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IT Security vs. CryptographyIT Security vs. Cryptography

1. IT Security ≠ Cryptography

2. but: Cryptography is an important tool for achieving
secure IT systems

Cryptography

Public-key Algorithms
(Diffie/Hellman/Merkle 1976)

Symmetric Algorithms
(2000 B.C. ... 1976)
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The Cryptographic ToolkitThe Cryptographic Toolkit

Cryptographic Algorithms

Asymmetric

• Integer Factorization (RSA...)

• Discrete Logarithm (D-H, DSA,...)

• Elliptic Curves (ECDH, ECDSA,...) 

Symmetric

• Stream ciphers

• Block ciphers

Hash Fct.

• MD5
• SHA-1
• SHA-XY
• ?
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What we can do with symmetric crypto (I): What we can do with symmetric crypto (I): 
ConfidentialityConfidentiality

Encryption ensures confidentiality of messages

ECRYPT is cool

Alice Bob

Oskar

?ü2jr b$ Kq1e

ECRYPT is cool ECRYPT is cool
unsecure
network
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Message Authentication Codes (MAC) detect malicious 
integrity violations

Transfer €100 unsecure
network

Transfer €100,000

Alice

Bob

Oscar
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What we can do with symmetric crypto (II): What we can do with symmetric crypto (II): 
Message IntegrityMessage Integrity
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What do we need publicWhat do we need public--keykey
(or asymmetric) cryptography for?(or asymmetric) cryptography for?

Two main functions:
1. Key distribution over unsecure channel
2. Digital Signatures for non-repudiation
3. [Encryption]

Rem: symmetric ciphers are still needed because 
public-key algorithms are awfully slow.
(Note: purely practical/engineering reason)
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NonNon--repudiation: Why we need itrepudiation: Why we need it

without non-repudiation:
1. Alice orders at favorite eCommerce vendor
2. stuff gets delivered
3. Alice doesn‘t feel like buying: „I never ordered this“
4. vendor can not proof it (big monetary issue if vendor = BMW.com)

order (unsecure)
network

order

Alice
Amazon.com

and such

goods



NonNon--repudiation with Digital Signaturerepudiation with Digital Signature

with non-repudiation:
1. Alice orders at favorite eCommerce vendor
2. stuff gets delivered
3. Alice doesn‘t feel like buying: „I never ordered this“
4. vendor sues Alice: proof of order through Alice‘s signature 

(only Alice knows kprivate, not even the vendor!)

Non-repudiation is strong point of asymmetric cryptography

(unsecure)
network

Alice

Amazon.com
and such

order ,  sig(Alice) order ,  sig(Alice)

sig

kprivate

ver

kpublic

goods
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The World of The World of PublicPublic--keykey AlgorithmsAlgorithms

Much fewer schemes than in the symmetric case!

Public-key Schemes

Established Algorithms
1. Integer factorization family
2. Discrete log family
3. Elliptic curve family

Not-so established Alg.
• lattice-based (NTRU)
• high-field equations
• code-based (McEliece)
• …
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Established publicEstablished public--key algorithmskey algorithms

The 3 families of algorithms of practical relevance:

Integer Factorization
Ex: RSA, Rabin, ...
Operands: 1024 – 4096 bits

Discrete Logarithm
Ex: Diffie-Hellman, DSA, ...
Operands: 1024 – 4096 bits 

Elliptic Curves (ECC)
Ex: EC Diffie-Hellman, ECDSA, ...
Operands: 160 – 256 Bits

Observation: All asymm. algorithms require heavy computation
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How many key bits do I need?How many key bits do I need?

