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Abstract

This thesis describes various efficient architectures for computation in Galois fields
of the type GF(2%). “Efficient” refers to the fact that the architectures require a small
number of elementary gates that are logical AND and exclusive OR. It is expected that,
as a consequence, VLSI implementations of the architectures lead to chip designs which
consume less area. All architectures are bit parallel, i.e. they apply only combinatorial
logic and do not contain registers. This results in naturally fast architectures. The work
focuses on the basic operations: multiplication, constant multiplication, and inversion.
The architectures are based on algorithms which make extensive use of the decomposition
of fields GF(2%) into GF((2")™), the latter of which will be called composite fields.

Two efficient algorithms which are related to composite fields are developed. One
algorithm finds matrices which map binary field representation to composite field repre-
sentations. The second algorithms performs a fast test to determine whether a polynomial
over GF(2") is primitive.

First, previous bit parallel architectures over fields GF(2") and composite fields are
reviewed. We comment on some of the previous architectures. A suboptimum algorithm
for constant multiplication with a reduced number of gates is introduced. A complete list
of optimized complexities for constant multiplication in the fields GF(2F), k < 8 is given
in the appendix.

A general architecture for multiplication in composite fields is developed based on
the Karatsuba-Ofman-Algorithm. The algorithm is closely investigated with respect to
a parallel hardware implementation. It is shown that multiplication of two polynomials
of degree less than m over GF(2") is of order O((nm)'°623). Through an exhaustive
search, primitive polynomials are determined which perform modulo reduction with low
complexity. We are able to give detailed descriptions of efficient parallel multipliers for
field orders < 232.

It is shown that for certain field orders, a combined optimization of the polynomial
multiplication and modulo reduction further improves the gate count and the delay of
multiplier architectures. We provide suitable field polynomials and detailed descriptions
of corresponding multipliers. The gate counts achieved for some field orders are the lowest
ones reported in technical literature.

A comparative synthesis maps several parallel multiplier architectures to the gate-
array library of TC 160G family. It is found that the comparatively low gate count
of the architectures over composite fields can be transformed to netlists of gate-arrays.
We conclude that the theoretical gate count is a valid measure for the number of gate
equivalences of VLSI implementations if gate arrays are used. A speed estimation of the
composite field multipliers results in a data throughput of up to 3.88 Gbit/sec.

An algorithm from Itoh and Tsujii for inversion over composite fields is applied to
elements in standard base representation. A relationship between this algorithm and an
architecture over tower fields proposed by Morii and Kasahara is developed. For the fields
GF(2%) and GF(2'°) are, as an instance, architectures for parallel inverters with moderate
gate count provided.
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A new concept for systems involving finite field arithmetic is introduced. We propose
a combined software/hardware approach which possesses the advantage of alterability. As
an application, a composite field multiplier over GF(2'°) is attached to a 16 bit DSP. The
external arithmetic enables the processor to perform general multiplication more than a
magnitude faster than in software. We implemented a shortened (10,8) Reed-Solomon
code which allows decoding at a speed of up to 1.9 Mbit/sec.
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Chapter 1

Introduction

1.1 Motivation

The mathematical discipline, Algebra, includes the theory of finite fields. Its development
dates back in the early nineteenth century, when Carl Friedrich Gaufl and Evariste Galois
worked on the general theory of finite fields. Previous work was done by Pierre de Fermat,
Leonhard Euler, Joseph-Louis Lagrange and Adrien-Marie Legendre. In honor of Evariste
Galois’ fundamental work on the topic, finite fields are also referred to as Galois fields.
The two names will be used interchangeably. Galois fields with ¢ elements are denoted as
GF(q).

Over the last thirty years, Galois fields have gained wide spread technical applications.
Areas where they have applications are:

e Algebraic codes [Bla83] [MLS85]

e Cryptographic schemes [vT88] [Sch93]

e Digital signal processing [Bla85] [McC79]
e Random number generators [WP90)]

e VLSI testing [GSBI1]

The first two topics play an important role in modern digital communication. Since there
is an increasing number of applications of communication systems expected in the near
future — with increasing impacts on various aspects of our society — we will briefly
explain the principals of these topics.

Transmission of digital data and its storage is often accompanied by the possibility of
corruption of data. The principal of channel coding is that redundancy is introduced to
the data before transmission or storage. Because of the extra information added, channel
codes are principally capable of determining whether and where errors have occurred.
In particular, BCH codes' and their subclass of Reed-Solomon codes (RS codes) have

!BCH codes are named after their inventors, Bose, Chaudhuri, and Hocquenghem.
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proved to be extremely useful in technical communication systems. These codes require
arithmetic in Galois fields. Most often, the use of fields with characteristic two allows a
direct representation of binary data as field elements. So far, RS codes tend to perform
arithmetic in fields GF(2®), while application of fields up to GF(23?) seems promising for
today’s applications, since computer busses wider than eight bit have become important.
More about RS codes will be said in Chapter 9.

Technical communication systems are endangered by the possibility of unauthorized
reading and falsification of digital data. For the increasing number of applications of
digital communication in areas such as electronic banking, security aspects will become
a crucial issue. Several cryptographic schemes are based on the assumed difficulty of
the discrete logarithm problem in finite groups or finite fields. Examples of such schemes,
which have been applied widely, are the Diffie-Hellman key-exchange protocol [DH76] and
the ElGamal scheme [EIG85]. A good overview on schemes applying finite field arithmetic
can be found in [Od184]. The latest recommendations for such systems suggest arithmetic
in fields of order 2°00-2190 g6 that security is assured. These field sizes refer to 500-1000
bit arithmetic modules. However, it should be kept in mind that it is difficult to predict
the security of cryptographic systems for the future, as can be seen in the recent attack
on the RSA scheme [Kol94].

Most architectures to be developed in this thesis will provide architectures with worked-
out examples for fields up to an order of 232. However, the theory provided allows gener-
alization to higher field orders, such as those needed for many cryptographic applications.

1.2 Finite Field Arithmetic in Hardware

It is often required that systems involving finite field arithmetic are fast. An example
is channel coding in high speed data transmission. In order to meet this requirement,
it might be necessary to implement the modules providing Galois field arithmetic on a
semiconductor chip. Nowadays, hardware implementation usually implies a realization
as a VLSI (Very Large Scale Integration) chip. VLSI modules performing Galois field
arithmetic can roughly be classified into bit parallel and bit serial architectures. The
former one applies only combinatorial logic, the latter one also applies registers. Generally
speaking, there exist a time-space trade-off between the two types. While bit parallel
architectures tend to be faster, bit serial architectures generally require less area than
their parallel counterparts which provide the same function. All architectures treated in
this thesis are bit parallel. For convenience, the terms “bit parallel” and “parallel” will
be used interchangeably.

There are several aspects to be considered if VLSI architectures are to be evaluated.
The most important ones are:

e Space complexity (chip area requirement)

e Time complexity (circuit delay or performance)
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e Hierarchy
e Regularity
e Modularity

The first two aspects are unique measures for architectures which have been imple-
mented. The architectures investigated in this thesis will be measured using theoretical
space and time complexities. The theoretical space complexity is measured by the num-
ber of two input modulo 2 adders (logical exclusive OR, XOR,) and the number of two
input modulo 2 multipliers (logical AND.) The theoretical time complexities are defined
as the number of gate delays which are contained in the critical path. The architectures
to be developed in this thesis focus on a low gate count, although the time complexities
are also considered for most architectures. Chapter 7 deals with the relationship between
theoretical gate count and area requirements of actual implementations.

The latter three aspects in the list above are structural properties [WE92|. Hierarchy is
understood as the repeated division of a module into submodules. This eventually results
in submodules with a comprehensible complexity. Regularity refers to architectures which
are composed of similar modules or submodules. An example of regular structures are
array architectures. Modularity is a property of architectures whose submodules possess
well defined functions and interfaces. The architectures over composite fields GF((2™)™),
to be developed in this thesis, possess most of the structural properties. Subsection 5.5.2
discusses how the use of subfields GF'(2") results in naturally structured architectures.

1.3 Thesis Outline

Chapter 2 provides the mathematics of finite fields which is relevant to this thesis. A class
of extension fields, referred to as composite fields, which is crucial for most architectures
developed in the subsequent chapters, is introduced. Two algorithms related to composite
fields are developed. The first algorithm finds linear mappings between different field rep-
resentations. The second one determines whether a polynomial over GF'(2") is primitive.
In particular, these polynomials can be used to generate composite fields.

Chapter 3 gives an overview of previous bit parallel architectures. The three classi-
cal types of multipliers, those applying standard, dual, and normal base representation
of field elements, are introduced. Expressions for their space complexities are derived.
Some comments on Mastrovito’s standard base multiplier and on Berlekamp’s dual base
multiplier are given. Next, several parallel multipliers and inverters which operate over
extension fields of GF(2") are introduced.

In Chapter 4, constant multiplication over GF(2") with reduced complexity is dis-
cussed. A locally optimum algorithm is introduced. We compare the optimized complex-
ities with the complexities of a straightforward approach for fields up to GF(2!%). In
the appendix, complete tables with optimized complexities for constant multiplication in
fields up to GF(2®) are provided. The tables can be directly used for the determination
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of the gate count of RS encoders. Upper bounds for the space complexity of constant
multiplication in composite fields are also developed.

In Chapter 5, a general method for efficient bit parallel multiplication in composite
fields is developed. The method applies the Karatsuba-Ofman algorithm, which is dis-
cussed in detail. Through an exhaustive search, field polynomials which allow modulo
reduction with low complexity are found. Detailed descriptions for multiplier architec-
tures in composite fields up to GF(2%?) are provided.

Chapter 6 derives parallel multiplier architectures for two classes of composite fields,
namely GF((2")?) and GF((2")*). The two types of architectures are special cases of the
previously described general method. By applying a combined optimization of polynomial
multiplication and modulo reduction, the space and time complexities can be further
reduced.

In Chapter 7, the VLSI syntheses of various multipliers are compared with respect to
space and time complexities. The architectures compared are standard, dual, and normal
base multipliers over GF(2*), and the composite field multipliers over GF((2")™). It is
found that the latter one performs best for a gate array implementation with respect
to area requirement. An estimation of the data throughput of an arithmetic module
containing a composite field multiplier results in a maximum of 3.88 Gbit/sec.

Chapter 6 applies an efficient algorithm from Itoh and Tsujii for computing the inverse
over composite fields to fields represented in standard base. Expressions for the space
complexity are derived. A relationship to an architecture over tower fields, i.e. multiple
field extensions of degree two, is developed. As examples, inverters over the fields GF(2®)
and GF(2'%) are described and their space complexities are determined. It is found that
implementation of parallel inverters for these fields are possible in terms of gate count.

In Chapter 9, a new concept for technical systems involving Galois field arithmetic is
introduced. We propose a combined software/hardware approach. A 16 bit Reed-Solomon
decoder is implemented on a digital signal processor which accesses an external multiplier
over GF(2'%). Using a shortened Reed-Solomon code with code parameters (10,8) and a
direct decoding algorithm, a decoding speed of up to 1.9 Mbit/sec becomes possible.



Chapter 2

Mathematical Background and Two
Algorithms

2.1 Finite Fields

This section introduces the basic definitions and properties of finite fields which are rele-
vant to the material treated later in this thesis. All statements are given without proof,
but it will always be referred to the appropriate literature. Classically, books which cover
algebraic coding also treat to some extend the mathematics of finite fields, as do, for
instance, the references [Ber68] [PW72| [Bla83] or [LC83]. The number of mathematical
books which are entirely devoted to finite fields is rather limited. Besides Lidl and Nieder-
reiter’s thorough mathematical treatment of the matter in [LN83], there are McEliece’s
book [McE87] and, more recently, the references [BGM 193] and [Jun93].

2.1.1 Basic Properties

We start with the definition of a fundamental algebraic structure which is called group.
Its basic property is that it assigns to a pair of elements of a set a third element of the
same set by applying one operation, denoted as o.

Definition 1 A set G together with a binary operation G x G — G s called a group if
the following conditions are satisfied:

e The binary operation is associative: (aob)oc=ao (boc), for all a,b,c € G.
o There is an identity element e € G such that aoce =eoa =a, for all a € G.

e For any element a € G, there exists an inverse element o' € G such that a o a' =
!/
a oa=ce.

If a group satisfies additionally the condition that aob = boa, for all a,b € G, the group
is said to be commutative or abelian.
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Now we are in the position to define the algebraic structure field.

Definition 2 [LC83] Let F' be a set of elements on which two binary operations, called
addition “+7 and multiplication “7, are defined. The set F' together with the two binary
operations + and - is a field if the following conditions are satisfied:

o F'is a commutative group under addition +. The identity element with respect to
addition is called the zero element or the additive identity of F and is denoted by 0.

e The set of nonzero elements in F' is a commutative group under multiplication -.
The identity element with respect to multiplication is called the unit element or the
multiplicative identity of F' and is denoted by 1.

o Multiplication s distributive over addition; that is, for any three elements a,b, and
cimF:a-(b+c)=a-b+a-c.

There are fields with a finite number of elements which will be called finite or Galois
fields. Such fields with ¢ elements will be denoted by GF(g). In the remainder of the
thesis, only finite fields will be considered.

Definition 3 The order of a field is the number of its elements.
Theorem 1 [McE87] The order q of a field must be a power of a prime: ¢ = p™, p prime.

Theorem 2 [McE87] There exists a unique field of order p™, for any prime p and any
positive integer m.

Definition 4 The smallest positive integer A for which Y, 1 = 0 in a field, is called the
field’s characteristic.

All architectures in this thesis are based on Galois fields of characteristic two. An inter-
esting consequence, which follows directly from the characteristic two property, is that
every element a is its own additive inverse which leads to: b —a = b + «a.

Definition 5 Let a be an element of GF(q). The smallest positive integer s for which
a® =1 is called the order of the element.

Definition 6 FElements which have (mazimum) order s = q — 1 are called primitive
elements!.

It can be shown that elements with maximum order exist for every finite field. Primitive
elements « and their powers generate the entire multiplicative group {1, a2 o3, ..., a?%}
of a field. This power representation will be often used in this thesis in order to refer to
field elements.

Theorem 3 [LC83] Let a be a nonzero element of a finite field GF(q). Then a?™' = 1.

Many finite field architectures for inversion are based on this theorem, since it follows
immediately that ¢ a2 = 1 and thus ™! = a972.

!There is some confusion in the literature about the terminology for these elements. Some books refer
to them as “primitive elements”, whereas they are some times referred to as “primitive roots.”
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2.1.2 Polynomials and Extension Fields

This subsection describes some properties of polynomials over finite fields. The important
principle of extensions of finite fields will also be introduced. A special type of extension
fields, named composite fields, will be defined.

A polynomial A(z) = ap2™ + apm_12™ 1 + -+ + ag whose coefficients a; are elements
of a field GF(q), is said to be a “polynomial over GF(gq).” A polynomial is monic if its
highest coefficient a,, is one.

Definition 7 [LC83] A polynomial A(x) is irreducible over GF(q) if A(x) is only divisible
by ¢ or by c A(x) where ¢c € GF(q).

In the sequel, “a | b ” denotes “a divides b,” where a and b can either be numbers or
polynomials.

Definition 8 Let P(x) be a polynomial of degree m over GF(q) with P(0) # 0. The
smallest positive integer s for which P(x) | (x* — 1) is called the order of P(x).

Theorem 4 [LN83] The order s of every irreducible polynomial of degree m over GF(q)
fulfills the condition: s | (¢™ — 1).

A consequence of the last theorem is that the maximum possible order of an irreducible
polynomial is s = (g™ — 1).

Definition 9 A monic polynomial of degree m with mazimum order s = (¢™ — 1) is said
to be a primitive polynomial.

It can be shown that primitive polynomials of degree m over GF(q) exist for any field
GF(q). Maximum order polynomials are of major importance for the remainder of this
thesis.

An irreducible polynomial P(z) of degree m over GF(q) can be used to construct an
extension field of GF(q). The extension field is of order ¢™ and is denoted by GF'(¢g™).
The field GF(q) is then a subfield of GF(¢™) [McE87]. All ¢" elements of the extension
field can be represented as polynomials with a maximum degree of m — 1 over GF(q).
These ¢™ polynomials are the residue classes modulo P(x) of all polynomials over GF(q).
Hence the polynomial P(z) determines the algorithms for the arithmetic operations in
the field.

Theorem 5 [LN83] If a is an element of the finite field GF(q™), the element

" -1
a 1!

is in the subfield GF(q).
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Definition 10 The trace Tr(a) of an element a € GF(¢™) relative to the subfield GF(q)
15 defined by:

m—1

Tr(a) = a+a? +a? + -+ a

It can be shown that Tr(a) € GF(q).
In the following, a term introduced by Green and Taylor [GT74] will be adopted for
denoting a certain type of extension fields of characteristic two:

Definition 11 We call two pairs {GF(2"), Q(y) = y"+X "y ¢:y'} and {GF((2")™), P(x) =
™+ Y piat} a composite field if

e GF(2") is constructed from GF(2) by Q(y),
e GF((2™)™) is constructed from GF(2") by P(x).
Composite fields will be denoted by GF((2")™).

A composite field GF((2")™) is isomorphic to the field GF (2F), k = nm, in a mathematical
sense [LN83]. However, although two fields of order 2" are isomorphic, their algorithmic
complexity with respect to the field operations addition and multiplication may differ
and depends on the choice of n and m and on the polynomials Q(y) and P(x). The
introduction of composite fields for arithmetic in fields of order 2™ will be crucial for the
architectures to be developed in this thesis.

In the sequel, a root of Q(y) will be denoted as w, a root of P(x) will be denoted as «.
Assuming that both polynomials are primitive, the elements of the ground field GF(2")
can be represented by {0, 1, w,w?,...,w? 72}, and the elements of the composite field can
be represented by {0,1,a,a?,...,a*"" 72}

2.1.3 Bases of Finite Fields

Although, in principle, there exist many different bases for representing elements of a
Galois field, there are three bases which are of major importance from a technical point
of view. This subsection provides the formal definition of the three bases, which are
standard, normal, and dual base. Their application to arithmetic architectures will be
treated in Section 3.1.

An extension GF'(¢™) of the the field GF(q) can be viewed as as m-dimensional vector
space over GF'(q). Each element of GF(¢™) can be represented as a linear combination of
the m elements of the base {0y, 1,...,Bm_1}. The coefficients of the linear combination
are elements of the field GF(q).

Definition 12 The set
{1, «, .., am_l},

where « is a root of the irreducible polynomial P(x) of degree m over GF(q), is called
standard (or canonical or polynomial) base.
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This base is directly related to the representation of field elements as polynomials, as
was stated in the previous subsection. In this case, a field element A is represented by
the polynomial A(z) = ap + a1 + asx? + - -+ a1 2™ L, and each element represents a
residue class modulo P(z). Since « is a root of P(z), the polynomial representation A(x)
is equivalent to A(a) = ag + a1 + aza® + -+ - + @, 1™ L

Definition 13 The set
2 m—1
{a,a? ;... a7 '}

where « is Toot of the irreducible polynomial P(x) of degree m over GF(q), is called normal
base if the m elements are linearly independent.

It can be shown that normal bases exist for all Galois fields. The normal base representa-
tion is especially attractive for certain applications which involve exponentiation in finite
fields, because raising to the ¢gth power is simply a cyclic shift.

Definition 14 Let B = {3, 01, ..., Bm-1} be a base of GF(¢™). The dual base
{v,71,---,Ym_1} of B is a base satisfying:

Y

)1 dfi=y
It can be shown that there exists a dual base for every base.

2.2 Mapping between Binary and Composite Field
Representations

This section describes an algorithm which determines a binary matrix that defines the
isomorphic mapping between the field representations GF(2%) and GF((2")™) with k =
nm. The algorithm was developed in cooperation with the Number Theory and Algebra
Group at the Institute for Experimental Mathematics. The mapping might be important
in an application of composite fields, where composite field arithmetic modules have an
interface to modules that operate with a binary standard base representation. In this
case, simply a linear mapping at the input and output of the composite field module
has to be performed. A possible scenario is, for instance, a Reed-Solomon decoder chip
based on composite field arithmetic which decodes symbols generated by an encoder that
uses a binary field polynomial for its arithmetic. In the following it is understood that
there exists only one field of order 2%, and that the term “different” refers to different
representations of elements rather than to different fields. The mapping to be developed
assumes a standard base representation of both field elements.

