

Public-Key Building Blocks

Summer School on Cryptographic Hardware, Side-Channel and Fault Attacks June 12-15, 2006

Louvain-la-Neuve, June 13, 2006

Christof Paar Ruhr University Bochum, Germany www.crypto.rub.de

Contents

- 1. Why do we need public-key cryptography?
- 2. Overview on public-key crypto schemes
- 3. Arithmetic
- 4. Open research problems

Contents

1. Why do we need public-key cryptography?

- 2. Overview on public-key crypto schemes
- 3. Arithmetic
- 4. Open research problems

IT Security vs. Cryptography

- 1. IT Security ≠ Cryptography
- 2. but: Cryptography is an important **tool** for achieving secure IT systems

The Cryptographic Toolkit

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

What we can do with symmetric crypto (I): Confidentiality

Encryption ensures confidentiality of messages

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

What we can do with symmetric crypto (II): Message Integrity

Message Authentication Codes (MAC) detect malicious integrity violations

Summer School on Crypto HW, Louvain-Ia-Neuve, June 2006

What do we need public-key (or asymmetric) cryptography for?

Two main functions:

- 1. Key distribution over unsecure channel
- 2. Digital Signatures for non-repudiation
- 3. [Encryption]
- **Rem:** symmetric ciphers are still needed because public-key algorithms are awfully slow. (Note: purely practical/engineering reason)

Non-repudiation: Why we need it

without non-repudiation:

- 1. Alice orders at favorite eCommerce vendor
- 2. stuff gets delivered
- 3. Alice doesn't feel like buying: "I never ordered this"
- vendor can not proof it (big monetary issue if vendor = BMW.com)

Non-repudiation with Digital Signature

with non-repudiation:

- 1. Alice orders at favorite eCommerce vendor
- 2. stuff gets delivered
- 3. Alice doesn't feel like buying: "I never ordered this"
- vendor sues Alice: proof of order through Alice's signature (only Alice knows k_{private}, not even the vendor!)

Non-repudiation is strong point of asymmetric cryptography

Contents

- 1. Why do we need public-key cryptography?
- 2. Overview on public-key crypto schemes
- 3. Arithmetic
- 4. Open research problems

The World of Public-key Algorithms

Much fewer schemes than in the symmetric case!

Public-key Schemes

Established Algorithms

- 1. Integer factorization family
- 2. Discrete log family
- 3. Elliptic curve family

Not-so established Alg.

- lattice-based (NTRU)
- high-field equations
- code-based (McEliece)
- ...

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Established public-key algorithms

The 3 families of algorithms of practical relevance:

Integer Factorization Ex: RSA, Rabin, ... Operands: 1024 – 4096 bits Discrete Logarithm Ex: Diffie-Hellman, DSA, ... Operands: 1024 – 4096 bits Elliptic Curves (ECC)

> Ex: EC Diffie-Hellman, ECDSA, ... Operands: 160 – 256 Bits

Observation: All asymm. algorithms require heavy computation

How many key bits do I need?

symmetric	ECC	RSA, DL	comment	
64 bit	128 bit	≈ 700 bit	only short term security	
			(breakable with some effort)	
80 bit	160 bit	≈ 1024 bit	medium term security	
			(excl. government attacks)	
128 bit	256 bit	≈ 2048-	long term security	
		3072 bits	(not assuming quantum computers)	

- Exact complexity of RSA (factorization) and DL (index-calculus) attacks is hard to determine
- Quantum computer would probably be the death of ECC, RSA & DL (but don't hold your breath – at least a few decades away)

Summer School on Crypto HW, Louvain-Ia-Neuve, June 2006

Arithmetic requirements of PK algorithms

Algorithm	typ. operand length (mult)	# multipl. / group op	# multipl. / crypto fct.
RSA	1024 bit	1	17 (verify)
			≈ 1300 (sign)
Discrete log	1024 bit	1	≈ 200
Elliptic Curves	160 bit	≈ 10	≈ 2000

Observations:

- RSA is "best" for signature verification
- ECC is "best" for signature generation
- ECC has other advantages (bandwidth etc)
- RSA by far outnumbers ECC implementations in practice (but ECC is slowly catching up)!

Hierarchical System Design of RSA and DL Engines

RSA, DL engines are mainly exponentiation units

Protocol Layer: RSA, D-H, ...