256 bit

160 bit

128 bit

ECC

≈ 2048-
3072 bits

≈ 1024 bit

≈ 700 bit

RSA, DL

long term security 
(not assuming quantum computers)

128 bit

medium term security
(excl. government attacks)

80 bit

only short term security
(breakable with some effort)

64 bit

commentsymmetric

• Exact complexity of RSA (factorization) and DL (index-calculus) attacks is
hard to determine

• Quantum computer would probably be the death of ECC, RSA & DL (but
don‘t hold your breath – at least a few decades away)
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Arithmetic requirements of PK algorithmsArithmetic requirements of PK algorithms

160 bit

1024 bit

1024 bit

typ. operand 
length (mult)

≈ 10

1

1

# multipl. /
group op

≈ 2000 Elliptic Curves

≈ 200Discrete log

17 (verify)

≈ 1300 (sign)

RSA

# multipl. /
crypto fct.

Algorithm

Observations:
• RSA is „best“ for signature verification
• ECC is „best“ for signature generation
• ECC has other advantages (bandwidth etc)
• RSA by far outnumbers ECC implementations in practice

(but ECC is slowly catching up)!
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HierarchicalHierarchical System Design of System Design of 
RSA and DL RSA and DL EnginesEngines

RSA, DL engines are mainly exponentiation units

Modular Arithmetic Level: ×, +, -

Exponentiation Layer: xd mod m

Protocol Layer: RSA, D-H, …

Rem: > 90% of computation time is spent on modular multiplication
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HierarchicalHierarchical System Design of System Design of 
ECC ECC EnginesEngines

Modular Arithmetic Layer: ×, ÷, +, -

Point Multiplication Layer: e P

Protocol Layer: ECDSA, ECDH

Group Operation Layer: P+Q, P+P

Group Operation Layer added

Rem: Still > 90% of computation time is spent on modular 
multiplication (and on inversion, if affine coordinates are used)
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Arithmetic proposed for use in Arithmetic proposed for use in 
publicpublic--key schemeskey schemes

finite fields

GF(p) GF(pm)

GF(p)

GF(2n-c) GF(2n-2m…-1) GF(2n) GF((2n)m) GF((2n-c)m)

prime fields extension fields

special form primes

generalized
Mersenne

general
primes     

pseudo
Mersenne

char = 2 char > 2

binary composite OEF

• DL, ECC are based on finite fields ( = Galois fields)
• RSA arithmetic similar to GF(p) arithmetic
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Prime Fields Prime Fields GF(pGF(p))

Relevance
DL: GF(p) is the only field type used in practice
ECC: GF(p) somewhat more popular than GF(2m)
RSA: modular m=p q arithmetic, but algorithms almost identical

⇒ GF(p) is most important field in practice

Basics about GF(p) arithmetic
• addition, subtraction is cheap
• inversion is much slower than multiplication

(hence, ECC is often used with projective coordinates)
• “Remaining" problem:

Efficient modular multiplication methods for 
160-4096 bit numbers?
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Prime Fields Prime Fields GF(pGF(p): Software I): Software I

Ex: A, B Є GF(p), p < 24096, word size w = 32

Element representation (on 32 bit machine):
A = a127 2127×32 + … + a1 232 + a0      , ai Є {0,1, … , 232 -1}
B = b127 2127×32 + … + b1 232 + b0 , bi Є {0,1, … , 232 -1}

Goal: Compute A x B mod p efficiently

For the beginning, a simple approach:
1. Step: Multi-precision multiplication
2. Step: Modular reduction
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1. 1. StepStep: : MultiMulti--precisionprecision MultiplicationMultiplication

a0

a1

an-1

b0

b1

bn-1

… …

C´ = A × B

Complexity
n2 integer multiplications
(Ex: n2 = 1282 = 16,384 int. mult.)

Remark
Quadratic complexity can be
reduced to n1.58 using
Karatsuba‘s algorithm

n=128

w=32
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2. 2. StepStep: Modular : Modular ReductionReduction

reduction compl. ≈ n2 integer mult. 
Note: fast mult. methods à la Karatsuba not applicable!

⇒ total modular mult. compl.   ≈ 2 n2 integer mult.

Rem: Multi-precision mult (Step 1) and modular reduction (Step 2) 
are often interleaved. Complexity does not change.

