0; u30 = u30 · t0;

5 Compute v3 = −(v′ + h) mod u3

= v35x
5 + v34x

4 + v33x
3 + v32x

2 + v31x + v30:

9M

t0 = −v′7; t2 = t0·u35; t1 = −v′6−t2; t3 = t1·u34; t4 = t1·u32;
t5 = t1 · u30; t6 = t0 · u33; t7 = t0 · u31;

Explicit Formulae for the Group Operations over GF(p) 173

Table A.13: (continued)

Step Procedure Cost
v35 = −v′5−(t0+t1) ·(u34+u35)+t3+t2; v34 = −(v′4+h4)−
t6 − t3; v33 = −(v′3 + h3) − (t0 + t1) · (u32 + u33) + t4 + t6;
v32 = −(v′2 + h2) − t7 − t4; v31 = −(v′1 + h1) − (t0 + t1) ·
(u30 + u31) + t5 + t7; v30 = −(v′0 + h0)− t5;

6 Compute u4 = (f − v3h− v2
3)/u3

= x4 + a3x
3 + b3x

2 + c3x + d3:
u44 = −v2

35; a3 = 1 − 2 · v35 · v34 − v35 · h4 − u44 · u35;
b3 = f8−v2

34−2·v35 ·v33−v34 ·h4−v35 ·h3−a3 ·u35−u44 ·u34;
c3 = f7−2·v34 ·v33−2·v35 ·v32−v35 ·h2−v34 ·h3−v33 ·h4−a3 ·
u34−b3·u35−u44·u33; d3 = f6−2·v35·v31−2·v34·v32−v2

33−v32·
h4−v35·h1−v34·h2−v33·h3−u44·u32−c3·u35−b3·u34−a3·u33;
t0 = u−1

44 ; a3 = a3 · t0; b3 = b3 · t0; c3 = c3 · t0; d3 = d3 · t0;

I + 20M + 2S

7 Compute v4 = −(v3 + h) mod u4 = i3x
3 + j3x

2 + k3x + l3:
t0 = −v35; t2 = t0 ·a3; t1 = −(v34 +h4)−t2; t3 = t1 ·b3; t4 =
t0 ·c3; t5 = t1 ·d3; i3 = −(v33+h3)−(t0+t1)·(b3+a3)+t3+t2;
j3 = −(v32 + h2) − t4 − t3; k3 = −(v31 + h1) − (t0 + t1) ·
(d3 + c3) + t5 + t4; l3 = −(v30 + h0)− t5;

6M

Total fields of arbitrary characteristic, hi ∈ F2, f8 = 0 3I + 222M +
6S

fields of characteristic two, hi ∈ F2, f8 = 0 3I + 204M +
6S

Table A.14: Explicit formulae for doubling on a HEC of
genus four (Cantor).

Input A weight four reduced divisor D1 = (u, v)
u = x4 + ax3 + bx2 + cx + d; v = ix3 + jx2 + kx + l
h = h4x

4 + h3x
3 + h2x

2 + h1x + h0 where hi ∈ {0, 1};
f = x9+f8x

8+f7x
7+f6x

6+f5x
5+f4x

4+f3x
3+f2x

2+f1x+f0

where f8 ∈ {0, 1};
Output A weight four reduced divisor D2 = (u2, v2) = [2]D1

u2 = x4 +a2x
3 + b2x

2 + c2x+d2; v2 = i2x
3 + j2x

2 +k2x+ l2
Step Procedure Cost
1 gcd(u1, h + 2v1) = d = s1 · u1 + s3 · (h + 2v1) (EEA): I + 60M

r13 = h3 + 2 · i − h4 · a; r12 = h2 + 2 · j − h4 · b; r11 =
h1 + 2 · k − h4 · c; r10 = h0 + 2 · l − h4 · d;
r23 = r13 · a − r12; r22 = r13 · b − r11; r21 = r13 · c − r10;
r20 = r13 · d;
t21 = −1; t20 = 0; r32 = r23 · r12 − r13 · r22; r31 = r23 · r11 −
r13 · r21;

Explicit Formulae for the Group Operations over GF(p) 174

Table A.14: (continued)

Step Procedure Cost
r30 = r23 · r10 − r13 · r20; t31 = r13; t30 = r23;
r42 = r32 · r22 − r23 · r31;
r41 = r32 · r21 − r23 · r30; r40 = r32 · r20;
t42 = −r23 · t31; t41 = r32 · t21 − r23 · t30; t40 = 0;
r51 = r42·r31−r32·r41; r50 = r42·r30−r32·r40; t52 = −r32·t42;
t51 = r42 · t31−r32 · t41; t50 = r42 · t30; r61 = r51 ·r41−r42 ·r50;
r60 = r51 · r40; t63 = −r42 · t52; t62 = r51 · t42 − r42 · t51;
t61 = r51 · t41 − r42 · t50;
t60 = r51 · t40; r80 = r61 · r50 − r51 · r60; s33 = −r51 · t63;
s32 = r61 · t52 − r51 · t62;
s31 = r61 · t51 − r51 · t61; s30 = r61 · t50 − r51 · t60;
If r80 = 0 call Cantor’s Algorithm;
t0 = r−1

80 ; s33 = s33 · t0; s32 = s32 · t0; s31 = s31 · t0; s30 =
s30 · t0;
s13 = −s33 · h4; s12 = −2 · s33 · i− s33 · h3− s32 · h4− a · s13;
s11 = −s31·h4−2·s33·j−s33·h2−2·s32·i−s32·h3−a·s12−b·s13;
s10 = −s32 · h2 − 2 · s31 · i− s31 · h3 − 2 · s33 · k − s33 · h1 −
2 · s32 · j − s30 · h4 − a · s11 − b · s12 − c · s13;

2 u1 = u2 = x8 + u17x
7 + u16x

6 + u15x
5 + u14x

4

+u13x
3 + u12x

2 + u11x + u10:
t1 = a2; t2 = b2; t3 = c2; t4 = d2; t5 = (c+d)2; t6 = (a+b)2;
t7 = (a + c)2;
t8 = (b+d)2; t9 = (a+b+c+d)2; u10 = t4; u11 = t5−t3−t4;
u12 = t3 + t8 − t2 − t4;
u13 = t9 − t7 − t8 − t6 + t1 + t2 − t5 + t3 + t4; u14 = 2 · d +
t7 − t1 − t3 + t2; u15 = 2 · c + t6 − t1 − t2; u16 = 2 · b + t1;
u17 = 2 · a;

9S

3 v1 = s1 · u · v + s3 · (v2 + f) mod u1 = v17x
7 + v16x

6

+v15x
5 + v14x

4 + v13x
3 + v12x

2 + v11x + v10:

73M + 10S

t00 = l ·s10; t01 = k ·s11; t02 = (s11+s10)·(k+l); t10 = j ·s12;
t11 = i ·s13; t12 = (s13+s12) ·(i+j); t20 = (s10+s12) ·(j+ l);
t21 = (s11+s13)·(i+k); t22 = (s13+s12+s11+s10)·(i+j+k+
l); sv0 = t00; sv1 = t02− t00− t01; sv2 = t01 + t20− t10− t00;
sv3 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
sv2 = t21 − t11 − t01 + t10; sv5 = t12 − t10 − t11; sv6 = t11;

Explicit Formulae for the Group Operations over GF(p) 175

Table A.14: (continued)