Our goal is the determination of a binary matrix T of size (k x k) which performs
an isomorphic mapping of field elements represented with respect to GF(2¥) to elements
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represented with respect to GF((2")™). The inverse of T, denoted by T~!, will perform
the mapping in the other direction. However, the algorithm can be applied in a straight-
forward manner for the determination of other field mappings as well, e.g. between two
isomorphic fields given by different binary field polynomials. In the sequel, we will assume
that all field polynomials are primitive, i.e. they have maximum order.

First, we will provide some notations. Arithmetic in GF((2")™) is performed modulo
the two field generators Q(y) and P(z). Q(y) is a binary polynomial which generates the
subfield GF'(2"):

QW) =y"+tary" "+ +ay+1, ¢ cGF(2).

P(z) is a polynomial over GF(2"), which generates the composite field representation
GF((2™)™):

P(z) = 2™ + ppaa™ 4 -+ px+po, pi € GF(2").
A primitive element in GF'((2")™) which is a root of P(x) will be denoted a: P(«a) = 0.
A primitive element in GF(2") will be denoted as w, where Q(w) = 0. Every element A
is represented as a vector with m components from GF(2"), while every vector element
is itself a binary n vector:

A (am_l, App—2y + + + ao), a; € GF(2n)
- ((amfl,nfla amfl,n727 I amfl,[])a (am72,n717 am72,n727 ey am72,0)7 SRR
(aoyn_l, ao,n_g, Ceey aO,U)); Clij € GF(2) (21)

Equation (2.1) shows that A is also represented by a binary nm = k vector. In particular,
this is how all elements from GF((2")™) are represented in actual digital systems, such
as VLSI chips.

Arithmetic in GF(2F) is performed modulo the binary field polynomial R(z) of the
following form:

R(z) ="+ 2" P+ 2+ 1, 1€ GF(2).

Let 3 be a root of R(z) and By = (81, 8¥2...,3,1) is the standard base with which
the elements of GF'(2%) are represented. Each element of GF(2¥) is thus represented as
a binary k vector, denoting a linear combination of the base elements.

In order to construct the isomorphic mapping, we are looking for k£ base elements
represented with respect to GF((2")™), to which the k£ base elements from B, are to
be mapped. Clearly, the “one” element is mapped to the “one” element. The primitive
base element 8 must be mapped to a primitive element af, the base element 5% must be
mapped to o, and so on:

T =o', i=0,1,...,k—1

We are now left with the determination of the exponent ¢. The mapping between
the two field representation must be homomorphic with respect to both field operations,
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addition and multiplication. In order to assure that the mapping is homomorphic with
respect to multiplication, it is not sufficient to map 3 to just any primitive element a!.
The condition is rather that

R(a') =0 (mod Q(y), P()). (2.2)

There will be exactly & primitive elements which fulfill this condition, namely o and its
k —1 conjugates o'?, j = 1,2,...,k —1. The exponents 27 are computed modulo 2% — 1.
In the following the algorithm will be stated.

1.

(Initialization) Let a be the primitive element in GF((2")™) for which P(«a) = 0.
Set t := 1. Prepare a list with 2¥ — 1 addresses and memory for one binary entry
per address. Enter the vector (0,0,...,0,1) into the rightmost column of T. This
provides a mapping of the one element to the one element.

. Compute R(a') (mod Q(y), P(x)). If the result is zero, the element is found; goto

Step 7.

. Neither o! nor the conjugates am, j=1,2,...,k — 1 are the elements to which

3 is mapped. Therefore enter zeros in the list at addresses t2/ (mod 2F — 1),
j=0,1,2,...,k— 1.

. Set t := t 4+ 1. If the list already has a zero entry at address ¢, goto Step 4 (i.e.

repeat this step until an address ¢ is found which does not have an entry.)

Check if o is primitive element by computing GCD(¢,2F — 1). If it is not primitive,
goto Step 4.

Goto Step 2.

. Enter the binary vector representation (2.1) of o' into the second rightmost column

of T. Into the next column on the right hand side, the binary vector representation
of o is entered, into the next o®, and so on until a*~Y* is entered into the leftmost
column.

Before we comment on the performance of the algorithm, an example is given.

Example. We consider the two field representation GF(2%) and GF((2*)?). The
field polynomial of GF(2%) is R(z) = 2% + 2% + 2% + 22 + 1. We denote the root of R
with 3: R(3) = 0. The representation GF((24)?) is generated by Q(y) = y* +y +1
and P(z) = 22 + = + w!, where Q(w) = 0 and P(a) = 0.

We start by computing R(«):

Rl@)=c®+at+®+ a2 +1=wa+w? #0

It should be stressed that all arithmetic is performed according to the rules of
the composite field representation. We see that neither « nor its conjugates o/,
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j=2,4,816,32,64, 128 are elements to which 8 is mapped. Appropriate entries in
the list are made.

The next element to be checked is o’ (we know from the list that of, ¢t =
2,4 do not have to be tested, and the elements ¢t = 3,5,6 are not primitive.)
One obtains R(a’) = w!' # 0. Again, we make entries in the list at addresses
7,14,28,56,112,131,193, 224.

The first element which fulfills condition (2.2) is &7, i.e. R(a®") = 0. Now the
base element (3 is mapped to o7, base element 32 to o™, base element 3 to a''!,
and so on. The last pair to be mapped is base element 57 to a*. We compute the
binary representation of the o’ with respect to the field GF((2*)?). For instance,
for the element o3 we obtain:

7

3T = wa + w'? = (0010 1111).

All 7 binary representation are entered into the matrix from right to left, which
yields the transformation matrix.

001 0O0O0O0O 0
01 10O01O00
00011010
T — 10010000
001 00110
10011010
001 0O0O0OT1F@P0
00001011

Every element E represented with respect to GF(2%) can now be mapped to a repre-
sentation with respect GF((2*)?) through E' = TE. The mapping is homomorphic
to all field operations. The inverse mapping, i.e. from a GF((2%)?) representation
to a GF(2%) representation, is performed through T’s inverse.

The algorithm has the structure of an exhaustive search through all 2% — 1 elements of
the multiplicative group of GF(2¥). However, by applying a list with the conjugates of the
elements already checked, the computation is reduced by the factor k. The most costly
operation in every step is the evaluation R(a'). If only these evaluations are considered,
the algorithm has a complexity of order

() =o (),

where ®(-) denotes the Euler function.

It should be noted that there are always k different transformation matrices with
corresponding inverse matrices. The matrices are computed from the first element found
and its k — 1 conjugates, respectively. In the example above, it is also possible to perform
homomorphic mappings from 3 to of, t = 41,73,74,82,146,148,164. These are the 7
conjugates of a7, In actual implementations it might be advantageous to choose the
transformation matrix with the smallest number of entries.




Mathematical Background 13

2.3 An Efficient Test on Primitivity

The goal of this section, is the development of a fast algorithm which tells whether a
monic polynomial of degree m over GF(2") is primitive. In the sequel, we present an
implementation developed together with the Number Theory group at the Institute for
Experimental Mathematics?. Polynomials which pass the test can be used for constructing
composite fields. The algorithm was first introduced by Alanen and Knuth in their 1964
paper [AK64]. The version described here also includes a considerable speed improvement
suggested in Appendix 2 of the reference.

By definition, a polynomial P(z) over GF(2") of degree m is said to be primitive if
it is irreducible over GF'(2") and if it has the maximum order, in our case 2" — 1. The
order of P(x) is defined as the smallest integer s such that z* — 1 = 0 mod P(z). Next,
two results from [AK64] are slightly modified in order to match the finite fields considered
in this thesis.

Theorem 6 (Lemma 1 in [AK64]) If a monic polynomial of degree m over GF(2") has
order s = 2" — 1, it is primitive (no test for irreducibility necessary.)

The following proof for the theorem is different from the original one:

Proof. We consider the ring R of polynomials in x over GF'(2") consisting
of the residue classes modulo P(z). The ring has exactly 2™ elements (residue
classes.) On the other hand, the elements {1,z,2% ..., 2°" 1} s = 2" —
1, are all distinct modulo P(z), therefore belonging to s different residue
classes. Including the residue class containing the zero element, the elements
{0,1, 2,2, ..., 257} are a complete set of representatives of all residue classes
of R. Since * = 1 mod P(z), we have z* 2% = 1 mod P(z) for all 0 < k <
s. This means that every element z* has a multiplicative inverse modP(z).
Hence R is also a field. Since there is only one such field, P(x) is field generator
and in particular irreducible. ¢

Theorem 7 (Theorem in [AK64]) The constant coefficient py of a primitive polynomial
of degree m over GF(2") is a primitive root (i.e. an element with order 2" — 1) in the

ground field GF(2").

Proof. The m roots of every primitive polynomial P(z) are a primitive
root a from the extension field GF((2")™) and its m — 1 (primitive) conju-
gates:

P) = (z—a)(z— o)z —a®") (. — 2.

Hence, the constant coefficient can be written as:

m—1 )
n
Po = H o =af
=0

2Special thanks to Dr. Wolfgang Happle for his support
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with
gnm _

2n — 1
For every element § € GF((2")™), ¢ is element of GF'(2") [LN83]. Moreover,

if # has maximum order 2™ — 1 in the extension field, 5¢ has order (2"™ —
1)/e = 2™ — 1, which is maximum order in the ground field. ©

e =

14

For the test procedure we take advantage of the fact that a polynomial which divides
x® — 1, sinteger, has an order o with either o = s or with o | s, 0 < s. We are now able
to state a fairly efficient algorithm for testing a polynomial P(x).

1.

2.

Compute 2" — 1 and its r maximum divisors d;,i = 1,2,...,7.

Check if either = 1 is a root or if p, is not a primitive root in GF(2") (trivial

checks.) If so, the polynomial is not primitive.

Check if 22" ! = 1 mod P(x). If not, the polynomial is not primitive. Otherwise

P(z) is a candidate.

Check if 2% = 1 mod P(z), i =1,2,...,r. If this is fulfilled for any i, P(z) has an
order less than 2™ — 1 and is thus not primitive. On the contrary, if non of the d;

satisfies the condition, the polynomial is in fact primitive.

By using maximum divisors in Step 4 all possible orders less than 2™™ — 1 are checked.
In order to obtain the maximum divisors in Step 1, the factorization of 2™ — 1 must
be known. Fortunately, the numbers 2F £ 1 are well studied, such that the factorization
even for values k ~ 2'0 can be calculated [Rie85]. It should be noted that the tests
z® = 1 mod P(z) are basically exponentiations modulo a polynomial. Since the values

of s are rather large, the algorithm implemented uses the “binary method” [Knu81] of

repeated multiplying and squaring which can be applied very elegantly to operations in
fields of characteristic two. The complexity of a test is thus of O(log(nm)).

Example. We consider the field GF((24)*) with Q(y) = y* +y + 1. The factor-
ization of the field order minus one is: 2!6—1 = 257-17-5-3. The corresponding r = 4
maximum divisors are: dy = 255,dy = 385,ds = 13107, dy = 21845. The ®(15) =8
primitive roots of the ground field are: {w,w? w* W’ W8 W' W3 W1} We im-
plemented an exhaustive search algorithm in C, accessing a self written C-library
providing Galois field arithmetic. The search determined all primitive polynomials.
Running the algorithm on an IBM RS6000/580, the search was performed in 57 sec.
There were 2'® — 1 = 65535 polynomials tested of which $®(2'® — 1) = 8192 were
found to be primitive.



Chapter 3

Previous Bit Parallel Architectures

3.1 Traditional Multipliers

In this section three different approaches for bit parallel multipliers are introduced. Since
this chapter, as well as the entire thesis, is restricted to bit parallel architectures, the terms
“bit parallel multiplier” and “multiplier” will be used interchangeably for convenience.
The expression “traditional multiplier” heading this section is a somewhat informal name
for a class of Galois field multipliers defined by the author. We understand it as a class
of parallel architectures with the following properties:

1. The multipliers do not operate over extension fields of GF'(2").

2. The space complexity of the multipliers is lower bounded by a total of 2n? — 1 gates
(AND + XOR).

The vast majority of the parallel multipliers proposed in technical literature, starting
with the early paper of Bartee and Schueider in 1963 [BS63], possesses both properties.
Since the few publications about architectures using field extension tend to be recent,
we hope that the name “traditional” is meaningful to the reader. However, there are
many new publications, often with important results, that describe architectures which
are “traditional” according to our classification; we certainly do not intend to consider
these architectures to be old-fashion or inferior.

In the sequel we introduce three different approaches for traditional parallel multipli-
ers. Each architecture uses a different base for the representation of its operands. The
three bases used — standard (SB), dual (DB), and normal base (NB) — lead to quite
different architectures. Whereas the two latter ones will be explained more generally, the
SB multiplier proposed by Mastrovito [Mas89] [Mas91] will be studied thoroughly. We
will also comment on it, extending previous knowledge. A modified version of the DB
multiplier will be introduced as well.

Chapter 7 will show the results of a gate array synthesis of the three traditional
multipliers compared to the architectures developed in this thesis.

15
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3.1.1 Mastrovito’s Standard Base Multiplier
Architecture and Complexity

In this section an architecture for the multiplication of field elements given in standard
base, introduced by Mastrovito in [Mas89] and [Mas91], will be developed. There are
several reasons for choosing this architecture as a representative for standard base multi-
pliers. First, it has one of the lowest gate counts among the traditional SB multipliers.
Secondly, and maybe even more important, it will be used as the ground field multiplier
for the architectures over composite fields to be developed in the Chapters 5 and 6. It
also serves as an example for a traditional multiplier with low complexity in Chapter 7,
where several architectures are compared with respect to a gate array implementation.
First, we will introduce a matrix notation for the multiplication A(y)B(y) = C(y) mod
Q(y) in the field GF(2"). All elements are binary polynomials of degree less than n:

" Pt =(an 1y ag) (b 1y L+ bp) mod Q(y).

Alternatively, the elements B(y) and C(y) can be represented as column vectors con-
taining the polynomial coefficients. By introducing the matrix Z = f(A(y),Q(y)) the
multiplication can be described as:

b
2[1] fo,o T f[],nfl b?
C= . =7ZB = : r : (3.1)
Cn'—l fn—l,o T fn—2,n—1 bn'—l

The matrix Z is named “product matrix.” Its coeflicients f;; € GF(2) depend recursively
on the coefficients a; and on the coefficients g;; of the Q matrix which is introduced below
in (3.3) as follows:

a; ‘ ; 7=0 ; 1=0,...,n—1;
w(i — )aij+ 10 G titn 1t 5 j=1,...n—1 ; i=0,...,n—1;
(3.2)

fij =

where the step function u is defined as

1 >0
“(“):{0 0 =0

The matrix-vector product in Equation (3.1) describes the entire field multiplication. The
Q matrix which is required to build Z is a function of the binary primitive polynomial
Q(y) of degree n, generating GF(2"). Its binary entries ¢; ; are defined such that:

n

q0,0 o1 " qon—1 1
q1,0 qii1 " qip-1

y
n+1

mod Q(y). (3.3)

Y Gn—2,0 4n—2,1 - (n-2n-1 Yy
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The Q matrix describes the representation of the polynomials y™, 4", ..., 4?2 in the
equivalence classes mod Q(y), i.e. after the reduction modulo Q(y).

In the following, an example for the construction of the matrix Q and of the product
matrix Z is given:

Example. Let Q(y) = y* + y + 1 be the primitive polynomial generating
GF(2%). Considering the equivalence classes mod Q(y), the polynomials y*, 4° and
y% are represented by:

y4 = 1+ ymodQ(y)
y + y® mod Q(y) (3.4)
y* = y* 4y’ mod Q(y).

<
I

Rewriting (3.4) in matrix notation yields the Q matrix:

yt 1100 !
v =01 10 y2 mod y* +y + 1.
y® 0011 33

The product matrix can now be constructed by applying (3.2):

ap as a2 ay bo

C—7B— a; ag+taz azx+az3 a;+az b1 (3.5)
ay a ag +az a + ag bg
az ag al ap + as b3

The implementational complexity of the matrix-vector product (3.2) depends solely
on the primitive polynomial Q(y). In [Mas89] generating primitive polynomials are given
for fields GF(2"), n = 2,3,...,16. The polynomials are optimum with respect to the
number of gates required to multiply in the field. For fields in which primitive trinomials
of the form

Q) =y"+y+1 (3.6)

exist, the space complexity is given by:
#AND + #XOR = 2n? — 1. (3.7)

Polynomials of the form (3.6) exist for n = 2,3,4,6,7,9,10,11,15. However, for the
trinomial Q(y) = y® + y? + 1, the complexity (3.7) can also be realized. For other values
of n where there are no primitive trinomial, the complexity is higher, as can be seen in
Table 3.1.

The delay (or time complexity) of the multiplier is upper bounded by:

T =TaNp + Ix0R < 1+ 2[logy n], (3.8)

measured in gate delays.
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Q(y) | AND [ XOR [ 7,

n and or
2 2,1,0 4 3 1 2
3 3.1,0 9 8| 1| 3
4 410 16] 15| 1| 3
5 520 25| 24| 1| 5
6 610 36| 35| 1| 4
7 710 49| 48| 1| 4
8| 85320 64| 8| 1| 5
9 940 | 81| 8| 1| 6
10 10,3,0 100 99 1 6
11 11,2,0 121 120 1 6
12| 128510 | 144 | 207| 1| 7
13| 13,760 | 169 | 202| 1| 6
14| 149720 | 196 | 282| 1| 7
15 15,1,0 225 224 1 5
16 | 16,11,6,50 | 256 | 281 | 1| 6

Table 3.1: Space and time complexity of the Mastrovito multiplier in the ground fields
GF(2")

Some Comments on the Mastrovito Multiplier

Next, we will state some additional facts about the Mastrovito multiplier. First we will
give a formula for computing the matrix Q. The binary entries ¢;; of Q in Equation (3.3)
can be computed recursively after the first row is filled with the coefficients of Q(y) =
Y+ @y o+ qy + 1, Le g = g, through:

Gii = Giip—1 ; t=1,...,n—=2 ; j=0;
i, Gi—1j-1+ Gi—in—1qo; ; ¢=1,...,n—2 5 j7=1,...,n—1

Since the matrix-vector operation in Equation (3.1) requires exactly n? mod 2 multi-
plications, the space complexity given through (3.7) can be further specified as:

#AND = n? (3.9)
#XOR > n®—1, (3.10)

where Equation (3.10) is fulfilled with equality, if the field generator is of the type stated
in Equation (3.6). The time complexity can be further specified into multiples of XOR
and AND gate delays. The delays will be denoted as Txor and Tanq, respectively. If it is
taken into consideration that each path through the multiplier contains only one mod 2
multiplier, it follows directly that the overall delay can be upper bounded by:

T < Tand + 2Txor[logy 1. (3.11)
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Using the extensions from above, it becomes possible to further specify the Mastrovito
multiplier. Table 3.1 is an improved version of Table 4.5 given in [Mas91]. It contains gen-
erating polynomials Q)(y) for the ground fields together with the space and time complexity
of multipliers in these fields. Both complexities are, unlike those in [Mas91, Table 4.5],
separated into mod 2 multipliers (AND) and mod 2 adders (XOR). The row headed by
Q(y) contains the positions of the non-zero coefficients of the primitive polynomials.

Example. We consider the multiplier in the ground field GF(2%), i.e. n = 4.
The field polynomial used is Q(y) = y* + y + 1. The multiplier can be implemented
with 16 AND gates and 15 XOR gates. This is the complexity needed for computing
the matrix vector product shown in Equation 3.5. The architecture has a time
complexity of 1 AND gate delay and 3 XOR gate delays.

3.1.2 Dual Base Multipliers
Architecture and Complexity

This section presents a multiplier which uses the dual base representation of one operand.
The algorithm on which the multiplier is based was first described by Berlekamp in [Ber82].
In the paper, which describes the implementation of a Reed-Solomon encoder, the algo-
rithm is applied to the multiplication of a constant field element with a variable one.
First, we recall the definition of a dual base. Let By, = {l,w,w? ..., w" '} be a
standard base for a field GF'(2"). A base By = {Ao, A1, A2, ..., Ap_1} is said to be a dual
base to B, iff:
vy )1, ifi=
TI(WAJ)_{ 0, ifi#j.
For the multiplier to be developed we represent the first operand A in the usual standard
base

(3.12)

2 —1
A=ay+wa +way+---+w" "a, 1,

and the second operand in the corresponding dual base
B - )\[]b[] + )\1[)1 + )\2[)2 +---+ )\nflbnfl.