Exponentiation Layer: x^d mod m

Modular Arithmetic Level: \times , +, -

Rem: > 90% of computation time is spent on modular multiplication

Summer School on Crypto HW, Louvain-Ia-Neuve, June 2006

Hierarchical System Design of ECC Engines

Group Operation Layer added

Rem: Still > 90% of computation time is spent on modular multiplication (and on inversion, if affine coordinates are used)

Summer School on Crypto HW, Louvain-Ia-Neuve, June 2006

Contents

- 1. Why do we need public-key cryptography?
- 2. Overview on public-key crypto schemes

3. Arithmetic

- 1. Modular arithmetic
- 2. Generalized Mersenne Primes
- 3. Binary Fields GF(2^m)
- 4. Open research problems

Arithmetic proposed for use in public-key schemes

- DL, ECC are based on finite fields (= Galois fields)
- RSA arithmetic similar to GF(p) arithmetic

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Prime Fields GF(p)

Relevance

- **DL:** GF(p) is the only field type used in practice
- **ECC:** GF(p) somewhat more popular than GF(2^m)
- **RSA:** modular m=p q arithmetic, but algorithms almost identical

\Rightarrow GF(p) is most important field in practice

Basics about GF(p) arithmetic

- addition, subtraction is cheap
- inversion is much slower than multiplication (hence, ECC is often used with projective coordinates)
- "Remaining" problem:

Efficient modular multiplication methods for 160-4096 bit numbers?

Prime Fields GF(p): Software I

Ex: A, B \in GF(p), p < 2⁴⁰⁹⁶, word size *w* = 32

Element representation (on 32 bit machine): $A = a_{127} 2^{127 \times 32} + \ldots + a_1 2^{32} + a_0 , a_i \in \{0, 1, \ldots, 2^{32} - 1\}$ $B = b_{127} 2^{127 \times 32} + \ldots + b_1 2^{32} + b_0 , b_i \in \{0, 1, \ldots, 2^{32} - 1\}$

Goal: Compute A x B mod p efficiently

For the beginning, a simple approach:

- 1. Step: Multi-precision multiplication
- 2. Step: Modular reduction

1. Step: Multi-precision Multiplication

$C' = A \times B$

Complexity

n² integer multiplications

(Ex: n² = 128² = 16,384 int. mult.)

Remark

Quadratic complexity can be reduced to $n^{1.58}$ using Karatsuba's algorithm

2. Step: Modular Reduction

 $C \equiv C = A * B \mod p$

- 1. (naive) approach: long division of C´by p
- 2. (better) approach: fast modulo reduction techniques, avoiding division:
 - 2.1. Montgomery
 - 2.2. Barrett
 - 2.3. Sedlack
 - 2.4. ...

reduction compl. $\approx n^2$ integer mult.

Note: fast mult. methods à la Karatsuba not applicable!

\Rightarrow total modular mult. compl. \approx 2 n² integer mult.

Rem: Multi-precision mult (Step 1) and modular reduction (Step 2) are often interleaved. Complexity does not change.

Montgomery Reduction in Hardware I

p is an n-bit number: $n = \lceil \log_2 p \rceil$ **Idea**: Compute *n* inner products in parallel **Best studied architecture**: Montgomery multiplication

Input: A, B, where $A = \sum_{i=0}^{n+2} a_i 2^i$, $B = \sum_{i=0}^{n+1} b_i 2^i$ Output: $A \cdot B \mod N$

- 1. $R_0 = 0$
- 2. for i = 0 to n + 2 do
- 3. $q_i = R_i(0)$
- 4. $R_{i+1} = (R_i + a_i \cdot B + q_i \cdot N)/2$ (*)

- time complexity (radix 2): *n* clock cycles
- **time complexity** (radix r): *n/r* clock cycles
- \Rightarrow O(n) times faster than software (which has n²)

area complexity: cnst * n gates

Montgomery Reduction in Hardware II

Remarks

1. modular reduction is reduced to addition of long numbers:

 $R_{i+1} = (R_i + a_i B + q_i N) / 2$

- 2. Use redundant representation or systolic array to avoid long carry chains
- 3. Division only by 2 (or 2^r) \Rightarrow only right shifts

Contents

- 1. Why do we need public-key cryptography?
- 2. Overview on public-key crypto schemes

3. Arithmetic

- 1. Modular arithmetic
- 2. Generalized Mersenne Primes
- 3. Binary Fields GF(2^m)
- 4. Open research problems

Generalized Mersenne Primes

very attractive for ECC!