Step Procedure Cost
t00 = d · sv0; t01 = c · sv1; t02 = (sv1 + sv0) · (c + d);
t10 = b · sv2; t11 = a · sv3; t12 = (sv3 + sv2) · (a + b);
t20 = (sv2 + sv0) · (b + d); t21 = (sv3 + sv1) · (a + c);
t22 = (sv3 + sv1 + sv2 + sv0) · (a + b + c + d); d100 =
t00; d101 = t02 − t00 − t01; d102 = t01 + t20 − t10 − t00;
d103 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d104 = t21 − t11 − t01 + t10; d105 = t12 − t10 − t11; d106 = t11;
t00 = d · (sv0 + sv4); t01 = c · (sv1 + sv5); t02 = (sv1 +
sv5 + sv0 + sv4) · (c + d); t10 = b · (sv2 + sv6); t11 = a ·
sv3; t12 = (sv3 + sv2 + sv6) · (a + b); t20 = (sv2 + sv6 +
sv0 + sv4) · (b + d); t21 = (sv3 + sv1 + sv5) · (a + c); t22 =
(sv3 + sv2 + sv6 + sv1 + sv5 + sv0 + sv4) · (a + b + c + d);
d120 = t00; d121 = t02 − t00 − t01; d122 = t01 + t20 − t10 − t00;
d123 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d124 = t21 − t11 − t01 + t10; d125 = t12 − t10 − t11; d126 = t11;
suv0 = d100; suv1 = d101; suv2 = d102; suv3 = d103; suv4 =
d104 + d120 − d100 + sv0; suv5 = d105 + d121 − d101 + sv1;
suv6 = d106 + d122 − d102 + sv2; suv7 = d123 − d103 + sv3;
suv8 = d124 − d104 + sv4; suv9 = d125 − d105 + sv5; suv10 =
d126 − d106 + sv6;
t0 = i2; t1 = j2; t2 = k2; t3 = l2; t4 = (i+ k)2; t5 = (j + l)2;
t00 = t3; t01 = (k + l)2 − t2 − t3; t02 = t2; t10 = t1; t11 =
(i+j)2−t0−t1; t12 = t0; t20 = t5; t21 = (i+j+k+l)2−t4−t5;
t22 = t4; vsq0 = t00; vsq1 = t01; vsq2 = t02 + t20 − t10 − t00;
vsq3 = t21− t11− t01; vsq4 = t10 + t22− t12− t02; vsq5 = t11;
vsq6 = t12;
t0 = f0 +vsq0; t1 = f1 +vsq1; t2 = f2 +vsq2; t3 = f3 +vsq3;
t4 = f4 + vsq4; t5 = f5 + vsq5; t6 = f6 + vsq6; vsf0 =
t0 − f8 · u10 + u17 · u10; vsf1 = t1 − u10 − f8 · u11 + u17 · u11;
vsf2 = t2 − u11 − f8 · u12 + u17 · u12; vsf3 = t3 − u12 − f8 ·
u13 + u17 · u13; vsf4 = t4 − u13 − f8 · u14 + u17 · u14; vsf5 =
t5−u14−f8 ·u15+u17 ·u15; vsf6 = t6−u15−f8 ·u16+u17 ·u16;
vsf7 = f7 − u16 − f8 · u17 + u2

17;
t00 = s30·vsf0; t01 = s31·vsf1; t02 = (vsf0+vsf1)·(s30+s31);
t10 = s32·vsf2; t11 = s33·vsf3; t12 = (vsf2+vsf3)·(s32+s33);
t20 = (vsf0+vsf2)·(s30+s32); t21 = (vsf1+vsf3)·(s33+s31);
t22 = (vsf0 + vsf1 + vsf2 + vsf3) · (s30 + s31 + s32 + s33);
d100 = t00; d101 = t02 − t00 − t01; d102 = t01 + t20 − t10 − t00;
d103 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d104 = t21 − t11 − t01 + t10; d105 = t12 − t10 − t11; d106 = t11;

Explicit Formulae for the Group Operations over GF(p) 176

Table A.14: (continued)

Step Procedure Cost
t00 = s30 · (vsf0 + vsf4); t01 = s31 · (vsf1 + vsf5); t02 =
(vsf1+vsf5+vsf0+vsf4)·(s31+s30); t10 = s32·(vsf2+vsf6);
t11 = s33·(vsf3+vsf7); t12 = (s32+s33)·(vsf3+vsf7+vsf2+
vsf6); t20 = (vsf0 + vsf2 + vsf4 + vsf6) · (s30 + s32); t21 =
(vsf1 +vsf3 +vsf5 +vsf7) · (s33 +s31); t22 = (vsf0 +vsf1 +
vsf2+vsf3+vsf4+vsf5+vsf6+vsf7)·(s30+s31+s32+s33);
d120 = t00; d121 = t02 − t00 − t01; d122 = t01 + t20 − t10 − t00;
d123 = t22 − t21 − t20 − t12 + t11 + t10 − t02 + t01 + t00;
d124 = t21 − t11 − t01 + t10; d125 = t12 − t10 − t11; d126 = t11;
svsf0 = d100; svsf1 = d101; svsf2 = d102; svsf3 = d103;
svsf4 = d104 + d120 − d100; svsf5 = d105 + d121 − d101;
svsf6 = d106 + d122 − d102; svsf7 = d123 − d103; svsf8 =
d124 − d104; svsf9 = d125 − d105; svsf10 = d126 − d106;
c0 = suv0 + svsf0; c1 = suv1 + svsf1; c2 = suv2 + svsf2;
c3 = suv3 + svsf3; c4 = suv4 + svsf4; c5 = suv5 + svsf5;
c6 = suv6 + svsf6; c7 = suv7 + svsf7; c8 = suv8 + svsf8;
c9 = suv9 + svsf9; t0 = suv10 + svsf10; t1 = c9 − t0 · u17;
t3 = t1 ·u16; t4 = t0 ·u15; t5 = t1 ·u14; t6 = t0 ·u13; t7 = t1 ·u12;
t8 = t0 · u11; t9 = t1 · u10; t2 = c8 − (t0 + t1) · (u16 + u17) +
t0 · u17 + t3; v17 = c7− t4− t3− t2 · u17; v16 = c6− (t0 + t1) ·
(u14 + u15) + t4 + t5 − t2 · u16; v15 = c5 − t6 − t5 − t2 · u15;
v14 = c4−(t0+t1)·(u12+u13)+t7+t6−t2 ·u14; v13 = c3−t8−
t7− t2 ·u13; v12 = c2− (t0 + t1) · (u10 +u11)+ t8 + t9− t2 ·u12;
v11 = c1 − t9 − t2 · u11; v10 = c0 − t2 · u10;

4 u3 = (f − v1h− v2
1)/u1 made monic

= x6 + u35x
5 + u34x

4 + u33x
3 + u32x

2 + u31x + u30:
u36 = −v2

17; u35 = −2 · v17 · v16 − u36 · u17;
u34 = −v2

16 − 2 · v17 · v15 − u35 · u17 − u36 · u16;
u33 = −v17 · h4 − 2 · v17 · v14 − 2 · v16 · v15 − u36 · u15 − u35 ·
u16 − u34 · u17;
u32 = −v2

15 − v16 · h4 − 2 · v17 · v13 − v17 · h3 − 2 · v16 · v14 −
u35 · u15 − u36 · u14 − u33 · u17 − u34 · u16;
u31 = −v15 ·h4−2 ·v15 ·v14−2 ·v17 ·v12−v17 ·h2 +1−2 ·v16 ·
v13−v16 ·h3−u35 ·u14−u36 ·u13−u33 ·u16−u34 ·u15−u32 ·u17;
u30 = −v15 · h3 − v17 · h1 − v2