Next, a formula for the multiplication of B (given in DB) with a base element w from the
SB will be derived. Consider:

Tr(ij) = Tr(a)j)\obo + wj)\lbl + wj)\QbQ + et wj)\n_lbn_l) == bj 3 ] == 0, 1, NN 1,
(3.13)
where the definition of the DB (3.12) was used. If the j-th element of the product wB is
denoted (wB);, we get

bj+1 ) j:(),].,...,TL—Q,

Tr(w"B) , j=n-1, (3.14)

(wB); = Tr(w (wB)) = Tr(w™'B) = {
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where Equation (3.13) was used twice, for the rightmost and the leftmost “=". Apparently
all elements (wB); except the highest one are obtained simply by a shift of the elements
of B. The coefficient (wB),, 1 can be obtained as follows. Let Q(y) =1+ ¢y + -+ +
¢u1y™ "' + y" be the binary field polynomial such that Q(w) = 0. Then

w" =1 + Q1w +---+ qnflwnila (315)

which can be used for computing

(wB)n,l = Tr(w”B) = TI'(((][] +qw+---+ qn,lwnfl)B),
= bot+qb 4+ +gp1bp1 = Qo B. (3.16)

The last term in Equation (3.16) is the dot product of the element B and the coefficients
of the field polynomial. A hardware implementation of this dot product has a complexity
of

C) = (hy(Q) —2) XOR > 1XOR, (3.17)

where h, (@) denotes the weight of the field polynomial, i.e. the number of coefficients
which are one.

Now we turn to the computation of the product C' = A - B. The operand B and the
product element C are both represented in DB, whereas operand A is represented in SB.
Starting from Equation (3.13) one obtains:

¢; = Tr(wC) = Tr(w’ AB) = Tr((w’ B)A). (3.18)
The first coefficient is then

co = Tr(BA) = Tr(ayB)+ Tr(aywB) + - - - + Tr(a, w" 'B)
= ayTr(B) + a,Tr(wB) + - - - + a,_, Tr(w" "' B)
= agby + a1y + -+ ap_1by_1
— AoB, (3.19)

which is the dot product of the two factor elements. Hence, the coefficient ¢; turns out
to be:
¢ = Tr((wB)A) = Ao (wB).

However, the term (wB) can be easily computed through Equation (3.14) by a left shift
of the coefficients and computing of (3.16). The same procedure is applied iteratively to
the other coefficients:

c; = Tr((w?B)A) = Ao (w(wB)),
s = Tr((WwB)A) = Ao (w(w(wB))),
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The formulas developed are well suited for a matrix description of a parallel version of
the multiplier. For this, each element will be denoted as a vector containing n elements:

bo by s by bn—1
EO by by e b1 Bo@ ZO
o= b by - BoQ (wB)oQ . 320
Cpn—1 : : n73: n72: (p—1
bp—1 Bo@Q -+ (W"°B)oQ (w"*B)o@

An example for a DB multiplier is given below:

Example. We consider multiplication in the field GF (2*). The field polynomial
is Q(y) = y* +y+1. Assuming that operand A = (ag, a1, az, a3) is given in standard
base and operand B = (by, by, b2, b3) is given in dual base, a multiplication C = A-B
is performed by

co bo b be bs ag
C1 o b1 bg b3 bo + bl al
Co o b2 b3 bg + bl bl + b2 a9
C3 bs bop+b1 by +by bo+ b3 as

The product element C' is also given in dual base coordinates.

The complexity of a hardware implementation of the DB multiplier is composed of the
complexity for performing the matrix-vector multiplication (3.20) and of the complexity
for computing the products (w/B), j = 0,1,...,n—2. The complexity for Equation (3.20)
is

Cy = n?AND + n(n — 1)XOR = n*AND + (n* — n)XOR.

The complexity C; for the computation of one dot product is given in Equation (3.17).
Hence the over all complexity C' = (n — 1)Cy + C is:

#AND = n? (3.21)
#XOR = (n®—n)+ (n—1)(ha(Q) —2) > n* - 1. (3.22)

The number of AND gates required is, independent of the field polynomial, equal to n?.
For the XOR complexity is equality given, iff an irreducible trinomial is used as field
polynomial, since then h,(Q) = 3. The application of a trinomial in the example above
leads therefore to 4> = 16 AND gates and 4 — 1 = 15 XOR gates. It seems interesting
that the lower complexity bound of the dual base multiplier is exactly the same as the
one of the standard base multiplier introduced in the previous section. Moreover, both
architectures achieve the lower bound exactly when (certain) trinomials are used as field
polynomials.

Another issue which must be addressed if the complexity of a DB multiplier is eval-
uated, is the different representations of the inputs and the output. The architecture
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requires one operand, in our derivation A, to be in SB, and the other one, in our deriva-
tion B, to be in DB. The product element C'is again represented in DB. As a consequence,
it is likely that base transformations are required in actual systems which apply the ar-
chitecture. Thus the complexity of the transformations must be taken into account. The
base transformations are linear mappings which can be represented as the multiplication
of a binary n element vector with a binary n xn matrix. However, in [GG93, Theorem 5.2]
a condition is stated for which the base transformation is a mere permutation of the co-
efficients. The condition is, for extension fields of GF'(2), that the field polynomial is
an irreducible trinomial. Since permutations can be hardwired in VLSI implementations,
they require no extra gates. According to our complexity measure, which is a gate count,
the permutation thus do not add to the complexity.

Consequently, the lower bound in Equation (3.22) is not only exactly fulfilled if Q(y)
is a trinomial, but also the multiplier does not require any arithmetic operations for the
base transformation. Hence, (3.22) is the exact overall measure for the number of XOR
gates needed for the multiplier if Q(y) is a trinomial.

A Modification

In this subsection a somewhat modified version of the dual base multiplier introduced
above is developed. In the modified algorithm, the element represented in SB will be
cyclicly updated, rather than the input element in DB. For the modified architecture
similar operations as for the one above, shift and add, will be used. Moreover, the
modification will not alter the complexity.

In the beginning, multiplication of the element A = ag + wa; + w?as + -+ -+ w" ta,_,
in SB with the base element w is considered. Again, the field polynomial is Q(y) =
L+ qy+- + g1y '+ y", such that Q(w) = 0. Then Equation (3.15) holds. The
multiplication wA is:

wA = wayg+wia + -+ 0" g + Wy,
= p1 4 (1@ +ao)w + -+ (@no1Gn1 + Gno)" . (3.23)
The operation wA requires a cyclic right shift of the vector (ap,ai,...,a, 1) and an

addition of the shifted vector with the vector a,_1(-,q1,- ., ¢n_1). The complexity of this
operation is
C] = (hy(Q) — 2) XOR > 1XOR,

which is exactly the complexity which was required for the operation wB, where B is
given in DB.
In order to compute the product C' = A - B, where C' is in dual base, we consider

¢; = Tr(w’/C) = Tr(w’ AB) = Tr((w’ A) B),

which is similar to Equation (3.18), except that the parentheses in the rightmost expression
are placed differently. Then, according to Equation (3.19), the first coefficient of the
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product is
co =Tr(AB) = Ao B,

where “o” denotes the dot product of the two factor elements. Hence the coefficient ¢;

turns out to be:
c1 = Tr((wA)B) = (wA) o B.

The term (wA) can be computed through Equation (3.23). The same procedure is applied
iteratively to the other coefficients:

¢ = Tr((w?A)B) = (w(wA)),oB
s = Tr((wA)B) = (w(w(wA))) o B,

¢, = Tr((wWA)B)=(w(--+(wA)-++)) o B. (3.24)

Equation (3.24) is a recursive description of the multiplier. Since every vector element
requires a dot product, the complexity for the n Equations (3.24), j =0,1,...,n— 1 is:

C) = n®AND + n(n — 1)XOR = n*AND + (n* — n)XOR.
The overall complexity can now be obtained through C' = (n — 1)C} + C:

#AND = n? (3.25)
#XOR = (n*—n)+ (n—1)(he(Q) —2) > n* — 1. (3.26)

Unfortunately, a general matrix description for a parallel multiplier such as developed
in the previous subsection in Equation (3.20) is not as elegant in this case. However, an ex-
ample of the modified multiplier makes the binary operations involved in Equation (3.24)
more obvious.

Example. We consider multiplication in the field G F(2*). The field polynomial
is Q(y) = y* +y + 1. The operand A = (ag, a1, az,a3) is given in standard base, the
operand B = (bg, by, be, b3) is given in dual base, and the product C = (cg, ¢1, co, ¢3)
will be produced in dual base coordinates. The basic operation wT', T' = (tg, t1, t2, t3)
is for this example

wl = (t3, to, tl, t2 + t3).

A matrix description of the multiplication C' = A - B is thus:

Co ao a1 a2 ag bo
(4] o as ap ay a9 + as bl
C a as + as as ap a1 + ag + ag bg
c3 a1 +az+a3 az2+az a3 ag+ay+ a2+ as bs

It should be noted that every row of the matrix introduces only one new addi-
tion for the rightmost entry, the other elements are simply a shifted version of the
corresponding row above.
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The complexity of the modified multiplier given in (3.25) and (3.26) is exactly the
same as the complexity of the multiplier introduced earlier. Moreover, the lower bound of
the XOR complexity is for both multipliers reached with equality, if the Hamming weight
hy(Q) is minimal, i.e. if the field polynomial is a trinomial. The problem imposed by a
possibly necessary base transformation remains the same for the modified multiplier.

The architectural differences between the two multipliers can be summarized as follows:

e The modified multiplier updates the input vector given in SB rather than the one
given in DB.

e The update operation requires a cyclic right shift of the vector elements rather than
a non cyclic left shift.

e The update operation adds values to certain elements of the input vector, whereas
the original architecture adds certain vector elements in order to obtain the new
element b,,_.

However, it seems as though the differences do not lead to significant improvements/draw-
backs in the implementation of either architecture, so that both architectures can be
considered to be of similar “quality.”

3.1.3 Normal Base Multipliers

A circuit design for the multiplication of two finite field elements represented in a normal
base (NB) (w,w?,w?,...,w?" ") was first described by Massey and Omura in a US patent
application [MO84]. Due to their inventors, NB multipliers are sometimes referred to as
“Massey-Omura multipliers.” Although the original description focuses on a bit serial
multiplier, parallelization is straightforward. A parallel architecture can for instance be
found in [WTS*85]. In the sequel, we will first develop the multiplier architecture and
then comment on its complexity.
Consider two field elements A, B in NB:

A = aow+ aw? + apw® 4+ + an_leH, (3.27)

B = bow + b1w2 + b2w22 + -+ bn,1w2n71. (328)
One property of the NB representation is that squaring of field elements is merely a cyclic
shift of its coefficients:

A2 = apw+agw® + aw? 4+ apaw? (3.29)
-1

B* = by qw+bow? + bw? 4o by pw? (3.30)
The field multiplication of two elements yields the product element C":

C = A-B (3.31)

_ 2 22 2n
= Cow + W + cow® + -+ Ccp W
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First, only the highest coefficient ¢,,_; is considered. It is an as yet unspecified, bilinear
function of the two sets of input coefficients a;, b;:

Cp—1 — f(ao, A1y...,0p_1; bo, bl, Ceey bn—l)- (332)

The binary function in (3.32) is sometimes referred to as “f-function.” If now both sides
of Equation (3.31) are squared:

C? = A*.p? (3.33)

_ 2 22 2"
= Cp_1W+ cw” + Cw” + -+ Cpow R
we obtain an expression similar to (3.32) for the coefficient ¢, _o:
Cp—2 = f(an—la ag, - -, Ap-2; bn—l; bo, SR bn—Z)- (334)

The function in Equation (3.34) is the same as the f-function in (3.32) but with the two
sets of input values (ag,a1,...,a,_1) and (bg,b1,...,b,—1) cyclicly shifted. The other
coefficients (¢, _3,¢p 4,...,¢o) can also obtained from the f-function through the same
procedure, i.e. through repeated cyclic shifts of the input values.

Rather than providing general formulas for obtaining the f-function for a given field
polynomial Q(y), the method will be explained by an example.

Example. The field considered is GF(2?) with Q(y) = y*+y*+ 1. The normal
base is (w®, w!,w?, w), with Q(w) = w* + w? + 1 = 0. Multiplication of two field
elements C = A - B in normal base yields:

C = c30°+ w4+ 1w’ + cw
A-B= (a3w8 + a2w4 + a1w2 + Cl[)u)) (b3w8 + b2w4 + b1w2 + bow)
= w12(a2b3 + a3b2) + wlo(a1b3 + a3b1) + wg(agbo + aobg)
+w8(a2b2) + w6(a2b1a1b2) + w5(a2bo + aobg)
+w4(a1b1) + w3(a0b1 + albo) + w2(a0b0) + w(a3b3)

The multiplication has created the elements (ww, wl w? Wb, Wd, w3) which have to
be expressed in terms of the normal base:

w = 4oty w2,

w = + w2,

w8+w4+w,

w =
W= Wt w4 w,
W= Wt + w,
W= Wttt w.
Hence, the coefficient c3 is:
cs = [lao,a1,a2,a3;bo,b1,b2,b3)

= agbg + azby + a1bs + agbi + aszby + apbs + asbs + agbr + a1 bg. (3.35)

The sum of products in Equation (3.35) is the f-function which was to be determined.
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It is obvious that normal base multiplication for a given field order is determined by
the corresponding f-function. In turn, the complexity of the f-function determines the
overall complexity of the multiplier. The number of products, C,,, of the f-function is
often taken as a complexity measure. In the example above C,, = 9. Since the f-function
is determined by the selected field polynomial Q(y), the complexity of the NB multiplier
is solely a function of the field polynomial Q(y) for a given field GF(2"). Similarly to
the situation for the standard base multiplier, we are now left with the choice of a field
polynomial that results in a low complexity multiplier.

Mullin showed in [MOVW89] that the complexity is lower bounded by C,, > 2n — 1.
NB with C,, = 2n — 1 are said to be optimum normal bases. In [Gei93a] NB for fields
GF(2"), 2 < n < 60, are listed. In this reference, the smallest possible complexity was
determined for most field orders 2". The complexity for a hardware realization of the
f-function is:

Cn AND + (C,, — 1) XOR.

The overall gate count of a parallel realization of a NB multiplier is thus lower bounded
by:

#AND = nC, >2n* —n, (3.36)
#XOR = (n—1)C,>2n*—3n+1. (3.37)

The complexities (3.36) and (3.37) of a parallel NB multiplier are approximately twice
as high as the complexities of the SB multiplier from Mastrovito, if they are compared with
the corresponding lower bounds (3.9) and (3.10). However, finite field architectures based
on NB are still attractive, in particular for cryptographic schemes which are based on the
assumed difficulty of the discrete logarithm problem [Odl84]. The basic operation to be
performed in these schemes is exponentiation in rather large fields; typical are fields with
100 < n < 1000. NB architectures are inherently advantageous for squaring operations,
because the cyclic shift which performs the squaring requires hardly any area in VLSI
implementations. Since most algorithms for fast exponentiation require repeated squar-
ing and multiplication, a trade off between the good squaring and costly multiplication
behavior might be found, which suggests the use of NB architectures [GG90].

3.2 Non Traditional Multipliers

In this section several finite field architectures reported in technical literature are in-
troduced, which are not “traditional” according to the classification used in this thesis.
Except the multiplier which will be introduced first, all architecture take advantage of
the decomposition of Galois fields into subfields.

Two of the four architectures which will be mentioned hereafter are relevant to the the-
sis, and will therefore be described in some detail. They are due to V. Afanasyev from the
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Institute for Problems of Information Transmission (IPPI), Moscow. The architectures are
described in two remarkable, though brief, publications [Afa90] [Afa91]. Unfortunately,
it seems as though the architectures have not yet been recognized by the international
scientific community as they deserve to be. Some of the subsequent chapters share some
ideas with Afanasyev’s architectures, although they were developed independently. In
addition to these two architectures, a method for efficient table look-up and a normal
base multiplier, both of which apply arithmetic in subfields, will be briefly described. An
inverter over extension fields will be introduced in Subsection 3.3.3.

3.2.1 Multiplication in GF(2*) using the Karatsuba-Ofman Al-
gorithm

In [Afa90]' a method is introduced which allows the application of the Karatsuba-Ofman
Algorithm (KOA) [KO63] [Knu81] to the multiplication of finite field elements from
GF(2%). The elements are represented in standard base. The architecture optimizes
the polynomial multiplication, which is the major part in standard base Galois field
multiplication. The KOA allows polynomial multiplication with a reduced number of
multiplications, while the number of additions is increased for short polynomials. Hence,
multiplication must be more costly than addition. A straightforward application of the
KOA requires log, k iteration steps for polynomials of degree k¥ — 1. For a detailed de-
scription of the KOA, refer to Section 5.2.

Since multiplication and addition are approximately both as costly in the field GF(2),
the KOA can not be applied to multiplication of elements from GF(2F) in a straightfor-
ward manner, since the elements are polynomials with coefficients from GF(2). However,
the method in [Afa91] suggests to apply only § < log, k iteration steps of the KOA to
the field elements. As a consequence, the elementary operations are multiplication and
addition with polynomials of degree (m/2°) — 1. For the pure polynomial multiplication,
this results in a complexity of:

3 [
#AND = (Z) k?, (3.38)
4XOR < KA 1248t o skt (3.39)

270 2-0
The second step which is required to perform SB multiplication is reduction modulo
the field polynomial. The architecture uses the polynomials suggested by Mastrovito
[Mas91] which can also be found in Table 3.1.
The overall complexity of the architecture is considerably better than the complexities
of the traditional multipliers introduced earlier. In particular, the gate count is for most
cases well below the k2 bound. However, the architectures developed in Chapter 5 and

!The method is also described in the later reference [Afa91].
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Chapter 6, which apply the KOA for multiplication in composite fields, perform somewhat
better in terms of gate count.

The architecture is also highly modular, since all arithmetic is performed with the two
kind of modules. One type of module provides multiplication of polynomials of degree
(m/2°) — 1, the other type provides addition with these polynomials.

3.2.2 Multiplication in Tower Fields

In reference [Afa91] a method for multiplication in finite fields is developed. The method
is based on field extensions of degree two.

The elementary operation is the following. We consider a field GF'(27) with a field
polynomial of type P(x) = 22 + x + po (see Theorem 11 for proof of existence.) Multipli-
cation of two elements A, B € GF'(27) can be performed through

C(z) = A(z) - B(x) = (a2 + ap)(byz + by),
= (aobo + poarby) + z([ar + aol[by + bo] + aobo), (3.40)

which requires 3 general multiplications, 4 additions and 1 constant multiplication with
po. All operations refer to arithmetic in the subfield GF(q).

The basic idea of the method is to decompose the field GF(2¥) of operation into
subfields with (multiple) extensions of degree two. This means that for k = n2° | the field
GF(2%) is decomposed into ¢ subfields of the form

GF@2Y) = GP((--- ((2")*)") 1)), (3.41)

Fields of the form (3.41) are referred to as “tower fields.” For multiplication in tower
fields, Formula (3.40) can be applied recursively.

The space complexity of this architecture is remarkably low. The table given in [Afa91]
contains the gate count for different decompositions of the fields GF(2®) and GF(2').
For the field GF(2®), the best result is achieved with § = 1; the gate count is 65 XOR /
48 AND. For the field GF(2'°%), the best field decomposition is found to be § = 2 which
yields a gate count of 234 XOR / 144 AND. To the author’s knowledge, the latter gate
count is the lowest one for parallel finite field multiplier reported in technical literature.
Compared to the architectures in Chapter 6, the tower field multiplier has almost exactly
the same count for the fields with £ = 8,16. This can be seen by considering Table 6.1
and Table 6.2, respectively.

Although the gate count is extremely low, the architecture is somewhat lacking the
modularity which is inherent in the architectures which apply the KOA. Both types of
multiplier architectures that use the KOA, the one given above in Section 3.2.1 and
the multipliers over composite fields introduced in the subsequent chapters, require only
arithmetic modules from one subfield. On the other hand, the tower field multiplier
requires arithmetic modules from ¢ different subfields, thus increasing the number of
different modules.
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3.2.3 Other Architectures

In this subsection references to two more schemes are provided which use subfields of
Galois fields. Since the schemes are less relevant for the architectures to be developed in
the thesis, they will only briefly be mentioned.