C ≡ C´= A * B mod p

1. (naive) approach: long division of C´ by p
2. (better) approach: fast modulo reduction techniques, avoiding division:

2.1. Montgomery
2.2. Barrett
2.3. Sedlack
2.4. … 
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Montgomery Montgomery ReductionReduction in Hardware Iin Hardware I

p is an n-bit number: n = log2 p
Idea: Compute n inner products in parallel
Best studied architecture: Montgomery multiplication

time complexity (radix 2):
n clock cycles

time complexity (radix r):
n/r clock cycles

⇒ O(n) times faster than
software (which has n2)

area complexity:
cnst * n gates
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Montgomery Montgomery ReductionReduction in Hardware IIin Hardware II

Remarks

1. modular reduction is reduced to addition of long numbers:

Ri+1 = (Ri + ai B + qi N) / 2

2. Use redundant representation or systolic array to avoid long
carry chains

3. Division only by 2 (or 2r ) ⇒ only right shifts
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Generalized Generalized MersenneMersenne PrimesPrimes

finite fields

GF(p) GF(pm)

GF(p)

GF(2n-c) GF(2n-2m…-1) GF(2n) GF((2n)m) GF((2n-c)m)

prime fields extension fields

special form primes

generalized
Mersenne

general
primes     

pseudo
Mersenne

char = 2 char > 2

binary composite OEF

very attractive for ECC!
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GeneralizedGeneralized MersenneMersenne Primes: Primes: ExampleExample

Prime: p = 2192 – 264 -1 ,     w = 64

A = a22128 + a1264 + a0

B = b22128 + b1264 + b0

A × B = c52320 + c42256 + c32192 + c22128 + c1264 + c0

Reduction equations
2320 ≡ 2192 + 2128                      mod p
2256 ≡           2128 + 264 mod p
2192 ≡                     264 + 1 mod p

A × B ≡ c5 (2192 + 2128) + c4 (2128 + 264) + c3 (264 + 1) + c2 2128 + c1264 + c0 mod p

A

B
A × B

A × B ≡ [c5 + c4 + c2] 2128 + [c5 + c4 + c3 + c1] 264 + [c5 + c3 + c0] mod p

Modular reduction is realized with a few additions!
(no multiplications, no inversions)
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GeneralizedGeneralized MersenneMersenne Primes and ECCPrimes and ECC

• Specific primes recommended by NIST: 192, 224, 256, 384, 
521 bit

• Reduction requires no multiplication, only additions

• Roughly twice as fast as modular multipl. with general primes

• Very popular for ECC in practice
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BinaryBinary Fields GF(2Fields GF(2mm))

finite fields

GF(p) GF(pm)

GF(p)

GF(2n-c) GF(2n-2m…-1) GF(2n) GF((2n)m) GF((2n-c)m)

prime fields extension fields

special form primes

generalized
Mersenne

general
primes     

pseudo
Mersenne

char = 2 char > 2

binary composite OEF

Multiplication is the most critical operation 
in most applications
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Basic Basic FactsFacts aboutabout BinaryBinary Fields GF(2Fields GF(2mm))

1. main application in modern PK: Elliptic Curve Cryptosystems

2. also applicable for DL, but index-calculs attack works somewhat better
in GF(2m)* than in GF(p)*

⇒ rarely used anymore for DL problems

3. very well studied compared to other extension fields since 1960s 
(applications in channel coding for early space missions)

4. choice of char = 2 was traditionally driven by hardware
implementations

5. arithmetic is greatly influenced by choice of basis
– polynomial basis
– normal basis
– other (dual basis, triangular basis, …)
polynomial basis most attractive for PK crypto in practice
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A Big A Big QuestionQuestion::
GF(2GF(2mm) ) vsvs GF(pGF(p) for ECC ?) for ECC ?