14 − 2 · v15 · v13 − v14 · h4 − 2 ·
v16 · v12 − 2 · v17 · v11 + f8 − v16 · h2 − u35 · u13 − u36 · u12 −
u32 · u16 − u33 · u15 − u34 · u14 − u31 · u17;
t0 = u−1

36 ; u36 = 1; u35 = u35 · t0; u34 = u34 · t0; u33 = u33 · t0;
u32 = u32 · t0; u31 = u31 · t0; u30 = u30 · t0;

39M + 4S + I

Explicit Formulae for the Group Operations over GF(p) 177

Table A.14: (continued)

Step Procedure Cost
5 v3 = −(v1 + h) mod u3

= v35x
5 + v34x

4 + v33x
3 + v32x

2 + v31x + v30:
t0 = −v17; t2 = t0 · u35; t1 = −v16 − t2; t3 = t1 · u34;
t4 = t1 · u32;
t5 = t1 · u30; t6 = t0 · u33; t7 = t0 · u31;
v35 = −v15 − (t0 + t1) · (u34 + u35) + t3 + t2; v34 = −(v14 +
h4)− t6 − t3;
v33 = −(v13 + h3) − (t0 + t1) · (u32 + u33) + t4 + t6; v32 =
−(v12 + h2)− t7 − t4;
v31 = −(v11 + h1) − (t0 + t1) · (u30 + u31) + t5 + t7; v30 =
−(v10 + h0)− t5;

9M

6 u4 = (f − v3h− v2
3)/u3 made monic

= x4 + a2x
3 + b2x

2 + c2x + d2

u44 = −v2
35; a2 = 1− 2 · v35 · v34 − v35 · h4 − u44 · u35;

b2 = f8−v2
34−2·v35 ·v33−v34 ·h4−v35 ·h3−a2 ·u35−u44 ·u34;

c2 = f7 − 2 · v34 · v33 − 2 · v35 · v32 − v35 · h2 − v34 · h3 − v33 ·
h4 − a2 · u34 − b2 · u35 − u44 · u33;
d2 = f6− 2 · v35 · v31− 2 · v34 · v32− v2

33− v32 · h4− v35 · h1−
v34 · h2 − v33 · h3 − u44 · u32 − c2 · u35 − b2 · u34 − a2 · u33;
t0 = u−1

44 ; a2 = a2 · t0; b2 = b2 · t0; c2 = c2 · t0; d2 = d2 · t0;

20M + 3S + I

7 v4 = −(v3 + h) mod u4 = i2x
3 + j2x

2 + k2x + l2:
t0 = −v35; t2 = t0 · a2; t1 = −(v34 + h4) − t2; t3 = t1 · b2;
t4 = t0 · c2; t5 = t1 · d2;
i2 = −(v33 + h3) − (t0 + t1) · (b2 + a2) + t3 + t2; j2 =
−(v32 + h2)− t4 − t3;
k2 = −(v31 + h1) − (t0 + t1) · (d2 + c2) + t5 + t4; l2 =
−(v30 + h0)− t5;

6M

Total fields of arbitrary characteristic, hi ∈ F2, f8 = 0 3I + 206M +
17S

fields of characteristic two, hi ∈ F2, f8 = 0 3I + 181M +
14S

fields of characteristic two, h(x) = x, f8 = 0 2I + 76M +
13S

Explicit Formulae for the Group Operations over GF(p) 178

Table A.15: Optimized inversionfree explicit formulae for
adding a divisor on a HEC of genus two over F2n .

Input [U11, U10, V11, V10, Z1]; [U21, U20, V21, V20, Z2];
h = x; and f = x5 + f1x + f0;

Output [U ′
1, U

′
0, V

′
1 , V

′
0 , Z

′]
= [U11, U10, V11, V10, Z1] + [U21, U20, V21, V20, Z2]

Step Procedure Cost
1 precomputation:

Z = Z1Z2; Ũ21 = Z1U21; Ũ20 = Z1U20; Ṽ21 = Z1V21; Ṽ20 =
Z1V20;

5M

2 compute resultant r of U1, U2:
z1 = U11Z2 − Ũ21; z2 = Ũ20 − U10Z2; z3 = U11z1 + z2Z1;
r = z2z3 + z2

1U10;

6M + 1S

3 compute almost inverse of U2 modulo U1:
inv1 = z1; inv0 = z3;

4 compute s:
w0 = V10Z2 − Ṽ20; w1 = V11Z2 − Ṽ21; w2 = inv0w0;
w3 = inv1w1; s1 = (inv0 +Z1inv1)(w0 +w1)−w2−w3(Z1 +
U11); s0 = w2 − U10w3;

8M

5 precomnputation:
R = Zr; s0 = s0Z; s3 = s1Z; R̃ = Rs3; S3 = s2

3; S = s0s1;

S̃ = s3s1;
˜̃S = s0s3;

˜̃R = R̃S̃;

8M + 1S

6 compute l:
l2 = S̃Ũ21; l0 = SŨ20; l1 = (S̃ + S)(Ũ21 + Ũ20)− l2 − l0; l2 =

l2 + ˜̃S;

3M

7 compute U ′:
U ′

0 = s2
0 +s2

1z1(z1 + Ũ21)+z2S̃ +R(s3 +rz1); U
′
1 = S̃z1 +R2;

6M + 3S

8 precomputations:
l2 = l2 − U ′

1; w0 = U ′
0l2 − S3l0; w1 = U ′

1l2 + S3(U
′
0 − l1);

4M

9 adjust
Z ′ = R̃S3; U

′
1 = R̃U ′

1; U
′
0 = R̃U ′

0;
3M

10 compute V’

V ′
0 = w0 + ˜̃RṼ20; V

′
1 = w1 + ˜̃R(Ṽ21 + Z);

2M

Total 45M + 5S

Explicit Formulae for the Group Operations over GF(p) 179

Table A.16: Optimized inversionfree explicit formulae for
doubling a divisor on a HEC of genus two over F2n .

Input [U1, U0, V1, V0, Z];
h = x; and f = x5 + f1x + f0;

Output [U ′
1, U

′
0, V

′
1 , V

′
0 , Z

′] = 2[U1, U0, V1, V0, Z]
Step Procedure Cost
1 compute resultant and precomutations:

Z2 = Z2; w0 = V 2
1 ; w1 = U2

1 ; w3 = U1Z;
1M + 2S

2 compute k:
k0 = U1w1 + Z(ZV1 + w0);

3M

3 compute s = kinv mod u:
w4 = k0w3; w5 = w1Z; s3 = (w3 + Z)(k0 + w1) + w4 + (1 +
U1)w5; s1 = s3Z; s0 = w4 − ZU0w5;

7M

4 precomputations:
R = Z2

2U0; R̃ = Rs1; S1 = s2
1; S0 = s2

0; s4 = s3s1; s5 =

s0s3; S = s5Z; ˜̃R = R̃s4;

6M + 3S

5 compute l:
l2 = U1s4; l0 = U0s5; l1 = (s4 + s5)(U1 + U0) + l2 + l0;

3M

6 compute U ′:
U ′′

0 = S0 + Rs3Z; U ′′
1 = R2;

2M + 1S

7 precomputations:
l3 = l2 +S +U ′′

1 ; w6 = U ′′
0 l3 +S1l0; w7 = U ′′

1 l3 +S1(U
′′
0 + l1);

4M

8 adjust
Z ′ = S1R̃; U ′

1 = R̃U ′′
1 ; U ′

0 = R̃U ′′
0 ;

3M

9 compute V’

V ′
0 = w6 + ˜̃RV0; V

′
1 = w7 + ˜̃RV1 + Z ′;

2M

Total 31M + 6S

Table A.17: Optimized inversionfree explicit formulae for
mixed adding a divisor on a HEC of genus two over F2n .