The first architecture is by Pincin [Pin89]. It is a parallel normal base multiplier over
GF(2F) which uses arithmetic in subfields. The architecture is suited for a decomposition
in multiple subfields, which are named “descending chain” of fields. For fields GF(2%),
the computational complexity of the architecture is of order O(m?*32).

The second algorithm is by Hsu et al. [HTRGS88]. It deals with the use of a subfield
GF(2%/?) for performing a table lookup in the field GF(2%). Unlike the architecture
described previously, the algorithm uses table lookup for all operations in the subfield. In
one extensive example developed in the reference, a VLSI architecture for table lookup
in the field GF(2®) is given which occupies about half the area of a straightforward
implementation.

3.3 Inversion

3.3.1 Direct Inversion over GF'(2")

To the author’s knowledge there are only a few schemes for parallel, or direct, inversion
over Galois fields GF'(2") reported in technical literature. The majority of the publi-
cations deals with bit serial architectures (see e.g. [Fen89], [HWB92a], or [KRV93]| for
recent references.) One recent bit parallel architecture was briefly proposed in [Mas91]
by Mastrovito. This architecture will be used for the inverter over composite field from
Chapter 8. Another method for direct inversion was described in an early paper by Davida
[Dav72]. It will also be described briefly.

The method introduced in the sequel is based on the inversion of the product matrix
of the Mastrovito multiplier, introduced earlier. It is described in [Mas91, Section 9.2].
From the matrix Equation (3.1), we can derive

ag 1
Zfl aq o 0
Anp—1 0

Moreover, we know from Equation (3.2) that the first column of Z contains the co-
efficients of the element which generated the matrix. Obviously, this element is A7! =
(ay,a’,...,al, ;)" in the equation above. Hence the first column of Z~! is filled with the
coefficients of A’s inverse.

In order to perform inversion in parallel, the general equations for the coefficients of

the first column of Z~' must be derived. There are two method for matrix inversion
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available. The first one solves a system of linear equations, the second one is based on
the computation of adjoints. Both methods are computationally costly; the solution of
linear equations is of order O(n?), the computation of adjoints is of order O(n!).

For the inverter over composite field to be developed in Chapter 8, fast parallel invert-
ers in small subfields GF(2") are required. Although matrix inversion based on adjoints
is potentially more complex, we found it better suited for the computation with Mathe-
matica, a program for symbolic computation [Wol88]. For each field GF(2") we computed

a set of n equations for the coefficients af, i = 0,1,...,n — 1. We used the matrices Z as
entries for the computation. The coefficient a; is obtained through
U/{ _ ad.j[],i(z)
b det(Z)

However, since the inverse of Z always exists, the expression det(Z) is always equal to
one and needs not to be computed. The coefficient a; can thus be computed through

a;' = adjo,i(z)-

The adjoint is a determinant of order (n — 1) x (n — 1). Mathematica was able to
determine the equations for direct inversion for fields up to n = 8. However, the equations
for n = 8 were found to be too complex, so that Appendix A lists only equations for fields
GF(2"), n < 7. The equations provided are in “raw” form, i.e. the contain redundancies
and should be further simplified for actual implementations. The field polynomials used
are the same as listed in Table 3.1.

In [Dav72] another method for direct inversion is introduced. It is also based on
matrix description. However, the resulting system of equation is of degree 2n — 1. The
corresponding matrix is sparse. Unfortunately, the author does not comment on the
computational complexity required for solving these equations. The only example given
is for the small field GF'(2").

3.3.2 Inversion in Composite Fields

Itoh and Tsujii proposed (briefly) in [IT88, Section 6] a new method for the inversion
of elements of composite fields. Their approach assumes a normal base representation of
the field elements. The basic idea is that inversion in the field GF((2")™) is replaced by
inversion in the ground field GF(2"). For the latter one an approach based on Fermat’s
Theorem is used.

The algorithm will be described in detail in Chapter 8, where a parallel inverter for
composite field elements in standard base is developed.

3.3.3 Inversion in Tower Fields

The following scheme also operates over multiple extension fields of GF(2"). An efficient
parallel architecture for computing the multiplicative inverse of finite field elements was
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first proposed in 1988 by Morii and Kasahara in [MK89]. The same algorithm was also
proposed by Afanasyev in 1991 [Afa91], apparently unaware of the earlier publication.
The method reduces the problem of inversion in the Galois field GF(2*) to inversion
in the subfield GF(2/2). The core part of the architecture is the following.
Let us consider an element A from GF((2¥/2)?), represented in SB:

Az) = ap + a1z; ap,a; € GF(2F/?).

The field polynomial is of the form P(z) = 2? + z + po, where py € GF(2F/2). If the
inverse of A is denoted as B = A~ !, the equation

A-B = (CLO + al.’L’)(bo + blzr) mod P(.’L’)
[aobo + poarbi] + [aohy + aibo + a1b]x
L, (3.42)

must be satisfied, which is equivalent to the set of two linear equations in by, b; over
GF(2k/?):

e T el S o)) 5.5
The solution of (3.43) is
= } (3.44)
b= Srarmd

The variables by, b; are the coefficients of A’s inverse with respect to the subfield G F'(2+/2).

The computation of the two Equations (3.44) requires 1 inversion, 3 general multiplica-
tions, 2 additions, 1 constant multiplication with py and 1 squaring. All these operations
are performed in GF(2¥/2). The main advantage of this algorithm is that the inversion
is now performed in the subfield, which is supposed to be considerably easier than in the
field GF(2%). The overhead to be paid for this are the other arithmetic operations. Both
references recommend a recursive application of the algorithm, which leads to tower fields
as introduced in Equation (3.41).

Neither reference provides gate counts for inverters over certain fields. However, in
[Afa91] it is stated that the complexity is of order O(m!°¢23 log m) under certain conditions
regarding the coefficient pyg.



Chapter 4

Parallel Constant Multipliers

4.1 Constant Multipliers over GF(2")

In this section an efficient scheme for performing parallel multiplication of an arbitrary
element from the field GF(2") with a fixed, i.e. constant, element is developed. The
results to be obtained will be used in most of the subsequent chapters, in particular for
the general multipliers in Chapters 5 and 6, and for the inverter introduced in Chapter 8.
Moreover, multiplication with a constant field element is extremely important for Reed-
Solomon encoders, see e.g. [LC83]. The algorithm which will be introduced here can be
directly applied to Reed-Solomon encoders over fields GF'(2").

First, two greedy algorithms will be developed. The algorithms minimize the number
of XOR gates which is required to implement constant multipliers. Results on the perfor-
mance of the algorithms compared to a straightforward approach will be provided. In the
appendix, complete lists of optimized complexities for multiplication with all elements
from the fields GF(2"), n = 4,5,...,8 are given, which can, for instance, be used in
Reed-Solomon encoders over fields GF'(27).

4.1.1 Two Suboptimal Algorithms

The general approach taken here is the application of the Mastrovito multiplier, intro-
duced in Section 3.1.1, to constant multiplication. This approach was previously described
in [Mas91, Chapter 5.1.5]. However, the major concern of this section is the application of
a greedy, i.e. locally optimum, algorithm which optimizes the gate count of the constant
multipliers.

Equation (3.1) is a matrix description of the general multiplication in a field GF(2").
The product matrix Z is a function of the (variable) element A and the field polynomial
Q(y). If the element A is now chosen to be constant, a binary product matrix with fized
entries is obtained. The multiplication with the constant A is thus entirely described by
the binary matrix. We may explain the scheme through an Example.

32
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Example. Let Q(y) = y’ +y + 1 be the primitive polynomial generating
GF(27). The primitive element of the field is denoted w, where Q(w) = 0. The
multiplication of a variable field element B = (b, by, ..., bs) with the fixed element
A = w* = (1111100) is described by:

C = w'B=1B (4.1)

0 bo + b3 + by + b5 + bg

bo bo + b1 + b3

by bo + b1 + by + by

by + b1 + by + b3 + by

: bo + b1 + by + b3 + by + b
bg by + by + by + by + bs

ba + b3 + by + b5 + bg

== OO

— = O

_= == O = O =

——_ O =k O O

_ o = O o o
Il

Il
S O = ==
S == =

Each operation “+” in (4.1) denotes a mod 2 addition, i.e. a two input XOR.

In the sequel we consider the space complexity of constant multiplication. As the
example from above shows, the only operation required for constant multiplication is
modulo 2 addition. Hence we define the space complexity as the number of XOR gates
needed for the multiplier.

In [Mas91, Chapter 5.1.5] a formula for the average complexity for constant multipli-
cation in the field GF(2") is developed:

— n2
Censt = 5 0 [XOR]. (4.2)

This value is only an estimate which presumes product matrices Z, which have on average
exactly n?/2 entries. However, we determined the actual complexities for fields n < 10
and found the estimation accurate.

Equation (4.2) is the average of the straightforward realizations of all 2" binary ma-
trices of type (4.1). For instance, a straightforward realization of the constant multiplier
in the example above requires 26 XOR gates, since there are 26 modulo 2 additions to
be performed. However, it is rather obvious that there are redundancies in the example
above, which allow a reduction of the number of XOR gates. For instance, a straightfor-
ward realization of the matrix in (4.1) would compute the sum (by + b;) four times, since
it appears in the rows 2,3,4, and 5. In the sequel, two greedy algorithm will be developed
which finds suboptimal solutions.

The reduction of the number of XOR gates is a optimization problem on Boolean
equations of form (4.1). The cost function of the optimization problem is the number of
mod 2 additions required to realize a set of n equations in n variables b;, 7 =0,1,...,n—1,
where each equation is a sum over certain b;. The greedy algorithms operate iteratively.

The first algorithm computes in each iteration step the occurrence of all possible pairs
b +b;, 1,7 =0,1,...,p, ©« # j. The most frequent occurring pair by + bopro can be
precomputed. Thus, a locally optimum solution is found. The pair is considered a new



Constant Multipliers 34

lastcol := n-1;
M := zmatrix;
DO BEGIN

hmax := 0;

FOR i := 0 TO lastcol-1 DO BEGIN
FOR j := i+1 TO lastcol DO BEGIN
coli := GETCOLUMN(M,1i);
colj := GETCOLUMN(M,j);
IF (HAMMINGWEIGHT (coli & colj) > hmax) BEGIN

hmax := HAMMINGWEIGHT(coli & colj);
maxi := 1i;
maxj := j;

END;

END;

END;

IF (hmax > 1) DO BEGIN
mxcoli := GETCOLUMN(M,maxi);
mxcolj GETCOLUMN (M, maxj) ;
newcol := maxcoli & maxcolj;
PUTCOLUMN (M,newcol,lastcol+1);
PUTCOLUMN (M, ! (newcol & maxcoli),i);
PUTCOLUMN (M, ! (newcol & maxcolj),j);
lastcol := lastcol+l;

END;

WHILE (hmax > 1);

Pseudo Code of the algorithm Greedy 1

element b, = bypy1 + bopr2, and the matrix is extended such that it also contains the new
element. Again, in the next iteration step all possible pairs b; +b;, ¢,7 =0,1,...,p+ 1,
i@ # j are investigated, including the new element b,. The algorithm eventually terminates
when all possible pairs occur only once. A more detailed explanation of the first greedy
algorithm is given by the pseudo code description.

The pseudo code assumes the function GETCOLUMN(M,1i), which returns the column
i of the passed matrix M, the function PUTCOLUMN (M, col,i), which replaces the column
i with the new column col, and the function HAMMINGWEIGHT (col), which returns the
Hamming weight of the passed column vector col. The operator & performs bitwise
logical AND, the operator ! computes the bitwise inverse of its argument. The algorithm
in the pseudo code operates iteratively on the matrix M. In each iteration step one new
column is appended to the matrix. This new column refers to the sum b; 4 b; which can
be precomputed with one XOR gate. The new column has hmax entries. At the same
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time, the columns maxcoli and maxcolj are updated through a logical AND with the new
column, thus eliminating 2 hmax entries. Each elimination refers to the saving of one XOR
gate. Hence, every iteration step saves 2hmax — hmax — 1 = hmax — 1 XOR gates. The
number of entries is in each iteration step reduced by hmax. This property together with
the fact that the algorithms terminates if there are no column pairs with hmax > 1 left,
assures convergence of the algorithm.

To clarify the understanding of the algorithm, we apply the first greedy algorithm to
the matrix belonging to the example from above.

Example. We reconsider multiplication with the element A = w*” = (1111100)
from GF(27), with Q(y) = y” + y + 1 being the field polynomial. In the example
above, a matrix description of the multiplication of A with the variable field element
B = (by,by,...,bs) was developed:

bo + bs + by + bs + bg

by + b1 + b3
b0+b]_+b2+b4
C=w""B=| by+by +by+b3+bs

by + b1 + by + b3 + by + bg
bi + bo + b3 + by + b5

by + bs + by + bs + bg

The straightforward implementation of the constant multiplication requires 26 ad-
ditions. The summation from above can also be represented by the binary matrix
Z, which is the initial matrix for the greedy algorithm.

by b

—_
>
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bs by

w
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ot
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1
1
1
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O === == O
el e e el = A )]
—_ = = = O =
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—_ O = O O O =

In the sequel the iterations of the greedy algorithm on the matrix are displayed.

1. In the first iteration step it is found that the addition by + by is to be pre-
computed. The value hmax equals 4, which is the Hamming weight of the
ANDed first and second column. The sum of both is considered a new element
b, = by + b1. The columns 0 and 1 are updated and the new column is added
to the matrix.
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bp b by b3 bs by bg U
1 0 0 1 1 1 1 O
0o 0 0 1 0 0 0 1
0o 0 1 0 1 0 0 1
0 0 1 1 0 1 0 1
o o0 1 1 1 0 1 1
0 1 1 1 1 1 0 0
o o0 1 1 1 1 1 O

2. The second iteration step determines the new element b = by + bs.
bop by by by by bs bg b, by
1 0 0 1 1 1 1 0 O
0o 0 0 1 0o 0 0 1 0
0o 0 1 0 1 O O 1 O
o 0 0 0 0o 1 0 1 1
o 0 0 0 1 0 1 1 1
6o 1 0 0 1 1 0 O 1
o 0 0 0o 1 1 1 0 1

3. The third iteration step determines the new element by = by + bs.
bo by by by by bs bg by by by
1 0 0 1.0 0 1 0 0 1
o 0 0 1 0 0O O 1 0 O
o 0 1 0 1 0O O 1 0 O
o 0 0 0 o 1 0 1 1 O
o 0 0 0 1 0 1 1 1 O
o 1 0 0 O O O 0 1 1
o 0 0 0 0 0O 1 0 1 1

4. The forth iteration step determines the new element b}, = by + ..
bo b by b3 bs by bg UL by by b
1 0 0o 1.0 0 1 0 O 1 O
o 0o 0 1 0 0O O 1 0 0 O
oo 1 0 0 0O O 0 0 0 1
o 0 0 0 o0 1 0 1 1 0 O
o 0 0 0 0 01 0 1 0 1
6o 1 0 0 O O O O 1 1 o0
o 0 0 0 0 o 1 0 1 1 O

5. The fifth iteration step determines the new element b}, = bs + bj.
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bo by bo by by bs bg b, by by b b
1 0 0 L 0 0 1 0 0 1 0 0
0O 0 0 1 0 0 0 1 0 0 0 0
0O 0 1 0 0 0 0 0 0 0 1 0
0O 0 0 0 0 1 0 1 1 0 0 0
o0 0 0 0 0 0 0 0 0 1 1
0O 1.0 0 0 0 0 0 1 1 0 0
o0 0 0 0 0 0 0 0 1 0 1

The updated matrix does not contain any column pairs with an ANDed Ham-
ming weight that is greater one. Hence the algorithm terminates hereafter.

If the elements (b%, b, . .., b}, ) are precomputed in exactly this sequence, one obtains
the following equations for the constant multiplication

bo + b3 + (ba + bs) + bg
(bo + b1) + b3

((bg + b1) + ba) + b2
C=w""B=| (by+by)+ (b +b3) + b3 ,
((bo + b1) + ba) + ((ba + b3) + bg)

b1 + (by + bs) + (b + bs)

((bg + b3) + bg) + (bg + bs)

which can be computed with 16 modulo 2 additions. The greedy algorithm has thus
reduced the number of XOR gates needed for a hardware implementation from 26
to 16.

The final complexity can be obtained from the matrix as follows. The entire Hamming
weight, i.e. the number of all entries of the binary matrix after the last iteration step minus
n, the number of rows, is the complexity of a pure matrix vector multiplication. In the
case above we have 18 — 7 = 11 additions. In order to get the exact overall complexity,
the number of precomputed terms (5) must be added, which results in 11 + 5 = 16.

The greedy algorithm has three properties which makes its application attractive:

1.

The algorithm is monotone, i.e. the cost function (# XOR) is reduced in every
iteration step.

The algorithm always converges, as was stated above.

. The algorithm is fast. Running on an IBM PS2/486, the algorithm optimized the

matrices for all elements from the field GF(2') in less than 2 hours, which is an
average time per matrix of less than 220 msec.

As the example above showed, relatively large improvements are possible for certain
field elements. However, it must be emphasized that the algorithm is only locally op-
timum and does not guarantee globally optimum solutions. Before the performance of
the algorithm for actual Galois fields GF(2"), n = 4,5,...,16, is compared with the
straightforward approach, an improved version of the algorithm will be introduced.
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One rather obvious improvement which can be implemented, is that the greedy al-
gorithm checks all possible pairs of rows which possess a maximum hmax. For instance,
in the example above, four pairs (by + by), (b1 + b2), (b2 + b3), and(by + by) were possible
candidates for precomputing in the very first step, since all pairs had a hmax of four.
Hence, a second algorithm was implemented, which checked all possible pairs that have a
maximum hmax. The principal structure of the algorithm is the same as the one given in
the pseudo code description above. In order to add the new feature, the algorithm was
changed such that it works recursively.

Example. Application of the second greedy algorithm to the optimization
problem from above:

bo + b3 + by + b5 + bg
bo + b1 + b3

bo + b1 + b2+ by
C=w""B=| by+ by + by + b3+ bs ,
by + b1 + b2 + b3 + by + bg
b1 + by + b3 + by + by

by + b3 + by + b5 + bg

yields another sequence of precomputations. The best sequence found is:

bl7 = bg+ by,
by = b3+ b,
bé = by + b3,
’10 = bg + bg,
o= bty
1o = bz+bh.

Application of the precomputations to the constant multiplication gives the opti-
mized equations:

bo + ((b3 + bs) + bg) + bs
(bo + b1) + b3)

(bo + b1) + b2) + bs
(b0+b1)+b3)+(b2+b5) ,
(bo + b1) + b2) + ((bs + bs) + bg)
b1 + (b2 + b5) + (bg + b4)

(bo + bs) + ((bg + bs) + bg)

C=uw"B=

A~ N SN N

which corresponds to a realization with 6 +8 = 14 XOR gates. Hence the new algo-
rithm gives an improvement of 2 XOR gates compared to the first greedy algorithm
and an improvement of 12 XOR gates compared to the straightforward approach.
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n Q(y) Censt Greedy 1 Greedy 2

XOR | XOR rel. impr. | XOR rel. impr.
4 4,1,0 4 3.3 17.5% 3.3 17.5%
5 5,2,0 7 5.4 22.9% 5.3 24.3%
6 6,1,0 12 8.1 32.5% 7.9 34.2%
7 7,1,0 17 11.3 33.5% | 11.0 35.3%
8 8,5,3,2,0 24| 14.9 37.9% | 14.4 40.0%
9 9,4,0 31| 19.2 38.1% | 18.5 40.3%
10 10,3,0 40 | 23.8 40.5% | 22.8 43.0%
11 11,2,0 49 | 28.7 41.4%

12| 12,8,5,1,0 60 | 33.3 44.5%
13| 13,7,6,1,0 71| 39.3 44.6%
14| 14,9,7,2,0 84 | 454 46.0%
15 15,1,0 97 | 52.9 45.5%
16 | 16,11,6,5,0 | 112 | 59.1 47.2%

Table 4.1: Comparison of the average complexity of constant multiplication in the fields
GF(2"): Straightforward vs. Optimized Solutions.

4.1.2 Experimental Results

In this subsection some experimental results of practical relevance regarding optimized
constant multiplication are given. First, a performance measure compares the two greedy
algorithms from the previous section with the complexity of the straightforward imple-
mentation. Second, the appendix lists the optimized complexity of constant multiplication
with all elements from the fields GF'(2"), n = 4,5,...,8.