A long story made short

1. Software: GF(p) is somewhat faster if carefully implemented.
(Note that the vast majority of implementations run in software)

2. Hardware: GF(2m) has a much better time-area product than GF(p)

3. It is believed that the patent situation is less messy in the GF(p) case

4. There is a trend that GF(p) is more common in practice
(due to national standards in the US and Europe & patent situation) 

5. GF(2m) in hardware is highly attractive for light-weight crypto
(RFID and such)
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GF(2GF(2mm) Multipliers for Hardware) Multipliers for Hardware

• many proposed architectures
• classification according to time-area trade-off

ms

m

m/D

m/D

1

#clocks
(time)

can lead to weak ECCD|mO(mD)hybrid

SW-like, only if RAM cheapanyO(m/s)super serial

classical arch.anyO(m)bit serial

digit size D allows scalinganyO(mD)digit serial

usually „too big“ for PK cryptoanyO(m2)bit parallel

Remarksm#gates
(area)

architecture

Main relevance in cryptography: bit serial and digit serial

smaller &
slower



Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Bit Bit SerialSerial MultiplicationMultiplication

In practice: P(x) is almost always trinomial or pentanomial

Two traditional architectures
• least significant bit-first (LSB) multiplier
• most significant bit-first (MSB) multiplier

Polynomial-basis multiplication

A × B = (a0 + … + am-1 xm-1 ) × (b0 + … + bm-1 xm-1 ) mod P(x)

where ai , bi ∈ GF(2)
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Least Significant Bit GF(2Least Significant Bit GF(2mm) Multiplier) Multiplier

xi-1 B ⋅ [x mod P(x)]

ai⋅ ⋅ [xi B mod P(x)]am-1, ... a1, a0

ACC   A × B

A(x) × B(x) mod P(x)

B(x)

A × B = a0 B(x) 

+ a1 ⋅ [x B mod P(x)]

+     ⋅ ⋅ ⋅
+ am-1⋅ [x xm-2 B mod P(x)]

Time: m clock cycles

Area:  cnst × m gates (cnst small)

Multiplication:
bit × polynomial

Shift & modulo 
reduction
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Digit Multipliers for GF(2Digit Multipliers for GF(2mm))

1. generalization of bit-serial multipliers

2. fundamental idea: process D > 1 bit at a time

3. works for any m

4. trades space for speed: faster but larger than bit-serial architectures

5. time-area product is constant (at least under big-O notation)

6. LSD (least significant digit) and MSD (most significant digit) are
possible
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Least Significant Digit ArchitectureLeast Significant Digit Architecture

A (xD ) = ās-1x(s-1)D + … + ā1 xD + ā0

Idea: Break A(x) down into s digit polynomials

A(x) = am-1xm-1 + … + a1 x + a0 ,     ai Є GF(2)

a0am-1 aD-1
…am-D-2

……

ās-1 ā0
s = m/D

where āi = āi(x) = ai,D-1xD-1+ … + ai,1x + ai,o ,ai,j Є GF(2)



Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Least Significant Digit GF(2Least Significant Digit GF(2mm) Multiplier) Multiplier

A × B = ā0 B(x) 

+ ā0 ⋅ [xD B mod P(x)]

+     ⋅ ⋅ ⋅
+ ām-1⋅ [xD xDm-2 B mod P(x)]

Time: ≈ m/D clock cycles

Area:  cnst × m D gates (cnst small)

Watch out: optimum D = 2i – 1 (and not 2i)

ās-1, ..., ā 1, ā 0

xD(i-1) B [xD mod P]

ā i⋅⋅ [xDi B mod P]

ACC   A × B

A(x) × B(x) mod P(x)

B(x)

D

m

m

Shift by D & 
mod reduction

Multiplication:
D bit × polynomial
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Challenges in Applied Public Key 
Cryptography

1. Highly efficient implementations of established alg. (RSA, DL, 
ECC) for light-weight crypto

2. New PK algorithms with low implementation complexities

3. GF(pm) (“OEF”) has nice implementation properties in software: 
Security of such fields for discrete log and ECC?

4. Special-purpose hardware for PK cryptanalysis

5. Better understanding of side channel and tamper resistance
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Related Workshops

escar – Embedded Security in Cars
November 2006, Berlin

 

CHES – Cryptographic Hardware and 
Embedded Systems (+ FDTC) 
October 2006, Yokohama

RFIDSec
July 2006, Graz