Input [U11, U10, V11, V10, 1]; [U21, U20, V21, V20, Z02];
h = x; and f = x5 + f1x + f0;

Output [U ′
1, U

′
0, V

′
1 , V

′
0 , Z

′] =
[U11, U10, V11, V10, 1] + [U21, U20, V21, V20, Z02]

Step Procedure Cost
1 precomputation:

Ũ21 = U21; Ũ20 = U20; Ṽ21 = V21; Ṽ20 = V20;
-

2 compute resultant r of U1, U2:
z1 = U11Z2 − Ũ21; z2 = Ũ20 − U10Z2; z3 = U11z1 + z2; r =
z2z3 + z2

1U10;

5M + 1S

Explicit Formulae for the Group Operations over GF(p) 180

Table A.17: (continued)

Step Procedure Cost
3 compute almost inverse of U2 modulo U1:

inv1 = z1; inv0 = z3;
4 compute s:

w0 = V10Z2 − Ṽ20; w1 = V11Z2 − Ṽ21; w2 = inv0w0; w3 =
inv1w1; s1 = (inv0 + inv1)(w0 +w1)−w2−w3(1+U11); s0 =
w2 − U10w3;

7M

5 precomnputation:
R = Z2r; s0 = s0Z2; s3 = s1Z2; R̃ = Rs3; S3 = s2

3; S =

s0s1; S̃ = s3s1;
˜̃S = s0s3;

˜̃R = R̃S̃;

8M + 1S

6 compute l:
l2 = S̃Ũ21; l0 = SŨ20; l1 = (S̃ + S)(Ũ21 + Ũ20)− l2 − l0; l2 =

l2 + ˜̃S;

3M

7 compute U ′:
U ′

0 = s2
0 +s2

1z1(z1 + Ũ21)+z2S̃ +R(s3 +rz1); U
′
1 = S̃z1 +R2;

6M + 3S

8 precomputations:
l2 = l2 − U ′

1; w0 = U ′
0l2 − S3l0; w1 = U ′

1l2 + S3(U
′
0 − l1);

4M

9 adjust
Z ′ = R̃S3; U

′
1 = R̃U ′

1; U
′
0 = R̃U ′

0;
3M

10 compute V’

V ′
0 = w0 + ˜̃RṼ20; V

′
1 = w1 + ˜̃R(Ṽ21 + Z2);

2M

Total 38M + 5S

Table A.18: Optimized affine inversionfree explicit for-
mulae for doubling a divisor on a HEC of genus two over
F2n .

Input [U1, U0, V1, V0, 1];
h = x; and f = x5 + f1x + f0;

Output [U ′
1, U

′
0, V

′
1 , V

′
0 , Z

′] = 2[U1, U0, V1, V0, 1]
Step Procedure Cost
1 compute k:

k1 = U2
1 ; u3 = U1k1; k0 = u3 + V1 + V 2

1 ;
1M + 2S

2 compute s = kinv mod u:
w4 = k0U1; s0 = w4 − U0k1;

2M

3 precomputations:
R = U0k0; S1 = k2

0; S0 = s2
0; s5 = s0k0; R̃ = RS1;

3M + 2S

4 compute l:
l2 = U1S1; l0 = U0s5; l1 = (S1 + s5)(U1 + U0) + l2 + l0;

3M

Explicit Formulae for the Group Operations over GF(p) 181

Table A.18: (continued)

Step Procedure Cost
5 compute U ′:

U ′
0 = S0 + R; U ′

1 = U2
0 ;

1S

6 precomputations:
l3 = l2 + s5 + U ′

1; w6 = U ′
0l3 + S1l0; w7 = U ′

1l3 + S1(U
′
0 + l1);

4M

7 adjust
Z ′ = S1R; U ′

1 = RU ′
1; U

′
0 = RU ′

0;
3M

8 compute V ′

V ′
0 = w6 + R̃V0; V

′
1 = w7 + R̃V1 + Z ′;

2M

Total 18M + 5S

Bibliography

[ADH94] L.M. Adlemann, J. DeMarrais, and M.-D. Huang. A Subexponential Algo-

rithm for Discrete Logarithms over the Rational Subgroup of the Jacobians

of Large Genus Hyperelliptic Curves over Finite Fields. In L. Adleman

and M.-D.Huang, editors, Algorithmic Number Theory, First International

Symposium, ANTS-I, LNCS 877, pages 28 – 40, Berlin, May 1994. Springer-

Verlag.

[ANS99] ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm. Tech-

nical report, ANSI, 1999.

[ARM00] ARM. ARM Evaluator-7T Board User Guide, 2000. http://www.arm.

com/support/.

[Ava03] R. M. Avanzi. Countermeasures against Differential Power Analysis for Hy-

perelliptic Curve Cryptosystems. In C. D. Walter, Ç. K. Koç, and C. Paar,

editors, Workshop on Cryptographic Hardware and Embedded Systems —

CHES 2003, LNCS 2779, pages 366 – 381. Springer-Verlag, 2003.

[Ava04] R. M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in

Bibliography 183

Software Implementations. In Workshop on Cryptographic Hardware and

Embedded Systems — CHES 2004, LNCS. Springer-Verlag, 2004.

[BBWP04a] G. Bertoni, L. Breveglieri, T. Wollinger, and C Paar. Embedded Crypto-

graphic Hardware: Design and Security, chapter Hyperelliptic Curve Cryp-

tosystem: What is the Best Parallel Hardware Architecture? Nova Science

Publishers, NY, USA, 2004. editor Nadia Nedjah.

[BBWP04b] G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar. Finding Optimum

Parallel Coprocessor Design for Genus 2 Hyperelliptic Curve Cryptosys-

tems. In International Conference on Information Technology: Coding and

Computing - ITCC 2004. IEEE Computer Society, April 2004.

[BCH93] H. Brunner, A. Curiger, and M. Hofstetter. On Computing Multiplica-

tive Inverses in GF(2m). IEEE Transactions on Computers, 42:1010–1015,

August 1993.

[BCLW02] N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus Two Hyperelliptic

Curve Coprocessor. In B. S. Kaliski, Ç. K. Koç, and C. Paar, editors,

Cryptographic Hardware and Embedded Systems — CHES 2002, LNCS

2523, pages 529–539. Springer-Verlag, 2002. Updated version available at

http://www.cs.umd.edu/~clancy/docs/hec-ches2002.pdf.

[Ber01] D. J. Bernstein. Multidigit Multiplication for Mathematicians. Advances

in Applied Mathematics, 2001. http://cr.yp.to/papers.html.

[BGL93] I. F. Blake, S. Gao, and R. L. Lambert. Constructive Problems for Ir-

reducible Polynomials Over Finite Fields. In A. Gulliver and N. Sec-

ord, editors, Information Theory and Applications, LNCS 793, pages 1–23.

Springer-Verlag, 1993.

Bibliography 184

[BSS99] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography.