The average number of XOR gates for constant multiplication in one field GF(2")
serves as a performance measure of the algorithms. The straightforward approach requires,
according to Equation (4.2), an average of C.,s; = n?/2—n XOR gates per multiplier. We
applied both algorithms introduced above, Greedy 1 and Greedy 2, to all elements of the
fields GF'(2"), n = 4,5,...,16, and computed the average number of modulo 2 additions.
The results are given in Table 4.1. For the fields n > 11, Greedy 2 was not fast enough to
optimize all elements, so that the fields 11 < n < 16 were only optimized with Greedy 1.

The table lists the field polynomial Q(y) next to the field exponent n. The column
headed by C.,, contains the average complexity of a straightforward realizations, com-
puted with Equation (4.2). The columns headed by Greedy 1 and Greedy 2 contain the
average optimized complexity (measured in XOR gates), and the improvement relative to
the straightforward approach.

It can be seen that both greedy algorithms reduce the space complexity considerably.
The algorithms gain more as n increases. This is due to the also increasing number of
entries in the n x n matrices, which results in a higher probability of redundancies.
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The actual complexities of multiplication with the elements from the fields GF'(2"),
n = 4,5,...,8 can be found Appendix B. The lists in the appendix can, for instance,
be used for the evaluation of the gate count of constant multipliers needed in an imple-
mentation of a Reed-Solomon encoder. Moreover, the lists give some insight into the
complexity behavior of different field elements. For example, it can be seen that the first
few w,w?, ... and the last few elements ..., w?" 3 w?" 2 (ordered by their exponents) of
each field have a gate count which is significantly lower than the average complexity. A
direct application for the optimized constant multipliers is given in the architectures of
multipliers over composite fields, introduced in the Chapters 5 and 6. It was found that
a careful choice of field polynomials P(z), which have coefficients that possess a small
constant multiplication complexity, leads to a significantly improved gate count for the
operation modP(zx).

4.2 Constant Multipliers over GF((2")™)

This section develops a general architecture of constant multipliers in composite fields
GF((2")™). We will focus on the development of an upper bound for the average com-
plexity of the constant multiplication. Results from the previous section will be used for
this. The composite fields considered are isomorphic to GF(2%), with k = nm. Every
element A of the composite field can be represented as a polynomial with m coefficients
from GF(2"):

A@) = apmg™  + o tag ; a; € GF(2™) 5 A € GF((2M)™). (4.3)
Multiplication of two field elements C' = A - B can be performed in standard base as
C(z) = A(z) x B(z) mod P(x), (4.4)

where P(x) is the field generator of degree m over GF(2"). In order to perform constant
multiplication we consider one element (polynomial) to be fixed. In the remainder of this
section we chose A as the fixed input element.

We can separate the two steps required for the field multiplication, which are ordinary
polynomial multiplication (x) and reduction modulo the field polynomial (mod). The
second step, modulo reduction, will be treated thoroughly in Chapter 5, Section 5.4.

We turn now to the first step, the multiplication of a polynomial A(z), with constant
coefficient from GF(2") with a polynomial B(z) with arbitrary coefficients. Theorem 8
states that a straightforward approach allows polynomial multiplication with m? multi-
plications and (m — 1)? additions. All arithmetic operations are performed in the ground
field GF(2"). Each multiplication involves one constant coefficient a; from A, and one
variable coefficient b; from B. Hence Equation 4.2 can be applied, which provides the
average complexity C,,s for one multiplication:

_ n2
® = Cepst = 5 [XOR/.
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Every addition involves two products of the form a; - b;, which are also variable since all
b; are variable. Therefore each addition is a general addition with a complexity of

@ =n [XOR].

Now an upper bound for the average complexity C,y for the multiplication of two
polynomials over GF'(2"), one with fixed and one with variable coefficients, can be stated:
Cpo = M*@+(m -1

2
= (m;b) —2nm +n [XOR] (4.5)
k2
= 5 2k +n [XOR].

The average complexity is of order O((nm)?). This is the same order as for the
constant multipliers in GF(2F), given in Equation (4.2). However, the complexity in
(4.5) over GF((2")™) behaves slightly better than the constant multipliers over GF'(2*),
k = nm, since a comparison of the linear terms shows that

—2k+n < —k,

for all £ and n.

In order to evaluate the complexity of the entire constant multiplication, the reduction
mod P(z) must be performed. This complexity depends heavily on the field polynomial
chosen. Therefore we do not provide general expressions which would lead to complexities
that are much too high. However, in the column headed by “mod” of Table 5.1 are actual
complexities for the modulo reduction with optimized field polynomials listed. The results
from there can be immediately applied to the case of constant multiplication treated here.

Finally it should be mentioned that for an actual element from GF((2")™) the com-
plexity might be considerably smaller than the one in Equation (4.2). First, one should
try to apply one of the greedy algorithms from the previous section to the m? individual
constant multiplications in GF(2"). Second, constant multiplication which applies the
Karatsuba-Ofman algorithm, to be developed in Section 5.2, can lead to lower complex-
ities. This is particularly likely for large values of n. Again, it is difficult to provide
general statements due to the strong dependency on the structure of the actual element
considered.



Chapter 5

Multipliers over (General Composite
Fields GF((2™)™)

Parts of this chapter were presented in [Paa93b] and [Paa93a).

5.1 Principal

In this chapter a parallel multiplier with low complexity in the composite field GF((2")™)
will be developed. The fields considered are of the form GF((2")%), i integer. The ele-
ments of the field may be represented in the standard (or canonical) basis as polynomials
with a maximum degree m — 1 over GF'(q):

A@) =ap_i2™ "+ +ag ; a; € GF(q) ; A € GF(¢™).

The generator of the extension field is a primitive polynomial P(z) of degree m over
GF(2"). Multiplication of two elements A and B of the extension field can be performed
in the standard representation as:

A(x) x B(xz) mod P(x). (5.1)
The field multiplication in (5.1) may be performed in two steps:
1. Ordinary polynomial multiplication (X);
2. Reduction modulo the generating polynomial (mod).

We will treat both steps separately in the following sections. The basic arithmetic oper-
ations, addition and multiplication, which are required for both steps are actually per-
formed in the ground field GF'(2").

The basic idea of the multiplier introduced here is the application of the Karatsuba-
Ofman Algorithm (KOA) [KOG63]| for efficient multiplication of polynomials over a field
F to step 1. Efficient refers to the fact that the algorithm saves multiplications at the

42
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cost of extra additions. Hence, if the algorithm is expected to be an improvement in
complexity, multiplications must be more “costly” than additions. This condition is
naturally fulfilled for polynomials over fields GF(2"). Addition in the ground field is
performed by n parallel mod 2 adders since the field characteristic is still 2. On the other
hand, the number of elementary gates required for a multiplier in standard representation
in GF(2") realized with traditional architectures is at least n? — 1 mod 2 adders and
n? mod 2 multipliers, respectively. Our architecture applies the Mastrovito multiplier
[Mas89] to the multiplication of the polynomial coefficients.

The outline of remainder of the chapter is as follows. Section 5.2 deals, after a brief
description of some previous work, with a thorough investigation of the computational
complexity of the KOA and of the time complexity of its parallel implementation. A
matrix description of the algorithm, which can, for instance, be used for a VLSI descrip-
tion, will be developed too. Section 5.3 shows the application of the KOA to polynomials
over fields of characteristic 2. Section 5.4 describes how primitive polynomials with low
complexity with respect to modulo reduction can be determined. Section 5.5 shows the
best multipliers found for composite fields up to GF(23%). For each multiplier the ex-
act complexities are given together with the composition nm and a comparison with the
k? complexity bound of traditional multipliers. As an example, for the important field
GF(2'%) a multiplier is explained and a block diagram of the architecture given.

5.2 The Karatsuba-Ofman Algorithm

5.2.1 Introduction

The Karatsuba-Ofman algorithm (KOA) is a recursive method for efficient polynomial
multiplication or efficient multiplication in positional number systems (which is actually
the same task.) The algorithm was first described by Karatsuba and Ofman in 1962 in the
“Doklady Akademii Nauk SSSR,” the English translation was published in 1963 [KO63|.
The original paper aimed on the application of multiplication in positional number sys-
tems. Knuth gives a compact version of the algorithm in the second volume of his “Art
of Computer Programming” [Knu81]. In the treatment of the algorithm’s history Knuth
states that it seems surprising that the KOA had not been discovered before 1962, de-
spite its comparatively simplicity and its usefulness, e.g. for mental arithmetic. Sedgewick
[Sed90] also provides a description of the KOA in a compact notation, though slightly dif-
ferent from Knuth’s. An investigation of the algorithm’s computational complexity is
given in [Fat74], where the KOA is referred to as “Split.” However, this reference con-
tains an error in the derivation of the additive complexity, leading to a somewhat incorrect
formulal.

The KOA is based on the “divide-and-conquer” principle [Sed90]. This principle is
applied to suitable algorithms with complexity greater O(n) by splitting the initial prob-

the error will be outlined in the following section
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lem, solving the partial problems separately , and combining the solutions obtained. The
“price” which must be paid for the computational gain is the splitting of the input and
the merging of the partial solutions. Typical examples for divide-and-conquer algorithms
are Quick-Sort [Sed90| for sorting or the Fast Fourier Transform (FFT) [Str86] with its
wide applications, e.g. in signal processing [Bla85]. In the case of polynomial multipli-
cation an algorithm is considered efficient if it saves multiplication, often at the cost of
extra additions. As a consequence, multiplication must be more “costly” than addition
if the algorithm is supposed to be an improvement. It should be noted that for the two
general methods for efficient polynomial multiplication, KOA and FFT, the number of
extra additions is often higher than the number of multiplications saved. This situation
is given in particular for short polynomials as will be shown later.

5.2.2 Recursive Description and Complexity

First, the computational complexity of the “schoolbook” or straightforward method for
polynomial multiplication is given, in order to provide a measure for the algorithm to be
developed.

Theorem 8 Two arbitrary polynomials in one variable of degree less or equal m — 1 with
coefficients from a field F can be multiplied with not more than:

#2 = m?
#o = (m—1)*

multiplications and additions, respectively, in JF.

The proof can be readily obtained by induction over m.

The KOA provides a recursive algorithm which reduces the multiplicative complexity
(5.2) and — for large enough m — the additive complexity (5.3). We consider the mul-
tiplication of two polynomials A(z) and B(z) with a maximum degree of m — 1 over a
field F, i.e. each polynomial possesses at most m coefficients from F. We are interested
in finding the product C'(z) = A(z)B(x) with deg(C'(x)) < 2m — 2. The consideration
here is restricted to polynomials where m is a power of two: m = 2!, ¢ integer. To apply
the algorithm, both polynomials are split into a lower and an upper half:

A =z
B =z

(@% Yooy 4 tam) + (8% tamog + o ag) =aT A+ A
Ap e bm) + (x%*lb%,l 44 b))=22By+B. (5.4)

Using (5.4), a set of auxiliary polynomials D™ (x) is defined:

DV(x) = Ai(x)Bi(x)
DV(x) = [Ai(w) + Ap(@)][Bilz) + Bu(x)] (5.5)
DM (z) = Au(z)Bu(z).
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The product polynomial C'(z) = A(x)B(x) is achieved by:
C'(z) = D (z) + 2% D" (z) — D§" (x) — D (2)] + 2™ DM (x). (5.6)

Thus far the procedure has reduced the number of multiplications to 3/4m? in (5.5)

from m? in (5.2). However, the algorithm becomes recursive if it is applied again to

the polynomial multiplications in (5.5). The next iteration step splits the polynomials

Ay, Ap,and(A4; + Ap) and their B counterparts again in half. With the newly halved

polynomials another set of auxiliary polynomials Dz@),i :) 0,...,8 is obtained. The
2

(3

polynomials D™ can now be computed by means of the D

DY (@) = DF(e) + oD (@) = DG (@) = D (@) + % DY ()
DY) = D)+ %D (@) - DY (@) = DY (@) + DY (@) (57)
DY) = D)+ D (@) - D (@) = DY (@)] + o D ()

The algorithm eventually terminates after ¢ steps. In the final step the polynomials
D®(x) are degenerated into single coefficients, i.e. deg(D®(x)) = 0. Since every step
exactly halves the number of coefficients, the algorithm terminates after ¢ = log, m steps.

The following two theorems provide expressions for the computational and the time
complexity of the KOA for polynomials over fields of characteristic 2 with respect to a
parallel hardware implementation.

Theorem 9 Two arbitrary polynomaials in one variable of degree less or equal m—1, where
m is a power of two, with coefficients in a field F of characteristic 2 can be multiplied by
means of the Karatsuba-Ofman algorithm with:

#® — mlog237
#Hd < 6m'e2® —8m + 2,

multiplications and additions, respectively, in JF.

Theorem 10 A parallel realization of the Karatsuba-Ofman algorithm for the multipli-
cation of two arbitrary polynomials in one variable of degree less or equal m — 1, where
m s a power of two, with coefficients in a field F of characteristic 2 can be implemented
with a time complexity (or delay) of:

T = T® +3(10g2 m) T@, (510)

where “Tg” and “1g”denote the delay of one multiplier and one adder, respectively, in

F.

It should be noted that the subtractions in (5.6) are additions if F is of characteristic 2.
For the proof of the theorems three stages of the algorithm will be distinguished:
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Proof.

1. In the first stage the mere splitting of the polynomials is considered.
Since splitting itself takes no computation, only the two summations in
5.5 are of interest. Taking into account that the number of polynomials
triples in each iteration step, whereas the length of the polynomials is
reduced by half, one obtains:

log, m

1M
#D1 = ; 3t = 2m'°82% — 2m. (5.11)

Since all additions of one iteration can be performed in parallel in a
hardware realization, the delay equals:

Ty = Tglog, m, (5.12)

where “T;” denotes the delay for one adder in F.

2. In the second stage the achieved 3!°62™ = m!°€23 polynomials (each con-
sisting of one coefficient) are actually multiplied. This requires:

#®y = m'o82? (5.13)
multiplications. The delay of a parallel implementation is:
T, =T, (5.14)

where “T,” denotes the delay caused by one multiplier in F.

3. The third stage merges the polynomials according to Equation (5.6).
There are two kinds of additions (or subtractions) involved: Subtracting
three polynomials with 2¢ — 1 coefficients and 2! — 2 additions due to the
overlapping? of three terms:

log, m ) ) )
#0y = 3 32— 1)+ (2~ 2)] = 4m T —6m+ 2. (5.15)

i=1
The delay equals:
T35 =2 (logym) Ty, (5.16)

<

The overall complexities in the Theorems 9 and 10 are obtained by summation of the
partial complexities. However, the right hand side of the additive complexity (5.9) is
an upper bound rather than an exact expression, because the recursive algorithm bears

2Reference [Fat74] is here wrong by claiming that only 2¢ — 4 coefficients overlap.
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redundancies which can be eliminated in a parallel realization. For instance, for the value
m = 4, which is of great importance for the multiplier architectures to be developed, the
upper bound in (5.9) can be reduced from 24 to 22 in a parallel implementation such as
sketched in Figure (5.1).

A comparison of the computational complexities (5.8) and (5.9) of the KOA with
the corresponding expressions (5.2) and (5.3) of the straightforward approach shows an
improvement for both, multiplication and addition. While the number of multiplications
improves for all m > 2, the additive complexity only improves for m > 64.

Example. Figure 5.1 shows a block diagram of a parallel realization of the
KOA over fields with characteristic 2 for the case m = 4, i.e. the input polynomials
have degree 3. The three different stages described above can be verified easily from
the figure. The adders on the left hand side of the drawing refer to the two iteration
steps of stage one. There are 10 additions required (5.11), the corresponding delay
is in accordance to Equation (5.12) equal to 2T. The second stage corresponds to
the row of 9 multipliers, causing a delay of one Tiy. The third stage is given by the
adders on the right hand side of Figure 5.1. As mentioned above, the number of
additions could be reduced from 14 in (5.13) to 12 due to redundancies. The critical
path of length 47% for the third stage is achieved by Equation (5.16) if m = 4.

5.2.3 A Matrix Representation

While the previous section describes the KOA as a recursive algorithm, this section pro-
vides a description based on binary matrices. The move from the recursive to a matrix
representation can be viewed as a time-space transformation. The motivation for it orig-
inated in the need for a suitable description of the KOA for a VLSI synthesis, which will
be described in Chapter 7, of the multiplier to be developed. However, the matrix rep-
resentation is also useful for an investigation of the algorithm’s properties. For instance,
one obtains information regarding the connectivity structure of a parallel realization im-
mediately from the binary matrices, whereas this structure is somewhat hidden by the
recursive description.

The investigation is again restricted to polynomials over fields of characteristic 2. The
structure of the matrix representation is the following. The three different stages of the
KOA, introduced in section 5.2.2, are considered:

1. Stage one takes care of the splitting of the input polynomials. The two inputs
A(x), B(x) are represented by two vectors Ay, By, each consisting of m coefficients.
Every step from the recursion is represented by one matrix-vector multiplication.
Hence, there are ¢t = log, m such multiplications:

step 1 2 e log, m
operation: M1A0 = A1 — M2A1 = A2 - ... — MtAt—l = At
operation: M1B0 =B, » M;B, =B, —» ... — MtBt—l = Bt
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Figure 5.1: Block diagram of a parallel realization of the KOA for polynomials of degree
3 over fields with characteristic 2
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The lengths of the vectors A;, B; increases in every step by the factor 3/2. Since the
initial vectors Ay, By have m elements, the final vectors A;, B; have (3/2)1%82™m =
3loe2m glements. The one entries of the matrices M; are obtained by the following
algorithm in pseudo Pascal:

colO :
row0 :
square : ;
FOR cnt := 0 TO 37(i-1) DO BEGIN
FOR diag := 0 TO m/2°i DO BEGIN
M[diag+row0] [diag+col0]=1;
M[diag+square+row0] [diag+col0]=1;
M[diag+square+rowO] [diag+square+colO]=1;
M[diag+2*square+row0] [diag+square+col0]=1;
END;
row0 :
colO0 :
END;

I
N o o

N o -

row0 + 3 m/271;
col0 + m/2"(i-1);

2. Stage two performs element wise multiplication of the vectors A, B;:

DOZAtQBt

3. Stage three builds the polynomial C'(z) = A(z)B(z) from the product vector Dy.
Similar to stage one, the log, m steps of the recursion are represented by log, m
vector-matrix multiplications.

step 1 2 e log, m
operation: N1D0 =D; - NyD;=Dy, —» ... — NtDt—l = Dt =

The length of each vector D; is given by 31°62™m=¢(2i+1 — 1) 4 =0,1,...,log, m. The
one entries of the matrices IN; are obtained by the following algorithm in pseudo
Pascal:

FOR pset := 0 TO 3"log(m)-1 DO BEGIN
FOR cf := 0 TO 27i-1 DO BEGIN
N[pset* (2~ (i+1)-1)+cf] [pset*(2"i-1)*3+cf]l=1;
N[pset* (2~ (i+1)-1)+2"i+cf] [pset*(27i-1)*3+2%(27i-1)+cf]=1;
N[pset* (27 (i+1)-1)+2"(i-1)+cf] [pset*(27i-1)*3+2"i-1+cf]=1;
N[pset* (27 (i+1)-1)+2"(i-1)+cf] [pset*(27i-1)*3+cf]=1;
N[pset* (27 (i+1)-1)+2"(i-1)+cf] [pset*(27i-1)*3+2*(27i-1)+cf]=1;
END
END
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In the sequel an instance of the matrix description is provided for polynomials with
maximum degree 3.

Example. In the case m = 4, the initial vectors are Ay = (ag, a1, az, ag) and the
By counterpart. Stage one and three are described by ¢ = logy 4 = 2 matrix-vector
multiplications. These are uniquely represented by the matrices My, Mo, N1, No,
which can be constructed by means of the two algorithms given above:

1 00000
100 0 110000
01 0 0 01 00 O0O0
1010 001000

M, = ; Mp=1]10 011 0 0

01 01

00 0100
0 010
00 0 1 00 0O0T1FPO0

000011

00 0O0O0T1
100 00O0O0O0O0
111000000 1 000O0O0OOGO0OTO
001 0O0O0O0OO0ODQO 010 0O0O0O0OO0OOQO
0001 0O0O0OO0OTDO 101100100

Ny=]00011100O00O0 ; Ng=]1 01 0010010

000 0O0OT1TUO0TO0OTPO 001001101
00 00O0O0OT1TUO0ODPO 000O0O0OOO0OT1@®0
00 00O0O0T1T1T1 000 0O0O0O0OO01
00 0O0O0O0O0OTU 01

5.3 Efficient Polynomial Multiplication in Finite Fields

In this section the KOA is applied to efficient multiplication of polynomials A(z), B(x)
with maximum degree m — 1 over fields GF(2"). This is the first and, with respect to the
complexities, major step for performing the entire field multiplication (5.1) in GF'((2")™).
The goal is to minimize the number of elementary units, namely XOR- (mod 2 adder) and
AND- (mod 2 multiplier) gates.