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Generalized Mersenne Primes: Example

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Generalized Mersenne Primes and ECC

- Specific primes recommended by NIST: 192, 224, 256, 384, 521 bit
- Reduction requires no multiplication, only additions
- Roughly twice as fast as modular multipl. with general primes
- Very popular for ECC in practice

Contents

- 1. Why do we need public-key cryptography?
- 2. Overview on public-key crypto schemes

3. Arithmetic

- 1. Modular arithmetic
- 2. Generalized Mersenne Primes
- 3. Binary Fields GF(2^m)
- 4. Open research problems

Binary Fields GF(2^m)

Multiplication is the most critical operation in most applications

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Basic Facts about Binary Fields GF(2^m)

- 1. main application in modern PK: Elliptic Curve Cryptosystems
- 2. also applicable for DL, but index-calculs attack works somewhat better in GF(2^m)* than in GF(p)*

\Rightarrow rarely used anymore for DL problems

- **3. very well studied** compared to other extension fields since 1960s (applications in channel coding for early space missions)
- 4. choice of char = 2 was traditionally driven by **hardware implementations**
- 5. arithmetic is greatly influenced by choice of basis
 - polynomial basis
 - normal basis
 - other (dual basis, triangular basis, ...)

polynomial basis most attractive for PK crypto in practice

A Big Question: GF(2^m) vs GF(p) for ECC ?

A long story made short

- Software: GF(p) is somewhat faster if carefully implemented. (Note that the vast majority of implementations run in software)
- **2.** Hardware: GF(2^m) has a much better time-area product than GF(p)
- 3. It is believed that the **patent situation** is less messy in the GF(p) case
- 4. There is a trend that **GF(p) is more common in practice** (due to national standards in the US and Europe & patent situation)
- 5. GF(2^m) in hardware is highly attractive for **light-weight crypto** (RFID and such)

GF(2^m) Multipliers for Hardware

- many proposed architectures
- classification according to time-area trade-off

	architecture	#clocks	#gates	m	Remarks
		(time)	(area)		
	bit parallel	1	O(<i>m</i> ²)	any	usually "too big" for PK crypto
	hybrid	<i>m</i> /D	O(<i>m</i> D)	D <i>m</i>	can lead to weak ECC
	digit serial	<i>m</i> /D	O(<i>m</i> D)	any	digit size D allows scaling
	bit serial	m	O(<i>m</i>)	any	classical arch.
smaller & slower	super serial	ms	O(<i>m</i> /s)	any	SW-like, only if RAM cheap

Main relevance in cryptography: bit serial and digit serial

Summer School on Crypto HW, Louvain-Ia-Neuve, June 2006

Bit Serial Multiplication

Polynomial-basis multiplication

A × B =
$$(a_0 + ... + a_{m-1} x^{m-1}) \times (b_0 + ... + b_{m-1} x^{m-1}) \mod P(x)$$

where $a_i, b_i \in GF(2)$

In practice: P(x) is almost always trinomial or pentanomial

Two traditional architectures

- least significant bit-first (LSB) multiplier
- most significant bit-first (MSB) multiplier

Least Significant Bit GF(2^m) Multiplier

Digit Multipliers for GF(2^m)

- 1. generalization of bit-serial multipliers
- 2. fundamental idea: **process** *D* > 1 bit at a time
- 3. works for any *m*
- 4. trades space for speed: **faster but larger than bit-serial** architectures
- 5. time-area product is constant (at least under big-O notation)
- 6. LSD (least significant digit) and MSD (most significant digit) are possible

Least Significant Digit Architecture

Idea: Break A(x) down into s digit polynomials

$$A(x) = a_{m-1}x^{m-1} + ... + a_1x + a_0$$
, $a_i \in GF(2)$

where $\bar{a}_i = \bar{a}_i(x) = a_{i,D-1}x^{D-1} + ... + a_{i,1}x + a_{i,0}$, $a_{i,j} \in GF(2)$

european Competence Center for IT Security

Summer School on Crypto HW, Louvain-la-Neuve, June 2006

Least Significant Digit GF(2^m) Multiplier

Contents

- 1. Why do we need public-key cryptography?
- 2. Overview on public-key crypto schemes
- 3. Arithmetic
- 4. Open research problems

Challenges in Applied Public Key Cryptography

- Highly efficient implementations of established alg. (RSA, DL, ECC) for light-weight crypto
- 2. New PK algorithms with low implementation complexities
- GF(p^m) ("OEF") has nice implementation properties in software: Security of such fields for discrete log and ECC?
- 4. Special-purpose hardware for PK cryptanalysis
- 5. Better understanding of side channel and tamper resistance

Related Workshops

RFIDSec July 2006, Graz

CHES – Cryptographic Hardware and Embedded Systems (+ FDTC) October 2006, Yokohama

escar – Embedded Security in Cars November 2006, Berlin

Summer School on Crypto HW, Louvain-Ia-Neuve, June 2006