Cambridge University Press, London Mathematical Society Lecture Notes

Series 265, 1999.

[BW00] G. Borriello and R. Want. Embedded Computation Meets the World Wide

Web. Communications of the ACM, 43(5):59–66, May 2000.

[Can87] D.G. Cantor. Computing in Jacobian of a Hyperelliptic Curve. In Mathe-

matics of Computation, volume 48(177), pages 95 – 101, January 1987.

[CC87] D.V. Chudnovsky and G.V. Chudnovsky. Sequences of Numbers Generated

by Addition in Formal Groups and New Primality and Factorization Tests.

Advances in Applied Mathematics, 7:385–434, 1987.

[CKK02] Y. J. Choi, H. W. Kim, and M. S. Kim. A Design and Implementation

of the ECC Crypto Processor. Technical Report, ETRI, DaeJeon, Korea,

September 2002.

[Cla02] T. Clancy. Analysis of FPGA-based Hyperelliptic Curve Cryptosystems.

Master’s thesis, University of Illinois Urbana-Champaign, December 2002.

[Cla03] T. Clancy. FPGA-based Hyperelliptic Curve Cryptosystems. invited paper

presented at AMS Central Section Meeting, April 2003.

[CMO98] H. Cohen, A. Miyaji, and T. Ono. Efficient Elliptic Curve Exponentiation

Using Mixed Coordinates. In Kazuo Ohta and Dingyi Pei, editors, Advances

in Cryptology — ASIACRYPT’98, LNCS 1514, pages 51–65, Berlin, 1998.

Springer-Verlag.

[Coh93] H. Cohen. A Course in Computational Algebraic Number Theory. Grad-

uate Texts in Math. 138. Springer-Verlag, Berlin, Germany, 1993. Third

corrected printing 1996.

Bibliography 185

[Cor02] Certicom Corperation. Certicom Announces Elliptic Curve Cryptosystem

(ECC) Challenge Winner, 2002. http://www.certicom.com/about/pr/

02/021106_ecc_winner.html.

[DA99] T. Dierks and C. Allen. RFC 2246: The TLS Protocol Version 1.0. Corpo-

ration for National Research Initiatives, Internet Engineering Task Force,

Network Working Group, Reston, Virginia, USA, January 1999.

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE

Transactions on Information Theory, IT-22:644–654, 1976.

[EG02] A. Enge and P. Gaudry. A General Framework for Subexponential Discrete

Logarithm Algorithms. Acta Arith., 102:83 – 103, 2002.

[EGCS03] H. Eberle, N. Gura, and S. Chang-Shantz. A Cryptographic Processor

for Arbitrary Elliptic Curves over GF(2m). In IEEE International Con-

ference on Application Specific Systems Architectures and Processors —

ASAP 2003, 2003.

[EGH00] D. Estrin, R. Govindan, and J. Heidemann. Embedding the Internet. Com-

munications of the ACM, 43(5):39–41, May 2000.

[EMY04] G. Elias, A. Miri, and T. H. Yeap. High-Performance, FPGA-Based Hy-

perelliptic Curve Cryptosystems. In The Proceeding of the 22nd Biennial

Symposium on Communications, May 2004.

[Eng99a] A. Enge. Computing Discrete Logarithms in High-Genus Hyperelliptic Ja-

cobians in Provably Subexponential Time. http://www.math.waterloo.

ca/Cond0_Dept/CORR/corr99.html, 1999. Preprint.

[Eng99b] A. Enge. The Extended Euclidean Algorithm on Polynomials, and the

Bibliography 186

Computational Efficiency of Hyperelliptic Cryptosystems, November 1999.

Preprint.

[FKK96] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol Version 3.0.

Transport Layer Security Working Group INTERNET-DRAFT, November

1996.

[FR94] G. Frey and H.-G. Rück. A Remark Concerning m-Divisibility and the

Discrete Logarithm in the Divisor Class Group of Curves. Mathematics of

Computation, 62(206):865–874, April 1994.

[Fre98] G. Frey. How to disguise an elliptic curve. Talk at ECC 1998, 1998.

http://cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html.

[FS97] R. Flassenberg and S.Paulus. Sieving in Fuction Fields. ftp://ftp.

informatik.tu-darmstadt.de/pub/TI/TR/TI-97-13.rafla.ps.gz,

1997. Preprint.

[Ful69] W. Fulton. Algebraic Curves - An Introduction to Algebraic Geometry. W.

A. Benjamin, Inc., Reading, Massachusetts, 1969.

[Gal01] S.D. Galbraith. Supersingular Curves in Cryptography. In C. Boyd, editor,

Advances in Cryptology - ASIACRYPT ’03, LNCS 2248, pages 495 – 517,

Berlin, 2001. Springer Verlag.

[Gau00a] P. Gaudry. Algorithmique des Courbes Hyperelliptiques et Applications à

la Cryptologie, PhD Thesis. PhD thesis, France, 2000.

[Gau00b] P. Gaudry. An Algorithm for Solving the Discrete Log Problem on Hy-

perelliptic Curves. In Bart Preneel, editor, Advances in Cryptology —

EUROCRYPT 2000, LNCS 1807, pages 19–34, Berlin, Germany, 2000.

Springer-Verlag.

Bibliography 187

[GH00] P. Gaudry and R. Harley. Counting Points on Hyperelliptic Curves over

Finite Fields. In W. Bosma, editor, ANTS IV, LNCS 1838, pages 297 –

312, Berlin, 2000. Springer Verlag.

[GHS02] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets

of Weil descent on elliptic curves. Journal of Cryptology, 15(1):19–46, 2002.

[GLV98] R. Gallant, R. Lambert, and S. Vanstone. Improving the Parallelized

Pollard Lambda Search on Binary Anomalous Curves. http://www.

certicom.com/chal/download/paper.ps, 1998.

[GMA+04] M. Goda, K. Matsuo, K. Aoki, J. Chao, and S. Tsujii. Improvements

of Addition Algorithm on Gemus 3 Hyperelliptic Curves and their Imple-

mentations. In The 2004 Symposium on Cryptography and Information

Security, Japan — SCIS 2004, January 2004.

[Gol67] S.W. Golomb. Shift Register Sequences. Holden-Day, San Francisco, Cali-

fornia, USA, 1967.

[Gor98] D. M. Gordon. A Survey of Fast Exponentiation Methods. Journal of

Algorithms, 27:129–146, 1998.

[Gov03] R. Govindaraian. Instruction Scheduling. CRC Press, The Compiler Design

Handbook edition, 2003. editor Y. N. Srikant and P. Shankar.

[GP97] J. Guajardo and C. Paar. Efficient Algorithms for Elliptic Curve Cryptosys-

tems. In B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, LNCS

1294, pages 342–356, Berlin, Germany, August 1997. Springer-Verlag.

[Har00] R. Harley. Fast Arithmetic on Genus Two Curves. http://cristal.

inria.fr/harley/hyper/, 2000. adding.txt and doubling.c.

Bibliography 188

[HHM00] D. Hankerson, J. López Hernandez, and A. Menezes. Software Implemen-

tation of Elliptic Curve Cryptography Over Binary Fields. In Ç. Koç and

C. Paar, editors, Second International Workshop on Cryptographic Hard-

ware and Embedded Systems — CHES 2000, LNCS 1965, Berlin, 2000.

Springer-Verlag.