The two operations required for the KOA, addition and multiplication, refer now to
arithmetic with the coefficients a;,b; in GF(2"). The module “GF(2") adder” simply
consists of n parallel mod 2 adders. For the module “GF(2") multiplier” the multiplier
from Mastrovito [Mas91] described in Section 3.1.1 is used. Assuming condition (3.6) for
all generating polynomials Q(y) of the ground field, the overall complexity for polynomial
multiplication, measured in mod 2 adders/multipliers, results in:

#AND = p?log:3 gl (5.17)

logy 3
k
#XOR < <—> (n®>4+6n —1) — 8k +2n ; certainn (5.18)
n
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with £ = nm.

Both formulas (5.17), (5.18) imply that the order of elementary gates increases asymp-
totically only proportional to k%823 ~ k!5® as k increases if n is kept small. However,
given a field order 2¥, the optimum value for the field partitioning GF((2")™) = GF(2F)
must be determined. Having k fixed, the optimum of Equation (5.17) is simply obtained
if n is chosen as small as possible. The optimum for the XOR complexity is achieved by
computing the root of the first derivative of (5.18) with respect to n. The derivative is
a polynomial with irrational exponents without a closed solution. For actual values of
k the solution can be obtained numerically. By using Wolfram’s Mathematica [Wol88|,
the optimum value was found to be n = 8 for all fields with £ > 32. For k < 32 the
optimum n is between 5 (k = 8) and 7 (k = 32). However, this optimization does not
take into account that m has to be a power of two. Hence, for actual field size exponents
k a trade off must be made between a possible parameter n, usually close to the optimum
one described above, which results in a reasonably low XOR complexity, and a value for
n which keeps the AND complexity low.

Row six and seven of Table 5.1 in Section 5.5, headed by AND and XOR show the
complexities (5.17) and (5.18), respectively, found for combinations of the form:

k=nm where k=4,6,...,32 ; m = 2"

To achieve an expression for the time complexity, Equation (5.10) with appropriate
expressions for Ty and T, can be applied. As mentioned before, addition in GF'(2") has a
delay of one XOR gate, i.e. Ty, = Tyor. The delay for multiplication, Ty, in the ground field
GF(2") is upper bounded by (3.11). Hence, the overall delay for parallel multiplication
of polynomials of degree m — 1 over GF'(2™) can be upper bounded by:

T < Teor(2[logy n| + 3logy m) + Tand- (5.19)

5.4 Reduction Modulo the Field Polynomial

This section describes the second step of (5.1), the operation “mod P(z).” In order to
perform this operation with low complexity, it is assumed that the field polynomial can be
chosen arbitrarily. From a mathematical point of view this assumption is valid anyway,
since there exists only one field of order 2"™ [McE87]; different representations of fields
generated by different field polynomials are always isomorphic. From a technical point of
view, a situation may arise where one architecture operating on a certain polynomial has
to be used in a system in which modules based on another field polynomial exist. In this
case, merely an isomorphic mapping as described in Section 2.2 has to be implemented in
order to fit the different representations.

The pure polynomial multiplication of two polynomials A(z)B(x), both of degree
m — 1, results in a product polynomial C'(x) over GF(2") with deg(C'(x)) < 2m — 2.
In order to perform a multiplication in GF'((2")™), C'(x) must be reduced modulo the
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generator polynomial P(z). The modulo operation will result in a polynomial C'(x) with
deg(C(x)) < m — 1 which represents the desired field element:

C(z) = C'(z) mod P(x) ; C(x) e GF((2™)™)
= 07?2+ -+ ¢y modP(z)
= Cmflxm_1 +--4 0

The reduction modulo P(z) can be viewed as a linear mapping of the 2m — 1 coefficients
of C'(x) into the m coefficients of C'(z). This mapping can be represented in a matrix
notation as follows:

!/
Co
Co L 0 - 0 7rop St Tom—2 :
c 01 --- 0 ryp ot Tim—2 c
=1 . . . .. L A (5.20)
o e o Cm
Cm—1 00 ---1 "m-10 " Tm—1,m-2
!/
Com—2

The matrix on the right hand side of (5.20) consists of a (m,m) identity matrix and a
(m,m — 1) matrix R which we may name the reduction matriz. R is solely a function
of the chosen monic generating polynomial P(z) = 2™ + --- + py, i.e. to every P(z) a
reduction matrix is uniquely assigned. R’s recursive dependency on P(z) is the following:

i ; J=0,....m—=1 ; 1=0
i = . : 5.21
i { Tj—l,i—l"‘rm—l,i—lTjO y ] :0,...,m— 1 ;1= 1,...,m—2 ( )

where ;1,1 =0 if j =0. From Equation (5.21) it follows directly that r;; € GF(2")
since p; € GF(2"). It should be emphasized that (5.20) does not require any general
multiplication but only additions and multiplications with a constant from GF'(2"). Both
functions require only mod 2 adders as is shown in Section 4.1. Therefore the space
complexity of a realization of (5.20) can be measured by the total number of two input
mod 2 adders. In order to achieve a small complexity for the reduction modP(x), an
exhaustive computer based search through all primitive polynomials over GF'(2") of degree
m was conducted. The number of primitive polynomials I, checked is given by [GT74]:

1 mn
I, = m<1>(2 1),
where ®(-) denotes the Euler function.

The complexity of multiplication with each of the I, reduction matrices was evaluated
as follows. For every matrix the number of additions and constant multiplications was
computed. Redundancies within the rows of R, i.e. at least two elements are equal:
rij = Tk, were taken into account, thus reducing the number of constant multiplications.
Each addition has a weight of n mod 2 adders, the weight for constant multiplication was
achieved by the optimization algorithm described in Section 4.1.
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Example. The polynomial investigated is P(z) = z* + 23 + 2 + w over GF(2").
The corresponding reduction matrix is:

w w 0
0 w w
R= 1 1 w
1 1 1
The operation (5.20) is for this instance:
co ch +w(cy + k)
a | | dHw(dg+c)
co h+dy+cs+we |’
c3 ¢+ + ¢

which can be computed with 9 additions and 3 constant multiplications with w.
These operations can be implemented with 9-4 4+ 3 -1 = 39 XOR gates.

The best polynomials F,,; found during the search are only suboptimum. Redundan-
cies between rows are not found by the algorithm implemented. For instance, reconsid-
ering the example from above, the expression (¢ + ¢}) occurs twice, so that the modulo
reduction can be realized with 8-443-1 = 35 XOR gates. However, the finding of globally
optimum expressions seems to be a problem which is difficult and computational inten-
sive. Hence, the determination of globally optimum solutions was not feasible for this
application where, due to the nature of the exhaustive search, a rather large number of
polynomials have to be checked. Moreover, as the results in Section 5.5 show, the modulo
reduction was found to be of minor importance in terms of complexity for the multiplier,
since it is responsible for less than 10% of the overall gate count for the fields investigated.

The exhaustive search was implemented as follows. The search algorithm consists of
two main parts: evaluation of the complexity as described above for every polynomial
P(z) and, if the complexity is an improvement on the previously found ones, checking
whether P(z) is actually primitive. The pseudo code below describes the structure of
algorithm.

p=xm+1;
bestcmpl = maxvalue;
FOR i=1 TO 2" (mn)-1 DO BEGIN
r = GET_REDUCTION_MATRIX(p);
cmpl = GET_COMPLEXITY(r);
IF (cmpl <= bestcmpl) BEGIN
IF (PRIME_TEST(p) = 1) BEGIN
pbest = p;
bestcmpl = cmpl;
END;
END;
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p = GET_NEXT_POLYNOMIAL (p);
END;

The function GET_NEXT_POLYNOMIAL() produces all 2" — 1 possible monic polynomials
in a counter like way: Pi(z) = 2™ + 1, Py(z) = 2™ + w, P3(z) = 2™ + w? .... The
functions GET_REDUCTION_MATRIX() and GET_COMPLEXITY() apply Formula (5.21) and
the evaluation procedure from above, respectively. The most sophisticated task, testing if
a passed polynomial is primitive, is performed by PRIME_TEST (), the algorithm for which
was developed in Section 2.2.

5.5 Results

5.5.1 Space and Time Complexities

In this section the overall space and time complexity of multipliers in the composite
fields GF((2™)™), where k = nm < 32, are provided. The best results achieved with
values m = 4,8 are listed. Although a choice of m = 2 is possible, in the next chapter
another architecture will be introduced which provides a lower complexity and which is
also simpler for this value.

The complexities are achieved by summing the partial complexities of the polynomial
multiplication and of the modulo reduction, which were developed in the two previous
sections. Table 5.1 gives a detailed insight in the space complexities and architectures
of the parallel multipliers. For each field a generating polynomial P(x) and a multiplier
with a minimum complexity is given. A description of the table’s contents is given below.
All columns are explained from left to right, where the columns are named after their
heading symbols.

k,n,m: k denotes the field order 2¥, where the parameters n and m determine the com-
position GF'((2")™) of the field. The binary generating polynomials Q(y) of the
ground fields GF'(2") are listed in Table 3.1.

P(z): Primitive polynomials over GF'(2") are given which possess minimum complexity
with respect to the operation “modP(x).” The character w denotes a primitive
element of the field GF(2"), such that Q(w) = 0.

#®, #@: The number of multiplications/additions is given for the pure multiplication
of two polynomials of degree m — 1 with the KOA. They refer to the formulas (5.17)
and (5.18), respectively.

AND, xOR: The space complexity for the pure multiplication of two polynomials over the
field GF(2") is given in multiples of elementary gates.

mod: The space complexity for the operation mod P(x) is given.
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A(z) x B(x) mod | A B mod P

k n m P(x) #® #® | AND XOR | XOR | AND XOR | k?
8 2 4 11lww 9 22 36 71 20 36 91 64
12 3 4 1001w® 9 22 81 138 21 81 159 | 144
16 4 4 1110w 9 22| 144 223 35| 144 258 | 256
20 5 4 100ww 9 22| 225 326 34| 225 360 | 400
24 6 4| 1wb? Wbl w3 W? 9 22| 324 447 60 | 324 507 | 576
3 8 111111105 | 27 100 | 243 516 82 | 243 598 | 576

28 7 4 100w!26 126 9 22| 441 586 46 | 441 632 | 784
32 4 8 10010010w | 27 100 | 432 805 91 | 432 896 | 1024

Table 5.1: Composite fields GF((2")™) up to GF(23%), their generating polynomials and
the space complexities for parallel multipliers

AB mod P: The overall space complexity for a parallel multiplier in GF((2")™) is given in
bold face letters. It is achieved by summing the complexities for the pure polynomial
multiplication and the modulo reduction.

k*: The complexity of many traditional architectures is lower bounded by k? — 1 XOR
gates and k? AND gates. In order to allow comparison with other multipliers, we
provide the values k2.

Table 5.2 contains the theoretical delays of the multipliers. The time complexities are
given as multiples of AND gate delays and XOR gate delays, denoted 7T,.q and Ty ,
respectively. The structure is similar to Table 5.1. All columns will be described in the
following:

k,n, m: k denotes the field order 2%, where the parameters n, m determines the composi-
tion GF((2")™) of the field.

A(x) x B(z): The delays for the pure polynomial multiplication with the KOA are listed.
The entries in these columns are achieved through Equation (5.19), where Ty = Txor
and the actual delays for Tiy were taken from Table 3.1.

mod: This column contains the time complexity for the operation mod P(z).

A B mod P: The delay of the entire multiplier is shown in bold face letters. It is achieved
by summing the time complexities for the pure polynomial multiplication and the
modulo reduction.

However, delays caused by routing or high fan outs which may occur in an actual VLSI
implementation are not considered.
In the following an example for a multiplier in the field GF(2'®) is described.
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A(z) x B(z) | mod | A B mod P

k n m| Tuq Teor | Txor | Tand Txor
8§ 2 4 1 8 3 1 11
12 3 4 1 9 2 1 11
16 4 4 1 9 3 1 12
20 5 4 1 11 3 1 14
24 6 4 1 10 4 1 14
3 8 1 12 3 1 15

28 7 4 1 10 3 1 13
32 4 8 1 12 3 1 15

Table 5.2: Theoretical time complexity of multipliers over composite fields GF'((2")™) up
to GF(2%%)

Example. The field considered is GF((2')%). The generating polynomial of
the ground field GF(2%) is Q(y) = y* +y + 1. The composite field is generated by
P(z) = z*+23+2?+w, where Q(w) = 0. There are 3 multiplications and 4 additions
required for the pure polynomial multiplication. This corresponds to 144 mod 2
multipliers and 223 mod 2 adders if the ground field multiplier from Table (3.1)
with n = 4 is used. The operation modulo P(z) requires 35 mod 2 adders. Hence,
the complexity for a parallel multiplier in the composite field results in 144 mod 2
multipliers and 258 mod 2 adders. The delay of the multiplier is achieved in a
similar way. The Karatsuba algorithm causes a delay of 9 Tior plus one Tang -
The circuit for the reduction mod P(z) causes another delay of 3 7Ty, , resulting
in an overall delay of 12 Ty, and one Tunq - Figure 5.2 provides a block diagram of
the multiplier’s architecture. The input variables are ag,...,as and by, ..., bs, the
output variables are cg, ..., cs. Each set of variables represents a polynomial, which
is an element in GF((2%)*) in standard representation. Each variable is actually
a four bit wide bus, representing an element in the ground field. As intermediate
variables the coefficients ¢, are included, which are the output of the polynomial
multiplication module and the input of the module providing reduction mod P(z).
The blocks having an “w” attached are multipliers with the constant element w.
As will be described in Chapter 9, the multiplier was actually implemented on an
FPGA X(C3142 from Xilinx. The multiplier served as a coprocessor for a digital
signal processor.

5.5.2 Discussion

Table 5.1 shows that the introduction of composite fields GF ((2")™) = GF'(2F) leads to
significantly improved parallel multipliers with respect to the number of mod 2 adders
and multipliers if compared to traditional architectures such as introduced in Section 3.1
or [HWB92b| [IT89]. Moreover, the multiplier has also a lower gate count for all fields
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Figure 5.2: Block Diagram of a parallel multiplier in GF((2%)*)
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considered than the architecture proposed in [Afa90], which applies the KOA to binary
polynomials and is described in the Subsection 3.2.1.

The multiplication of two polynomials, which is the most costly step in standard
based Galois field multiplication, can be performed with an asymptotical complexity of
O(k'"#23). The number of mod 2 adders (XOR) is improved for all fields. The number of
mod 2 multipliers (AND) is improved for most fields considered. Asymptotically, the pure
polynomial multiplication can be performed with £'°¢23 XOR and AND gates.

The complexity for the reduction modulo P(x) is much smaller than the one for polyno-
mial multiplication. For all fields considered in Table 5.1, the number of gates for modulo
reduction takes less than 10% of the overall gate count for the entire field multiplication.
The best field polynomials P(x) found have only a few coefficients other than zero or one.
All of these nontrivial coefficients possess a relatively low multiplicative complexity. In
accordance to the observation of the optimization algorithm for constant multiplication,
these coefficients are all among the first few or last few coefficients of the ground field
GF(2"). The time complexity of the modulo reduction for the fields considered — given
in Table 5.2 in the column headed by “mod” — possesses the somewhat surprising prop-
erty that it is almost independent of the field size for the cases m = 4,8. The greatest
delay found for these values of m is 4 XOR delays, the smallest one 2 XOR delays.

From a VLSI design point of view multiplication over composite fields possesses a
couple of natural advantages, namely hierarchy, modularity and — to some extent —
regularity [WE92|. These properties become obvious by considering Figure 5.2. It is
clear that the multiplier is divided into submodules thus assuring hierarchy. The major
advantage is the high regularity, since one deals only with three types of identical mod-
ules, performing addition, multiplication, and constant multiplication in the ground field
GF(2"). Third, the architecture is highly modular, because there are only a relatively
small number of modules with well defined functions and interfaces. Another requirement
often associated with regularity, a structure which allows a array implementation, is not
naturally fulfilled by the architecture. However, as the comparative VLSI syntheses in
Chapter 7 shows, the theoretical low gate count of the architecture can be used in actual
gate array implementations.



Chapter 6

Multipliers over Fields with Certain
Composition

In this chapter multiplier architectures for the two specific types of composite fields
GF((2")?) and GF((2")*) are introduced. They differ from the general architecture over
GF((2")™) described in the previous chapter, in that they combine the two parts of the
standard base Galois field multiplication, polynomial multiplication and reduction mod-
ulo P(z). For certain choices of n, in particular n < 7, the approach introduced in this
chapter results in lower space and time complexities than with the general architecture.

6.1 Multipliers over GF((2")?)

Parts of this section were presented in [Paa93a] and [Paa93b].

6.1.1 Architecture and Complexity

generalization of the architecture to be proposed in this section for multiple extension fields
was previously described by Afanasyev in [Afa91]. Section 3.2.2 of this thesis contains
a description of Afanasyev’s architecture. However, we will provide a complete table of
optimized primitive polynomials for values n < 16, together with the expected space and
time complexities of multipliers in the fields GF((2")?).

The architecture is based on certain primitive polynomials of degree two, whose exis-
tence is given by the following theorem:

Theorem 11 Given a ground field GF(2"), there exists always a primitive polynomial of
the form
P(x)=a2>+z+po, po € GF(2"),

which generates the composite field GF((2")?).

29
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Proof. Considering a primitive root « and its conjugate a?", both in
GF((2")?), a primitive polynomial can be constructed by means of its two
linear factors:

P(z) = (r+a)(z+ o) =2+ (a + o) + ot

Thus, the polynomial coefficients are p; = a + o?" and py = o®" . Now p;

is the trace of a relative to GF(2"). It must be shown that there exists a
primitive element « such that p; = o + o?" = 1. This problem is covered by
a conjecture of Golomb [Gol84] which was later resolved in the affirmative by
Moreno [Mor89]. o

In the sequel we apply the KOA but avoid its full implementation by using a polynomial
as introduced above for the reduction modulo P(x).

Each field element can be represented as a polynomial with degree < 1. Application of
the KOA to the pure polynomial multiplication of two elements A(x), B(x) € GF((2")?)
results in:

C'(z) = (@ + ap)(biz + by)
== agbg + x([al + ao][b1 + bg] + aobo + albl) + x2a1b1. (61)
The result from the reduction C'(x) mod P(x) is the product field element C(z) =
A(z)B(z) mod P(z). Since z? = z + py, if a field polynomial as introduced in Theo-
rem 11 is chosen, C(x) is given by:
C(z) = C'(z) mod P(z)
= (aobo + poalbl) + :r([al + ao][bl + bo] + aobo). (62)

The computational complexity of (6.2) is:

#® =3,
#© =4,
#®po - 17

where ®,, denotes constant multiplication by py. All operations refer to arithmetic in
GF(2"). Figure 6.1 shows a schematic of a hardware realization of Equation (6.2).

Again, we apply the Mastrovito multiplier to the ground field multiplication. Assum-
ing a complexity of n? AND / (n? — 1) XOR gates of the ground field multiplier, the space
complexity of the multiplier in the composite field is:

3

#AND = Zk2’ (6.3)
3

#XOR = —k”>+2k -3+ Cg, , certain n, (6.4)

4
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Figure 6.1: Block diagram of a parallel multiplier in GF((2")?)

where Cg, ~denotes the complexity (in XOR gates) of constant multiplication with the
coefficient pg of the field polynomial P(x). It should be noted that the XOR complexity
in (6.4) is higher than stated, if the ground field multiplier requires more than (n? — 1)
XOR gates.

Expressions for the time complexity are achieved by considering the critical path in
Figure 6.1. The maximal delay is composed of the delays for one general multiplication
aiby, one constant multiplication py(a1b;), and one addition (pgaib;) + (apby). Using the
upper bound from Equation (3.8) as the delay of the general multiplication, we obtain:

#Tana = 1, (6.5)
#H#Tor = 2[logyn]| +1+ Ta,,,

where Ty, denotes the delay caused by the multiplication with py.