[KA98] S. Kent and R. Atkinson. RFC 2401: Security Architecture for the In-

ternet Protocol. Corporation for National Research Initiatives, Internet

Engineering Task Force, Network Working Group, Reston, Virginia, USA,

November 1998.

[KGM+02] J. Kuroki, M. Gonda, K. Matsuo, J. Chao, and S. Tsujii. Fast Genus Three

Hyperelliptic Curve Cryptosystems. In The 2002 Symposium on Cryptog-

raphy and Information Security, Japan — SCIS 2002, January 2002.

[Knu81] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminu-

merical Algorithms. Addison-Wesley, Reading, Massachusetts, USA, 2nd

edition, 1981.

[KO63] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on

Automata. Sov. Phys. Dokl. (English translation), 7(7):595–596, 1963.

[Kob87] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,

48:203–209, 1987.

[Kob88] N. Koblitz. A Family of Jacobians Suitable for Discrete Log Cryptosystems.

In Shafi Goldwasser, editor, Advances in Cryptology - Crypto ’88, LNCS

403, pages 94 – 99, Berlin, 1988. Springer-Verlag.

[Kob89] N. Koblitz. Hyperelliptic Cryptosystems. Journal of Cryptology, 1(3):129–

150, 1989.

Bibliography 189

[Kob91] N. Koblitz. CM - Curves With Good Cryptographic Properties. In

J. Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, LNCS

576, pages 279–287, Berlin, Germany, August 1991. Springer-Verlag.

[Kob98] N. Koblitz. Algebraic Aspects of Cryptography. Springer-Verlag, Berlin,

Germany, first edition, 1998.

[Kri97] U. Krieger. signature.c. Master’s thesis, Mathematik und Informatik, Uni-

versität Essen, Fachbereich 6, Essen, Germany, February 1997.

[Lan01] T. Lange. Efficient Arithmetic on Hyperelliptic Curves. PhD thesis, Insti-

tute for Experimental Mathematics, University of Essen, Essen, Germany,

2001.

[Lan02a] T. Lange. Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite

Fields via Explicit Formulae. Cryptology ePrint Archive, Report 2002/121,

2002. http://eprint.iacr.org/.

[Lan02b] T. Lange. Inversion-Free Arithmetic on Genus 2 Hyperelliptic Curves.

Cryptology ePrint Archive, Report 2002/147, 2002. http://eprint.iacr.

org.

[Lan02c] T. Lange. Weighted Coordinates on Genus 2 Hyperelliptic Curves. Cryp-

tology ePrint Archive, Report 2002/153, 2002. http://eprint.iacr.org.

[Lan03] T. Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves. to

appear in J. AAECC, September 2003. http://www.ruhr-uni-bochum.

de/itsc/tanja/preprints/expl_sub.pdf.

[LD98] J. López and R. Dahab. Improved algorithms for Elliptic Curve Arithmetic

in GF (2n). In S. Tavares and H. Meijer, editors, Selected Areas in Cryptog-

Bibliography 190

raphy — SAC 1998, LNCS 1556, pages 201 – 212. Springer-Verlag, August

1998.

[LD00] J. López and R. Dahab. High-Speed Software Multiplication in F2m . In

B. Roy and E. Okamoto, editors, Progress in Cryptology — Indocrypt 2000,

LNCS 1977, pages 203 – 212, Berlin, 2000. Springer-Verlag.

[LSW83] A. Lempel, G. Seroussi, and S. Winograd. On the Complexity of Multipli-

cation in Finite Fields. Theoretical Computer Science, 22:285–296, 1983.

[LV01] A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. Jour-

nal of Cryptology, 14(4):255–293, 2001.

[MCT01] K. Matsuo, J. Chao, and S. Tsujii. Fast Genus Two Hyperelliptic Curve

Cryptosystems. In ISEC2001-31, IEICE, 2001.

[MDM+02] Y. Miyamoto, H. Doi, K. Matsuo, J. Chao, and S. Tsuji. A Fast Addition

Algorithm of Genus Two Hyperelliptic Curve. In The 2002 Symposium on

Cryptography and Information Security — SCIS 2002, IEICE Japan, pages

497 – 502, 2002. in Japanese.

[Mil86] V. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor,

Advances in Cryptology — CRYPTO ’85, LNCS 218, pages 417–426, Berlin,

Germany, 1986. Springer-Verlag.

[Mot00a] Motorola. MFC5307 User’s Manual, August 2000. http://e-www.

motorola.com/collateral/MCF5307BUM.pdf.

[Mot00b] Motorola. MPC823 User’s Manual, October 2000. http://e-www.

motorola.com/brdata/PDFDB/docs/MPC823UM.pdf.

Bibliography 191

[MS03] P. K. Mishra and P. Sarkar. Parallelizing Explicit Formula for Arithmetic

in the Jacobian of Hyperelliptic Curves. In G. Goos, J. Hartmanis, and

J. van Leeuwen, editors, Advances in Cryptology — Asiacrypt 2003, LNCS

2894, pages 93 –110. Springer-Verlag, 2003.

[Mum84] D. Mumford. Tata Lectures on Theta II. In Prog. Math., volume 43.

Birkhäuser, 1984.

[MvOV97] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of

Applied Cryptography. CRC Press, Boca Raton, Florida, USA, 1997.

[MWZ98] A. Menezes, Y. Wu, and R. Zuccherato. An Elementary Introduction to

Hyperelliptic Curves. Springer-Verlag, Berlin, Germany, first edition, 1998.

In: N. Koblitz, Algebraic Aspects of Cryptography.

[Nag00] K. Nagao. Improving Group Law Algorithms for Jacobians of Hyperelliptic

Curves. In W. Bosma, editor, ANTS IV, LNCS 1838, pages 439 – 448,

Berlin, 2000. Springer Verlag.

[Ngu02] K. Nguyen. Curve based cryptography - the state of the art in smart card

environments. In 6rd Workshop on Elliptic Curve Cryptosystems (ECC

’02), Essen, Germany, September 23–25 2002. Invited Contribution.

[OP00] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic

Curve Processor for GF (2m). In Ç. K. Koç and C. Paar, editors, Cryp-

tographic Hardware and Embedded Systems — CHES 2000, LNCS 1965,

pages 41 –56. Springer-Verlag, 2000.

[P1399] IEEE. IEEE P1363 Standard Specifications for Public Key Cryptography,

November 1999. Last Preliminary Draft.

Bibliography 192

[Pel02] J. Pelzl. Hyperelliptic Cryptosystems on Embedded Microprocessor. Mas-

ter’s thesis, Department of Electrical Engineering and Information Sciences,

Ruhr-Universitaet Bochum, Bochum, Germany, September 2002.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation mod p. Math-

ematics of Computation, 32(143):918–924, July 1978.

[PWGP03] J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic Curve

Cryptosystems: Closing the Performance Gap to Elliptic Curves. In C. D.

Walter, Ç. K. Koç, and C. Paar, editors, Workshop on Cryptographic Hard-

ware and Embedded Systems — CHES 2003, LNCS 2779, pages 349 – 365.

Springer-Verlag, September 2003.

[PWP03] J. Pelzl, T. Wollinger, and C. Paar. Low Cost Security: Explicit Formulae

for Genus-4 Hyperelliptic Curves. In M. Matsui and R. Zuccherato, editors,

Tenth Annual Workshop on Selected Areas in Cryptography — SAC 2003,

LNCS 3006, pages 1 – 16. Springer-Verlag, 2003.

[PWP04a] J. Pelzl, T. Wollinger, and C Paar. Embedded Cryptographic Hardware:

Design and Security, chapter Special Hyperelliptic Curve Cryptosystems of

Genus Two: Efficient Arithmetic and Fast Implementation. Nova Science

Publishers, NY, USA, 2004. editor Nadia Nedjah.

[PWP04b] J. Pelzl, T. Wollinger, and C. Paar. High Performance Arithmetic for

Special Hyperelliptic Curve Cryptosystems of Genus Two. In International

Conference on Information Technology: Coding and Computing - ITCC

2004. IEEE Computer Society, April 2004.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital

Bibliography 193

Signatures and Public-Key Cryptosystems. Communications of the ACM,

21(2):120–126, February 1978.

[Rüc99] H.-G. Rück. On the Discrete Logarithm in the Divisor Class Group of

Curves. Mathematics of Computation, 68(226):805–806, 1999.

[Sho01] V. Shoup. NTL: A Libary for Doing Number Theory (version 5.0c), 2001.

http://www.shoup.net/ntl/index.html.

[SK98] S. Sair and D. Kaeli. A study of loop unrolling for vliwbased dsp processor.

In IEEE Workshop on Signal Processing Systems (SiPS). IEEE Computer

Society, 1998.

[Sma99] N. Smart. On the Performance of Hyperelliptic Cryptosystems. In J. Stern,

editor, Advances in Cryptology – EUROCRYPT ’99, LNCS 1592, pages

165–175. Springer-Verlag, 1999.

[SMCT02] H. Sugizaki, K. Matsuo, J. Chao, and S. Tsujii. An Extension of Harley

Addition Algorithm for Hyperelliptic Curves over Finite Fields of Charac-

teristic Two. Technical report, The institue of electronics, information and

communication engineers, May 2002.

[SOOS95] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key ex-

change with elliptic curve systems. In D. Coppersmith, editor, Advances

in Cryptology — CRYPTO ’95, LNCS 963, pages 43–56, Berlin, Germany,

1995. Springer-Verlag.

[SP97] L. Song and K. K. Parhi. Low-Energy Digit-Serial/Parallel Finite Field

Multipliers. Journal of VLSI Signal Processing Systems, 2(22):1–17, 1997.

Bibliography 194

[Spa94] A. M. Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in Public-

Key-Kryptosystemen. PhD thesis, Institute for Experimental Mathematics,

University of Essen, Essen, Germany, July 1994.

[SS98] Y. Sakai and K. Sakurai. Design of Hyperelliptic Cryptosystems in small

Characteristic and a Software Implementation over F2n . In K. Ohta and

D. Pei, editors, Advances in Cryptology - ASIACRYPT ’98, LNCS 1514,

pages 80 – 94, Berlin, 1998. Springer Verlag.

[SS00] Y. Sakai and K. Sakurai. On the Practical Performance of Hyperelliptic

Curve Cryptosystems in Software Implementation. In IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences,

volume E83-A NO.4, pages 692 – 703, April 2000.

[SSI98] Y. Sakai, K. Sakurai, and H. Ishizuka. Secure Hyperelliptic Cryptosystems

and their Performance. In H. Imai and Y. Zheng, editors, Public Key

Cryptography: First International Workshop on Practice and Theory in

Public Key Cryptography — PKC’98, LNCS 1431, pages 164 – 181, Berlin,

1998. Springer-Verlag.

[Ste01] A. Stein. Sharp upper bounds for arithmetics in hyperelliptic function

fields. Journal of the Ramanujan Mathematical Society, 16(2):1 – 86, 2001.

[SZ02] J. Scholten and J. Zhu. Hyperelliptic Curves in Characteristic 2. Interna-

tional Mathematics Research Notices, 2002(17):905 – 917, 2002.

[Tak02] M. Takahashi. Improving Harley Algorithms for Jacobians of Genus 2

Hyperelliptic Curves. In SCIS, IEICE Japan, 2002. in Japanese.

[Thé03] N. Thériault. Index Calculus Attack for Hyperelliptic Curves of Small

Genus. In G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Advances

Bibliography 195

in Cryptology - ASIACRYPT ’03, LNCS 2894, pages 79 – 92, Berlin, 2003.

Springer Verlag.

[vzG01] J. von zur Gathen. Irreducible Trinomials over Finite Fields. In B. Mour-

rain, editor, Proceedings of the 2001 International Symposium on Symbolic

and Algebraic Computation — ISSAC2001, pages 332–336. ACM Press,

2001.

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Campridge

University Press, The Edingburgh Building, Cambridge CB2 2RU, UK,

1999.

[vzGN00] J. von zur Gathen and M. Nöcker. Exponentiation in Finite Fields: Theory

and Practice. In T. Mora and H. Mattson, editors, Applied Algebra, Age-

braic Algorithms and Error Correcting Codes — AAECC-12, LNCS 1255,

pages 88–113, Berlin, 2000. Springer-Verlag.

[WBV+96] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vande-

walle. A fast software implementation for arithmetic operations in GF (2n).

In Asiacrypt ’96, LNCS 1233, pages 65–76. Springer Lecture Notes in Com-

puter Science, 1996.

[WGP04] T. Wollinger, J. Guajardo, and C Paar. Security on FPGAs: State of

the Art Implementations and Attacks. ACM Transactions in Embedded

Computing Systems (TECS), 2004. Special Issue on Embedded Systems

and Security, to appear.

[Wie86] D. H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields.

IEEE Transactions on Information Theory, IT-32(1):54–62, January 1986.

Bibliography 196

[Win77] S. Winograd. Some Bilinear Forms Whose Multiplicative Complexity De-

pends on the Field of Constants. Mathematical Systems Theory, 10:169–

180, 1977.

[Wol01] T. Wollinger. Computer Architectures for Cryptosystems Based on Hyper-

elliptic Curves. Master’s thesis, ECE Department, Worcester Polytechnic

Institute, Worcester, Massachusetts, USA, May 2001.

[WP02] T. Wollinger and C. Paar. Hardware Architectures Proposed for Cryp-

tosystems Based on Hyperelliptic Curves. In Proceedings of the 9th IEEE

International Conference on Electronics, Circuits and Systems - ICECS

2002, volume III, pages 1159 – 1163, September 2002.

[WP03a] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba Algo-

rithm for Polynomail Multiplication. Technical report, Ruhr-University

Bochum, Germany, 2003. Available at http://www.crypto.rub.de/

Publikationen/texte/kaweb.pdf.

[WP03b] T. Wollinger and C. Paar. How Secure Are FPGAs in Cryptographic Ap-

plications? In P.Y.K. Cheung, G.A. Constantinides, and J.T. de Sousa,

editors, 13th International Conference on Field Programmable Logic and

Applications — FPL 2003, LNCS 2778, pages 91 – 100. Springer-Verlag,

September 2003.

[WP04] T. Wollinger and C Paar. New Algorithms, Architectures, and Applica-

tions for Reconfigurable Computing, chapter Security Aspects of FPGAs in

Cryptographic Applications. Kluwer, 2004. editor W. Rosenstiel and P.

Lysaght.

[WPW+04] T. Wollinger, J. Pelzl, V. Wittelsberger, C Paar, G. Saldamli, and Ç.

Bibliography 197

K. Koç. Elliptic & Hyperelliptic Curves on Embedded µP. ACM Trans-

actions in Embedded Computing Systems (TECS), 2004. Special Issue on

Embedded Systems and Security, to appear.