6.1.2 Results

As the Formulas (6.3) and (6.4) imply, the space complexity for a given field GF(2*) (i.e.
k is fixed) depends solely on the coefficient py. Hence we performed an exhaustive search
for primitive polynomials of the form P(x) = 22 + 2 + py. The polynomials with the
lowest complexity for constant multiplication with py are considered optimum ones.
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Cg,, | AB mod P AB mod P

k n| Pz XOR | AND XOR E? | Tana  Txor

4 2| 1lw? 1 12 18 16 1 4

6 3| 1lw® 1 27 37 36 1 5

8 4] llw™ 1 48 62 64 1 5

10 5118 3 75 95 | 100 1 7
12 6| 11w%? 1| 108 130 | 144 1 6
14 7| 1w 3| 147 175 | 196 1 8
16 8| 11w?'7 8| 192 292 | 256 1 9
18 9| 11° 5| 243 281 | 324 1 8
20 10 | 1lw” 7| 300 344 | 400 1 8
22 11 | 11?036 11| 363 415 | 484 1 12
24 12 | 11w%094 3| 432 672 | 576 1 9
26 13 | 118188 7| 507 665 | 676 1 10
28 14 | 11w° 12 | 588 833 | 784 1 10
30 15 | 1132766 1| 675 1733 | 900 1 7
32 16 | 11016948 16 | 768 923 | 1024 1 9

Table 6.1: Space and time complexities for multipliers in GF((2")?)

Table 6.1 provides information regarding the space and time complexity of multipliers
in the fields GF((2")?), n = 2,3,...,16. The two leftmost columns list the field order
exponents n and k, where £ = 2n. For the ground field, the Mastrovito multiplier with
the actual complexities and field polynomials (y) as listed in Table 3.1 is assumed. The
column headed by P(z) contains the best primitive polynomials found by the exhaustive
search. As throughout this thesis, the primitive root of the ground field polynomial Q(y)
is denoted as w, such that @(w) = 0. The symbol Cg, heads the column containing the
complexities for multiplication with the coefficient py. The complexities were optimized
with the greedy algorithm described in Section 4.1.1. The next two columns contain (in
bold face letters) the overall gate count of the proposed multipliers. They refer to the
Formulas (6.3) and (6.4), respectively. In order to compare the complexities with the
lower bound of traditional architectures, the values k? are listed in the next two columns.
The two rightmost columns contain the time complexities in multiples of AND and XOR
gate delays.

In the sequel an example for a multiplier in the important field GF(28) is given.

Example. As can be seen in Figure 6.1, a multiplier in the field GF(2%) is
composed of 3 multipliers, 4 adders, and 1 multiplier with the constant w'* from
the ground field. All arithmetic is done in the field GF(2%), thus all connections
are actually 4 bit wide busses. Multiplication with w'* is described by the product
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and can be realized with one XOR gate. Addition in GF(2*) requires 4 XOR gates.
Since the Mastrovito multiplier in G F(2*) can be implemented with 16 AND and
15 XOR gates, the space complexity of the multiplier in GF(28) is 3 - 16 = 48 AND
gates and 3-15+4-4+ 1 = 62 XOR gates. The time complexity is achieved by
summation of the delays along the critical path: one adder (1 Txor ), one multiplier
(1 Tana + 3 Txor ), and one constant multiplication (1 7Tk ). Hence, the overall
delay equals 1 Tang + 5 Txor -

6.1.3 Evaluation

The number of AND gates is for all fields (3/4) k? and thus 25% lower than the lower
complexity bound of traditional architectures. The XOR complexity is in all cases higher
than the AND complexity, although the number of XOR gates is for most fields considered
below k2. As a matter of fact, the number of XOR gates is considerably higher than k2
only for the values k = 16, 24, 28. This effect is due to the rather high gate count of the
corresponding ground field multipliers for values n = 8,12,14. However, for the values
k < 14 the multiplier performs best in terms of space complexity compared to the other
architectures proposed in this thesis. To the author’s knowledge, the gate count for the
important field GF((2*)?) =2 GF(2®%) of 48 AND / 62 XOR gates is the best one reported
in technical literature. For values k > 16 with 4|k, the architecture operating on general
composite fields GF((2")™) as proposed in Chapter 5 has lower gate counts. However,
for all fields with k even but 4 / k, the composition GF((2")?) = GF(2*) is the only
possible one under the condition that & = n2’, i integer. Moreover, the routing required
for this architecture is less than the one for multipliers with parameters m > 4, such that
in actual VLSI implementations a field composition GF((2")?) might be of advantage,
even for fields with £ > 16.

The general advantage of multipliers over composite fields — modularity and regularity
— as described in Section 5.5.2 are valid for this architecture too.
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6.2 Multipliers over GF((2")%)

Parts of the results of this section were presented in [Paa94].

This section introduces parallel multipliers over fields GF((2")*). As the architecture
in the previous section, the approach here also combines the KOA with the reduction
modulo the field polynomial P(x). However, the multiplier here will reveal more clearly
the principal behind both architectures. This is that a clever choice of P(x) leads in
conjunction with the KOA to expressions that take advantage of the fact that the field
characteristic is two, i.e. we obtain expressions of the form a + a which are zero and have
thus not to be computed (and implemented.)

6.2.1 Architecture and Complexity

The elements A(x), B(z) of the composite fields GF((2")?) are represented by polyno-
mials with degree < 3. First, we reconsider the KOA applied to the pure polynomial
multiplication A(z)B(x) = C'(z), as shown in Figure 5.1. We denote the outputs of the
nine multipliers with dy, dy, ..., dg, with dy being the top one, as can be seen in Figure 6.2.

These newly introduced intermediate variables d; € GF'(2") are produced by the first
and the second stage of the KOA. They are obtained from the inputs through:

dy = agby

di = (ag+ay)(by+ by)

dy = aib

ds = (ag+ az)(by + b2)

dy = (ap+a;+as+asz)(by+ by + by + b3) (6.7)
ds = (a;+a3)(by + b3)

de = agby

d7 = (ay+ a3)(by + b3)

ds = asbs.

The third stage of the KOA constructs the product polynomial C'(z) of degree < 6 from
the variables d; through the following set of equations:

¢ = do

¢, = do+di+ds

¢y = do+dy+ds+dg

¢ = do+dy+dy+ds+dy+ds+ds + dr + ds (6.8)
¢y = do+ds+dg+dg

¢y = dg+dy + dg

0,6 = dg.
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Figure 6.2: Block diagram of the first two stages of the KOA for polynomials of degree 3
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In order to perform finite field multiplication, the polynomial C’'(x) has to be reduced
modulo the field polynomial: C'(z) = C'(x) mod P(x). In Section 5.4 it was shown that
the coeflicients ¢; are linear combinations of the coefficients ¢}. The linear combination is
uniquely determined by the field polynomial P(z) (Equation (5.21).) Since the coefficients
¢, are sums of the multiplier outputs d; (Equations (6.7) above,) the coefficients ¢; are
also linear combinations of the d;. Moreover, since the characteristic of the ground field
GF(2") is two, the sum of two identical variables is zero:

dz—i-dlzo, fOI‘ZZO,l,,S (69)

The key idea of the architecture is to find field polynomials which lead to (many)
expressions of the form (6.9), thus reducing the number of additions required and improv-
ing the delay. It will be shown that the following two types of polynomials possess this

property:

Definition 15 Irreducible polynomials over GF(2™) of degree four (which generate the
fields GF((2™)*)) of the following form:

Pz) = 2*+a23+py and P(z) = 2*+23+ 22 +po
are called Type I and Type II polynomials', respectively.

Although we can not provide a general proof of existence for these polynomials, the
existence of Type I polynomials for certain ground fields GF'(2") is provided by the
following lemma.

Lemma 1 (Irreducible) Type I polynomials exist for all ground fields GF(2") with n odd.

Proof. We show that the specific polynomial P(x) = a* + 2% + 1 is
irreducible over all fields GF(2") where n is odd. P is certainly irreducible
over GF(2) (see e.g. [LN83, Table C].) Corollary 1.3.12 in [Jun93, page 23]
states that P remains irreducible over an extension field GF(2") of GF(2)
if and only if ged(n,deg(P)) = ged(n,4) = 1. Obviously, this condition is
fulfilled by all odd n. ¢

Using Type I or Type Il polynomials as field generators results in the following partial
complexities of multipliers in GF((2")*):

!These polynomials should not be confused with type I and type II normal bases introduced by Mullin
et al. in [MOVWR&89]. They are not related whatsoever.
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Theorem 12 If there exists a polynomial P(x) of Type I or Type 11, the third step of the
KOA for polynomials of degree three and the reduction modP(x) can be implemented in
parallel with the following space and time complexities, respectively:
C[(H) = 14(15)@+3C®p0, (6.10)
Tran = 31 +1g,,, (6.11)
where Cg, ~ denotes the complexity of constant multiplication with py and the numbers in
parenthesis the complexities for Type II polynomials.

Proof. The operation mod P(z):
C(r) = C'(zr) mod P(x) , C(z)e€ GF((2")*)

can be viewed as the linear mapping of the seven coeflicients ¢, into the four
coefficients ¢;. The actual equations for the mapping with P; and Py polyno-
mials are:

co = do+po(de+ds+dr+ds) co = do+po(de+ds+dr)

cp = dg —I—dl —|—d2 —I—po(dg —I—d7) cp = do +d1 +d2 +p0(d6 +d7)
co = dp+do+ds+ dg+ pods co = dy+ds+ds+ dg+ d7 + pods
c3 = do+dy+dz+dy+dg c3 = do+dy+d3+dy+dr+dsg

(6.12)
Certain simplifications have applied since all arithmetic is done in GF(2")
with characteristic 2, i.e. d; + d; = 0. If the terms (dy + dy), (ds + dg) and
(dy +dy), (dg + d7) are precomputed, the two set of Equations (6.12) have the
space and time complexities stated in Theorem 12. ¢

We are now able to state the overall complexities of multipliers based on Type I and
Type II polynomials. Since the complexities in Theorem 12 refer to the third stage of
the KOA and the modulo reduction, the overall complexity is obtained by summing these
complexities and the complexities for the first and second step of the KOA, developed
in Section 5.2.2. The KOA complexities are given by Equation (5.11) through (5.14) if
m = 4, or can easily be obtained from Figure 6.2. The summation results in:

Ciry = 24(25) ® 49 ® +3®y,, (6.13)
T[([I) — 5TEB + ]_T® + T®p0 . (614)

Again, to the ground field multiplication the architecture of Mastrovito is applied. As-
suming a complexity of n? AND / (n? — 1) XOR gates for the multiplier, we obtain:

#AND = %kQ (6.15)
#XOR = %kQ + 24(25)% —9+3Cg,, ,certainn (6.16)
Tana = 1 (6.17)
Txor < 5+42[logyn] + Ty, . (6.18)
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Cgy,, | AB mod P AB mod P

k n| P(z) type | XOR | AND XOR E2 | Tanda  Txor
8 2| 1110w? II 1 36 80 64 1 8
12 3| 1100w I 1 81 147 | 144 1 9
16 4| 1110w II 1| 144 238 | 256 1 9
20 5 | 1100w3° I 1] 225 339 | 400 1 11
24 6 | 1110w°8 II 5| 324 480 | 576 1 11
28 7| 1100w I 1| 441 602 | 784 1 10
32 8| 1110w™ II 14| 576 998 | 1024 1 12

Table 6.2: Space and time complexities for multipliers in GF((2")%)

6.2.2 Results

We determined primitive Type I or II polynomials for the ground fields GF(2"), n =
2,3,...,8 through an exhaustive search. Type I polynomials were preferred due to their
smaller implementational complexity (6.10). The search determined the polynomials
which have the lowest complexity C'g, for multiplication with the coefficient po.

Table 6.2 lists the space and time complexities of parallel multipliers in GF((2")%).
For the ground field multipliers the actual complexities of the Mastrovito architecture,
given in Table 3.1, were used. The table is to be interpreted as follows.

The column headed by P(z) contains the best primitive Type I and Type II poly-
nomials found. The next column denotes the type of the best polynomial found, i. e.
either Type I or II. The column headed by Cg, ~contains the complexity for multipli-
cation with the constant py. The overall space complexity is given in bold face letters
in the two columns headed by AB mod P. The column k? allows comparison with the
lower complexity bound of traditional architectures. The two rightmost columns provide
expressions for the time complexity in multiples of AND and XOR gate delays.

6.2.3 Evaluation

The multiplier introduced here has a gate count of 9/16k? AND gates and is thus 7/16 =
44% better than the lower bound of traditional architectures. The XOR complexity is
higher than the AND complexity, although for most fields considered still below the k?
bound. Only for the field GF'(2%) the number of XOR gates is with 80 considerably higher
than k? = 64.

For the values k£ = 16, 20,24, 28 the architecture proposed in this section possesses
the lowest gate count among the architectures proposed in this thesis. If the architecture
is compared to the general architecture over composite fields GF((2")™) with m = 4
described in Chapter 5, we find that the number of XOR gates has improved between 5
and 11 %, while the number of AND gates remains the same. However, it seems as though
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the major advantage of the architecture lies in its low time complexity. Compared to
the general architecture with m = 4, the architecture here reduces the number of XOR
gate delays by three for the fields £ = 16, 20, 24, 28. This corresponds to an improvement
between 20 and 25 %. For instance, the multiplier over GF(2'%) introduced here contains
in its critical path only 9 XOR gates, whereas the multiplier from Table 5.1 contains 12
XOR gates.

However, for the finite field GF(2%?) the general architecture allows the composition
GF((2%)®) which results in a better gate count. For even larger values of k, i. e. k = 64, the
general architecture will further improve because of its better asymptotical complexity.
The general architecture has a complexity of order O(k'°23) for the pure polynomial
multiplication compared to O(k?) for the architecture over GF((2")*) introduced in this
chapter.

In [Afa91], a multiplier over tower fields together with two examples for the fields
GF(2%) and GF(2'%) was introduced (see Subsection 3.2.2 for a description.) In both
cases, the XOR complexity is slightly better than ours (2 and 4 gates, respectively,)
when the AND complexity is the same. However, due to the field decomposition used,
GF(((2%)%)?) and GF(((2*)?)?), respectively, the modularity of the architectures seems to
be somewhat worse.



Chapter 7

A Comparitive (Gate Array Synthesis
of Multipliers

7.1 Motivation

In this chapter a VLSI synthesis of four different parallel Galois field multipliers is
described!. The architectures were mapped to the library of the gate-array family TC 160G
from Toshiba. The result was a netlist for each architecture and field order. The synthe-
sis was performed in order to clarify the following questions regarding parallel finite field
multipliers with respect to a gate-array implementation:

e What is the number of gate equivalences (or netto gates) of multipliers over com-
posite fields compared to those of traditional architectures?

e What is the estimated time behavior of architectures over composite fields relative
to traditional architectures?

e [s the theoretical gate count (in XOR/AND gates) a valid measure for the number of
netto gates?

e Which maximum clock frequency can be achieved in a given, e.g. commercial, ap-
plication?

We also try to contribute to closing the gap which exists between many theoretical
publications describing different approaches to VLSI suitable Galois field multipliers (see
e.g. the reference list) on the one hand, and the rather few reports available comparing
architectures from a technical point of view on the other hand. To the author’s knowledge
there are only two papers with a strong comparative character: Hsu et al. compare in

!The synthesis was a joint project with the Institut fiir angewandte Mikroelektronik (IAM), Braun-
schweig. The design entry and the running of the design tools was performed by the IAM. Special thanks
to Niko Lange.
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[HTDRAS| three different multipliers in dual, normal, and standard base, respectively.
The architectures considered are bit serial. Their approach, which is restricted to fields
GF(2%), results in actual implementations in NMOS technology. One of the paper’s
conclusions is that the dual base multiplier performs best with respect to area requirement.
The second, more recent, paper is by Jeong and Burleson [JB92] and compares various
multipliers from a high level description point of view. The VLSI synthesis is based on
Dependency and Signal Flow Graphs [Kun88|, focusing on systolic array architectures.
Due to the abstract character of the description, the comparison is more general than the
one in [HTDRS88]. One of their results is that standard and dual base serial multipliers
have a similar space complexity, whereas normal base multipliers require more area.

In addition to the two articles mentioned above, Geiselmann and Gollmann compare
in [GGI0] bit serial architectures for exponentiation. The comparison assumes a full
custom design VLSI chip. The two architectures compared use standard and normal
base representation of the field elements, respectively. The major conclusion is that
exponentiation in normal base does not necessarily results in a lower complexity than
standard base exponentiation. It is recommended that normal base architectures are only
used in situations where the exponentiation requires relatively few general multiplications.

Unlike the articles from above, we will consider bit parallel architectures. Moreover, we
will try to provide absolute and relative values regarding the area and time performance
of different multipliers with respect to an implementation on a gate-array.

7.2 Architectures Compared and Methods

For the comparison of implementations of parallel Galois field multipliers on one specific
gate-array we studied the VLSI synthesis of four different architectures. The field orders
2F considered range from k = 4 to k = 32, thus being consistent with the architectures
treated in this thesis. Assuming that fields whose elements can be represented by multiples
of 8 bit are most interesting for applications, we considered, besides k& = 4, the fields
k = 8,16,24 and 32. The architectures compared are:

1. Standard base multipliers over composite fields (SB/comp. fields) as proposed in
this thesis,

2. Standard base (SB) multipliers as proposed in [Mas91],
3. Dual base (DB) multipliers as described in Section 3.1.2,

4. Normal base (NB) multipliers as described in Section 3.1.3.

In order to provide comparable conditions, the field polynomials of all multipliers were
chosen to be primitive. The following polynomials were selected:

1. For the multipliers over composite field the architectures from Section 6.1 were used
for the field orders k = 4, 8. For the larger fields the architectures from Section 6.2
was chosen.
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2. For the multipliers [Mas91] the polynomials given in Table 3.1 were used for field
orders k = 4,8,16. For the two large fields investigated the polynomials Q(y) =
v 4+t + P+ +y+ 1 and Qy) = y2 4+ "+ + P+ y? 4+ y + 1 were used,
respectively.

3. We used the following primitive polynomials for the normal base multiplier:

Qly) = y'+y*+1

Qly) = V¥+y' +v"+y°+1

Q(y) — y16+y15+y13+y12+y11+y10+y8+y7+y5+y3+y2+y+1
Q(y) — y24+y23+y22+y21+y19+y17+y15+y14+y13+y11_|_y10_|_y8+

y6+y4+y3+y+1
Q(y) — y32_|_y31_I_y29_I_y28_I_y27_|_y26_I_y23+y22+y20+y18+y16+y15+
y14+y13+y12+y10+y8+y5+1

The first polynomial was chosen as suggested in [Mas91]. The polynomials for
k = 8,16,32 were taken from [Gei93a] and they are optimal with respect to the
theoretical gate count. The polynomial for £ = 24 was provided by W. Geiselmann
[Gei93b]. It is the best primitive polynomial with respect to multiplier complexity.
However, the multiplier over GF(23%) was found to be too large for the VLSI tools
used, so that it could not be synthesized.

4. For the dual base multiplier primitive polynomials with the lowest possible coef-
ficient weight were chosen. Since primitive trinomials does not exist if 8|k, the
polynomials have (3 + 2i), ¢ integer, coefficients for k = 8,16, 24, 32:

Qy) y' +y+1

Qly) = V+y' '+’ +y +1

Qly) = v +v"+v’+v°+1

Qly) = v'+y'+y’+y+1

Q) = v*+y +v"+v*+y +y+1

The target hardware of the comparative synthesis was the TC 160G, which is a mod-
ern and often applied family of gate-arrays from Toshiba. The TC 160G’s are sea-of-gates
chips realized in 0.8m CMOS technology. All architectures were entered in Verilog-HDL
(hardware description language) into the computer. The mappings onto the gate-array
library was performed automatically by the synthesis tool Synopsys, resulting in corre-
sponding netlists. This approach is of great practical importance, since the application of
a highly automated design process leads to a shortened development time (faster “time-to-
market”) and in turn to reduced development costs. However, the automatic technology
mapping does not guarantee optimal results.
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Each synthesis resulted in an absolute measure for the netto gate consumption which
is the number of gate equivalences (g.e.). The value is an approximate measure of the
chip area needed in an actual implementation of the architecture. Second, each synthesis
provided a measure of the time complexity, or delay, of each multiplier. Although the delay
is given in absolute units (nanoseconds, ns,) the time behavior of an actual implementation
depends heavily on the surrounding circuitry and the chip size. These parameters influence
the interconnection delay. Therefore, the delay values are only a rough estimate of the
speed of the multipliers in hardware implementations. However, all delay times given in
this study are valid relative measures, with which the speed of different multipliers can
be compared. In order to underline the limited relevance of the absolute delay values, all
numbers denoting multiples of nanoseconds and values derived from those, are given in
parenthesis in all tables below.