[ZB68] N. Zierler and J. Brillhart. On Primitive Trinomials (mod2). Information

and Control, 13:541–554, 1968.

[ZB69] N. Zierler and J. Brillhart. On Primitive Trinomials (mod2), II. Informa-

tion and Control, 14:566–569, 1969.

[Zie70] N. Zierler. On xn + x + 1 over GF (2). Information and Control, 16:67–69,

1970.

Curriculum Vitae

Personal Data

Born on December 5th, 1971 in Wasserlos/Alzenau, Germany.

Secondary Education

1999 – 2001 Worcester Polytechnic Institute, Worcester, MA, USA.
Degree: M. S. in Electrical and Computer Engineering.

1995 – 1999 Fachhochschule Dieburg, Dieburg, Germany.
(University of Applied Technology)
Degree: Diplom Ingenieur (FH) in Electrical Engineering
(B.S. in Electrical Engineering).

1992 – 1993 Ludwig-Geisler Schule, Hanau, Germany.
(Grammer School with technical branch)
Degree: Fachabitur (a-level).

1988 – 1991 Deutsche Telekom, Frankfurt, Germany.
Apprenticeship, Vocational College.

Profesional Experience

08.2001 – present Researcher, Ruhr-University Bochum,
Bochum, Germany.

08.1999 – 05.2001 Research Assistant, Worcester Polytechnic Institute,
Worcester, MA, USA.

09.1998 – 06.1999 Security Engineer, Security Networks AG,
Frankfurt, Germany.

10.1997 – 02.1998 Electronic Engineer, National Avionics Ltd,
Dublin, Ireland.

08.1991 – 07.1992 Telecommunications Technician, Deutsche Telekom,
Aschaffenburg, Germany.

Bibliography 199

Publications

Journals

• T. Wollinger, J. Guajardo, C. Paar, “Security on FPGAs: State of the Art Im-
plementations and Attacks”, ACM Transactions on Embedded Computing Systems
— Special Issue on Embedded Systems Security, 2004.

• T. Wollinger, J. Pelzl, V. Wittelsberger, C. Paar, G. Saldamli, and C. Koc, “El-
liptic & Hyperelliptic Curves on Embedded uP”, ACM Transactions on Embedded
Computing Systems — Special Issue on Embedded Systems Security, 2004.

Book Chapters

• T. Wollinger and C. Paar, ”Security aspects of FPGAs in cryptographic applica-
tions”, New Algorithms, Architectures, and Applications for Reconfigurable Com-
puting, editors W. Rosenstiel and P. Lysaght, Kluwer, 2004.

• J. Pelzl, T. Wollinger, and C. Paar, “Special Hyperelliptic Curve Cryptosystems
of Genus Two: Efficient Arithmetic and Fast Implementation”, Embedded Crypto-
graphic Hardware: Design and Security, editor Nadia Nedjah, Nova Science Pub-
lishers, 2004.

• G. Bertoni, L Breveglieri, T. Wollinger, and C. Paar, “Hyperelliptic Curve Cryp-
tosystem: What is the Best Parallel Hardware Architecture?”, Embedded Crypto-
graphic Hardware: Design and Security, editor Nadia Nedjah, Nova Science Pub-
lishers, 2004.

Conferences

• E. Barteska, J. Pelzl, C. Paar, V. Wittelsberger, and T. Wollinger, “Case Study:
Compiler Comparison for an Embedded Cryptographical Application”, The 2004
International Conference on Embedded Systems and Applications - ESA, June 21-
24, 2004, Las Vegas, USA

• G. Bertoni, L. Breveglieri, T. Wollinger, and C. Paar, “Finding Optimum Parallel
Coprocessor Design for Genus 2 Hyperelliptic Curve Cryptosystems”, International
Conference on Information Technology: Coding and Computing - ITCC, April 5 -
7, 2004, Las Vegas, USA.

• J. Pelzl, T. Wollinger, and C. Paar, “High Performance Arithmetic for Hyperellip-
tic Curve Cryptosystems of Genus Two”, International Conference on Information
Technology: Coding and Computing - ITCC, April 5 - 7, 2004, Las Vegas, USA.

Bibliography 200

• C. Paar, J. Pelzl, K. Schramm, A. Weimerskirch, and T. Wollinger, “Eingebettete
Sicherheit: State-of-the-art und zukünftige Entwicklungen” (“Embedded Security:
State-of-the-art and future developments”), DACH Security, March 30 - 31, 2004,
Basel, Swiss.

• T. Wollinger, “Publik-Key Kryptographie in eingebetteten Systemen: Eine Ein-
führung” (“Public-key Cryptography in Embedded Systems: An overview”) (In-
vited Paper), SEI Herbsttagung, September 24, 2003, Bochum, Germany.

• C. Paar and T. Wollinger, “Eingebettet Sicherheit und Kryptographie im Automo-
bil: Eine Einführung” (“Embedded Security and Cryptography in Automobiles:
An Introdution”), Informatik 2003, Workshop: Automotive SW Engineering &
Concepts, 33. Jahrestagung der GI, September/October 29 - 2, 2003, Frankfurt,
Germany.

• J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar, “Hyperelliptic Curve Cryptosys-
tems: Closing the Performance Gap to Elliptic Curves”, Workshop on Crypto-
graphic Hardware and Embedded Systems – CHES 2003, September 7 - 10, 2003,
Colon, Germany.

• T. Wollinger and C. Paar, “How Secure Are FPGAs in Cryptographic Applica-
tions?”, 13th International Conference on Field Programmable Logic and Applica-
tions – FPL 2003, September 1 - 3, 2003, Lisbon, Portugal.

• J. Pelzl, T. Wollinger, and C. Paar, “Low Cost Security: Explicit Formulae for
Genus-4 Hyperelliptic Curves”, Tenth Annual Workshop on Selected Areas in
Cryptography - SAC 2003, August 14 - 15, 2003, Ottawa, Canada.

• K. Schramm, T. Wollinger, and C. Paar, “A New Class of Collision Attacks and its
Application to DES”, Fast Software Encryption, February 24 - 26, Lund, Sweden.

• T. Wollinger, J Guajardo, and C. Paar, “Cryptography in Embedded Systems: An
Overview” (Invited Paper), Proceedings of the Embedded World 2003 Conference,
February 18 - 20, 2003, Nürnberg, Germany.

• G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and T. Wollinger, “Ef-
ficient GF(pm) Arithmetic Architectures for Cryptographic Applications”, Cryp-
tographer’s Track of the RSA Conference 2003, April 13 - 17, 2003, San Francisco,
USA.

• J. Guajardo, T. Wollinger, and C. Paar, “Area Efficient GF(p) Architectures for
GF(pm) Multipliers”, 45th IEEE International Midwest Symposium on Circuits
and Systems - MWSCAS 2002, August 4 - 7, 2002, Tulsa, USA.

• T. Wollinger and C. Paar, “Hardware Architectures proposed for Cryptosystems
Based on Hyperelliptic Curves”, 9th IEEE International Conference on Electron-
ics, Circuits and Systems - ICECS 2002, September 15 - 18, 2002, Dubrovnik,
Croatia.

Bibliography 201

• T. Wollinger, M. Wang, J. Guajardo, and C. Paar, “How Well Are High-End DSPs
Suited for the AES Algorithms? AES Algorithms on the TMS320C6x DSP”, The
Third Advance Encryption Standard (AES3) Candidate Conference, April 13 - 14,
2000, New York, USA.