All syntheses were performed twice, once with each of the two compiler options “small-
est” or “fastest.” When the “smallest” option is set, Synopsys tries to realize the archi-
tecture with the smallest number of gate equivalences. The “fastest” option leads to
architecture mappings which possess a minimized critical path. Generally speaking, it
was found that the gate complexity increases only by 10-20% when the “smallest” ar-
chitectures were compared to the corresponding “fastest” ones. On the other hand, the
delay was reduced up to 50%, depending on the architecture and the field order, when
the compiler option was switched from “smallest” to “fastest”.

7.3 Results

7.3.1 Comparison of the Gate Consumption

This section shows a comparison of the number of gate equivalences, required for the
multiplier architectures. In order to achieve architectures with a minimized number of
netto gates, the compiler option was set to “smallest.” Table 7.1 shows the complexity
as absolute values in gate equivalences. In addition, these number were normalized with
respect to the best multiplier for each field order 2¥, thus providing a relative measure
for comparing the different architectures. The two measures are both printed in bold face
numbers. The table also provides the delays as computed by Synopsys. As described
above, these values are most useful for comparing the different architectures. Since their
usefulness as absolute values is limited, they are given in parenthesis.

The table shows that the composite field multiplier performs best in terms of gate
consumption for all fields except for the smallest field GF(2%). The Mastrovito multiplier
requires between 26 and 42% more gate equivalences than the composite field multiplier.
The dual base multiplier shows a similar behavior; it requires between 27 and 34% more
gate equivalences. The normal base multiplier requires by far the most gates. Relative to
the multiplier over composite fields, it takes between 160-582% more gate equivalences.

With respect to the time performance, the different architecture are not as easy to
classify. For the fields with £ = 8,16 the composite field multiplier is somewhat faster
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SB/comp. fields SB NB DB

gates delay gates delay gates delay gates delay

abs. rel. abs. abs. rel. abs. abs. rel abs. abs. rel. abs.

k| [ge] [ns] [g-e.] [ns] [g-e.] [ns] [g.e] [ns]
4] 69 1.11 (3.00)| 62 1.00 (2.30) 103 1.66 (2.86) | 62 1.00 (2.30)
8| 243 1.00 (381)| 307 1.26 (449) | 508 2.09 (4.30) | 322 1.33 (5.31)
16 | 885 1.00 (6.26) | 1290 1.46 (6.61) | 3709 4.19 (14.84) | 1120 1.27 (6.88)
24 | 1819 1.00 (10.09) | 2576 1.42  (8.09) | 10581 5.82 (13.17) | 2445 1.34 (6.09)
32 | 3554 1.00 (11.36) | 4650 1.31 10.37) 4536 1.28 (8.73)

Table 7.1: Comparison of the netto gate consumption of parallel finite field multipliers
over GF(2%) on the gate-array TC 160G (compiler option set to “smallest”)

SB/comp. fields SB NB DB
delay gates delay gates delay gates delay gates
abs. rel. abs. abs. rel. abs. abs. rel. abs. abs. rel. abs.
k [ns] [g-e] [ns] [g-e] [ns] [g-e] [ns] [g-e]
4] (1.84) 1.18 95| (1.60) 1.03 85 | (1.94) 1.24 169 | (1.56) 1.00 99
81 (2.74) 1.00 322 | (3.04) 1.11 395 | (2.96) 1.08 654 | (3.77) 1.38 392
16 | (4.50) 1.09 1009 | (4.31) 1.05 1498 | (4.11) 1.00 4929 | (4.27) 1.04 1277
24| (7.13) 1.58 1920 | (4.73) 1.05 3125 | (5.25) 1.16 14173 | (4.52) 1.00 2829
32| (8.24) 1.52 3976 | (6.08) 1.12 5332 (5.43) 1.00 5189

Table 7.2: Comparison of the estimated delay of parallel finite field multipliers over
GF(2%) on the gate-array TC 160G (compiler option set to “fastest”)

than the other architectures, for the field with £ = 4 the SB and the DB architecture
perform best, and for k = 24,32 the DB is clearly the fastest. The NB multiplier has for
the values k = 16,24 a considerably longer delay than all other architectures.

7.3.2 Comparison of the Time Behaviors

This section compares the delays of the synthesized parallel multipliers. In order to achieve
minimal delays, the compiler option was set to “fastest.” Table 7.2 provides absolute and
relative measures for the delays. The absolute values, measured in nanoseconds and
printed in bold face numbers, were computed by the synthesis tool Synopsys. Since the
absolute values are not exact measures of the physical delays in actual implementations,
but rather estimations, they are given in parenthesis. For each field order parameter k,
the speed of all multipliers was normalized with respect to the fastest one. These relative
values are also given in bold face numbers. The third parameter for each architecture and
field order is the absolute number of gate equivalences.

The table shows that certain architectures perform best for certain field orders. In
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compiler option: “fastest” “smallest”

delay 0 tp delay 0 tp

k| [ns] [Mop/s] [Gbit/s] [ns] [Mop/s] [Gbit/s]

4| ( ) (543) (2.17) ( ) (333) (1.33)
( ) (365) (2.92) (3.81) (262) (2.10)

16 | (4.50) (222) (3.65) (6.26) (160) (2.56)
(7.13) )
(8.24) )

(140)  (3.37) | (10.09 (99) (2.38)
(121)  (3.88) | (11.36 (88)  (2.82)

Table 7.3: Estimated speed and data throughput of parallel multiplier modules over
composite fields on the gate-array TC 160G

this respect the behavior is different from the comparison of the gate complexity, where
the composite field architectures possess the lowest gate count for almost all fields. The
dual base multiplier achieves the smallest delays for k£ = 4,24, 32. For k = 16 the normal
base multiplier is the fastest, and for £ = 8 the one over composite fields. However, the
architecture from Mastrovito is for all fields only slightly slower than the best ones. For
fields with & = 24,32 the multiplier over composite fields is considerably slower than the
other architectures.

The relative netto gate requirements are similar to the situation where the compiler
option was set to “smallest.” The SB and DB multipliers show a very similar behavior,
while the NB multiplier needs considerably more gate equivalences. The multiplier over
composite fields performs again best for all fields but for k£ = 4.

7.3.3 Estimation of the Theoretical Throughput of Multipliers
over Composite Fields

In this section an estimation of the maximal achievable operational speed and the corre-
sponding data throughput for the multiplier architectures over composite fields is provided
in Table 7.3. The maximum operational speed, measured in operations per second [op/s],
is also the maximum clock frequency, measured in clocks per second [Hz]. This is due to
the fact that the architectures only contain combinatorial logic but do not possess any
registers. The approach here is based on the assumption that the clock frequency is the
reciprocal of the absolute delays estimated by Synopsys. It should be emphasized that the
investigation is restricted to the consideration of the theoretical clock frequency of a single
multiplier module. Issues such as the time behavior of entire systems, e.g. Reed-Solomon
decoders, and delays caused by data I/O are not considered.

We compared each architecture compiled with both options, “smallest” and “fastest.”
The time complexity, in nanoseconds, obtained this way are given in the two columns
headed by “delay.” If the delay values are denoted with ¢, the number of operations per
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second o is achieved by:

0=< lop/s].

The values calculated are given in Mop/s. In the rightmost columns we compare the
theoretical data throughput of the multiplier modules. We define the data throughput as
the number of bits per seconds which can be obtained from the multiplier output when
the architecture is clocked with its maximal speed. Since a multiplier produces exactly k
bits of output per operation, the data throughput tp is:

k
tp=ko= n [bit/s].

The values achieved are given in the table in Gbit/s.

As expected, the maximal clock frequency decreases as the field order increases. For
the architectures compiled with the “fastest” option set, the maximal frequency ranges
from 543 down to 121 MHz. The corresponding values for architectures compiled with
the “smallest” option range from 333 down to 88 MHz. However the data throughput
increases as k grows. This indicates that the maximal clock frequency, which behaves
reciprocal to the length of the critical path, decreases slower than the logarithm of the
field order: log,(2%) = k.

7.4 Conclusions

We investigated the synthesis of different parallel multiplier architectures with respect to
the gate-array family TC 160G. The comparison included three traditional multipliers and
architectures over composite fields. The results from this comparison supports the major
achievement of this thesis, which is the development of parallel Galois field multipliers
with a low gate count. In particular it is shown that the theoretically low gate count can
be transformed to the netto gate count of gate-arrays under the given conditions which
are:

e the target hardware is the sea-of-gate chip family TC 160G, i.e. semi-custom chips,

e the architectures are entered in HDL and the synthesis is performed automatically
using the general purpose tool Synopsys.

In particular, the use of a general purpose synthesis tool does not take into account most
of the structural properties of the different architectures.

It was found that the SB and DB multipliers show a very similar behavior with re-
spect to both, time and gate requirements. The NB architecture requires significantly
more gates than all other multipliers. Hence it is doubtful if a parallel NB architecture
is well suited for large field orders, where & > 16. The results regarding the netto gate
requirements support the conclusions drawn for serial architectures in [JB92], where it
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was also found that SB and DB possess a similar performance, while the NB performs
worse. However, it should be noted that our comparison did not evaluate the base trans-
formation necessary for the DB multiplier. In order to perform the base transformation,
computations are required. A pure permutation is not possible, since this requires the
existence of irreducible trinomials (see Section 3.1.2), which do not exist if 8|k [Gol67].

Another set of syntheses aimed on fast multipliers. It was found that the architectures
are approximately equally fast for fields with £ = 4, 8, 16, if delay optimized architectures
were synthesized. For larger fields the composite field multiplier was found to be consid-
erably slower under the given conditions. However, comparing the “fastest” composite
field architectures with the corresponding “smallest” traditional architectures shows that
the first one outperforms the traditional multipliers with respect to both, gate and time
complexity. The only exception is the field GF'(221), where the “smallest” DB multiplier
is somewhat faster than the “fastest” composite field multiplier. As a conclusion, it seems
as though the traditional multipliers compiled with the “smallest” option are not the best
choices under the given conditions.

An estimation of the maximal data throughput for the composite field multiplier re-
sulted in values between 1.33 and 3.88 Gbit/sec. These values correspond to clock fre-
quencies from 333 down to 121 MHz. Due to the achievable high data throughput, the
architectures seem to be attractive for many high speed applications, such as fast special
purpose Reed-Solomon decoder chips or dedicated arithmetic units for general purpose
processors.



Chapter 8

Parallel Inverters over Composite
Fields

8.1 Introduction

This chapter introduces an architecture for parallel inversion over composite fields which
is based on an idea of Itoh and Tsujii [IT88, Section 6]. The original algorithm was applied
to composite fields GF'((2")™) represented in normal base. However, we will investigate
the algorithm’s application to composite fields in standard base representation. Unlike
the original algorithm, we propose that inversion in the subfield is performed by a direct
method rather than by Fermat’s Theorem. It will be shown that the significantly lower
complexity of the algorithm compared to other architectures allows the implementation
of parallel inverters. Moreover, we will show that the basic algorithm proposed by Morii
and Kasahara [MK89] is a special case of the algorithm explained hereafter.

For the complexity of the algorithm, the following measures will be used.

e ®, and ®,,, denote general multiplication in the fields GF(2") and GF((2")™),
respectively.

e Rt and @5 denote constant multiplication in the fields GF'(2™) and GF((2")™),
respectively.

e ®,! denotes inversion in the field GF(2").

e @, denotes addition in the field GF(2").

The goal is the determination of the inverse of A € GF((2")™), A # 0. A is given as
AZ) = ap 2™ P+ +ay, a; € GF(2").

As do many other architectures, we also apply Fermat’s Theorem which is in the notations

used here
AT =1, VA e GF((2M)™) \ {0}. (8.1)

78
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Equation (8.1) is equivalent to
AATT T =1,

from which it follows that
i (8.2)

Equation (8.2) shows that computing the inverse of a field element A can be accomplished
by raising it to the power of 2" —2 = 2422423 4. . .42~ A straightforward application
of the well known “binary method” [Knu81] of repeated squaring and multiplying results
in a computational complexity of nm — 1 squarings and nm — 2 multiplications. These
operations refer to arithmetic in the field GF((2")™). However, the binary method does
not produce optimum results. In [IT88, Section 4, Theorem 2] an improved method is
proposed, which reduces the number of multiplications to

[logy(nm — 1) | + Hy(nm — 1) — 1 < 2|logy(nm — 1) |, (8.3)

where H,(-) denotes the Hamming weight of the operand’s binary representation.

The outline of the remainder of this chapter is as follows. The next section develops the
algorithm given in [IT88] in our notation. After the algorithm is introduced, expressions
for the computational complexity with respect to a composite field representation in
standard base will be derived. In Section 8.4 it will be shown that the algorithm results
in the architecture [MK89] if we choose m = 2. In the last section, two examples for
parallel inversion in the important fields GF(2®) and GF(2'®) will be given.

seey

8.2 Itoh and Tsujii’s Algorithm for Inversion in Com-
posite Fields
The basic property of the algorithm explained in this section is that inversion in GF'((2")™)

is reduced to inversion in the subfield GF'(2"). Itoh and Tsujii’s algorithm will be devel-
oped with a different notation, starting with the following lemma.

Lemma 2 The multiplicative inverse of an element A of the composite field GF((2")™)
can be computed by

A—l — (147")—1147"—17
where A" € GF(2").
Proof. First, the auxiliary parameter!' r is defined as

2nm _ 1
on 1

T =

Ly corresponds to the parameter a in the original paper.
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An important property of r is that [LN83] :
A" e GF(2"), YA € GF((2M)™), (8.4)
from which Lemma 2 follows directly. ¢

We are also able to establish a relationship between the inversion formula given above
and the inversion based on Fermat’s Theorem. The exponent 2™ — 2, needed for the
inversion according to Equation (8.2), can be expressed in terms of r:

2mm —1
2r—1

gnm _ 9 —

2" —1)—1=r@2"=1)—1=r(2"—2) +r— 1.

Inserting the new expressions into Equation (8.2) yields
Al = Ar(2"72)+r71 — Ar(2"72)Ar71 — (Ar)ilAril,

where for the final step property (8.4) was used.
Lemma 2 implies a new method for computing the multiplicative inverse for a com-
posite field element. The method will be divided into four steps:

Step 1 Compute A"~" (Exponentiation in GF((2")™).)

Step 2 Compute A™'A = A" (Multiplication in GF((2")™), where the product is an
element of GF(2").)

Step 3 Compute (A") ! = A" (Inversion in GF(2").)

Step 4 Compute A"A"! = A~! (Multiplication of an element from GF(2") with an
element from GF((2")™).)

For the remainder of the chapter, a parallel implementation of the corresponding
architecture will be investigated. Figure 8.1 shows a block diagram of a parallel realization
of the architecture. It is assumed that all blocks work bit parallel.

8.3 Analysis of the Complexity of a Parallel Realiza-
tion

In this section the complexity of the algorithm’s four steps are analyzed. We will use the
complexity measures which were given in the introduction.
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Figure 8.1: Block diagram of an inverter over composite fields

8.3.1 Complexity of Step 1
Step 1 of the algorithm above is the following operation
AT A e GR((2M™),

where r is defined in Lemma 2. The operation is clearly an exponentiation in the field
GF((2")™). The special structure of r, together with the fact that A is element of a
composite field, will lead to an efficient method.
The parameter r can be expressed as a sum of powers:
2mm — 1
2n —1
This representation is similar to the binary representation of the number 2™ — 2 =
242242%+...42"m~1 Hence the optimized method from [IT88] with the computational
complexity given in Equation (8.3) can be applied. The method requires [log,(m —
1)| + Hy(m — 1) — 1 general multiplications and m — 1 exponentiations to the power
of 2", with both types of operations performed in GF((2")™). Efficient structures for
general multiplication are studied in detail in Chapters 5 and 6. In the following the
exponentiation will be studied.
Let B and C be elements of GF((2")™). We wish to perform the exponentiation of
C(z) = B¥, where B(x) = X", b;z®. This can be performed as follows (the proof is
based on [McE87, Lemma 5.12]:)

r—1= —1=2" 422 4 23 ... 4 olm=bn

m—1

m—1 m—1 2" m—1
Cla) =) ca' = (Z b:c) = S 02 =3 b, be GF(2Y).  (8.5)
=0 =0 1=0

1=0
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In order to achieve general expressions for the complexity, we assume 2" > m — 1. With
this assumption, there are m — 1 powers of x which must be reduced modulo the field
polynomial P(z), namely the powers z*", i = 1,2,...,m — 1. We use the following
notation for the representation of these powers in the residue classes modulo P(x):

o = sp;+ 810+ + Sy, o12™ P mod P(x), i=1,2,...,m— 1.
Using the coefficients s;;, the exponentiations in Equation (8.5) can be expressed in matrix
form as

Co 1 so S02 v S0m—1 bo
C1 0 S1,1 51,2 T S1,m—1 by
Cm—1 0 Sm—1,1 Sm—-12 " Sm—-1,m-1 b1

Since all s;; are (constant) elements from GF'(2"), the complexity of one exponentiation
is (m — 1)m constant multiplications (®<**") and m(m —2)+1 = (m —1)? additions (®,).
The complexity of the first step is therefore

C, = (m—=1[m-1me"™" + (m—12®,] + [|[logy(m — 1)| + Hy(m — 1) — 1] @
= (m—12’m™" + (m —1)*®, + [[logy(m — 1)] + Hy(m — 1) — 1] @pm.  (8.6)

8.3.2 Complexity of Step 2

Step 2 performs the operation
AT = A"1A, (8.7)

where A" € GF(2"), and the two operands are elements in GF((2")™). The operand
A1 is the result of the computations of Step 1. One possibility for computing (8.7) is
to apply a general multiplier over GF'((2")™), such as suggested in [IT88]. In this case,
the complexity of Step 2 is

Cy = Qum.

However, it is possible to take advantage of the a priori knowledge that A" is an
element of the subfield. For small values of m, this leads to a reduced complexity. In the
sequel, complexity expressions for this approach will be developed.

In order to provide general expressions, we consider the multiplication of B - C' =
D mod P(z), with B,C € GF((2")™) and D € GF(2"). First, we consider the pure
polynomial multiplication of B and C"

D'(z) = B(x)C(z) = (Tn;olbx) <m21”>

1=0

= (Tn;: dizri) : (8.8)
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We know that D'(x) = dp mod P(x), i.e. that all but the zero coefficient vanish after
reduction modulo P(x). If the matrix representation from Chapter 5, introduced in
Equation (5.20), is used for the modulo reduction, the coefficient dy can be expressed as

D= do = d{] + TO,UC;n + Toylc;ﬂ+1 + -+ Toym_gcém72
2m—2
= dy+ Y roid,,; mod P(x). (8.9)
=0
The coefficients ro; are the entries of the uppermost row of the reduction matrix R
in Equation (5.20). There are m — 1 constant multiplications with the coefficients r;
involved. Equation (8.9) reveals that the computation of D only requires the coefficients
di, v = mym-+1,...,2m — 2 and dj. Application of the straightforward method for
polynomial multiplication to the computation of these coefficient results in an overall
complexity for Step 2 of:
<MD E 2o N -1y o (8.10)

For small values of m, the complexity (8.10) is lower than the complexity of a general
multiplier over GF'((2")™). Let’s consider m = 4 as an example. In this case, a general
multiplier based on the KOA, such as described in Chapter 5, requires 9 ®,, and 22 &,, (if
the modulo reduction is neglected.) According to Equation (8.10), the improved method
requires only 7 ®, and 6 @, (if the constant multiplications are neglected.)

For a given polynomial P(z), further improvements are possible. These improvements
stem from the specific structure of the associated reduction matrix together with the a
priori knowledge that all d; except dy will be zero. We will explain the approach with an
example.

Example. We consider a composite field GF((2")*), generated by a Type II
polynomial as introduced in Definition 15. The reduction modulo P(z) = z* + 23 +
22 + po after the polynomial multiplication can be expressed as

dy 1000 py po O dy
di | 10100 0 po po di
b |T"lo0010 1 1 p |
ds 0001 1 0 1 d

6

where dj = dy = d3 = 0. The product D could be computed through D = dy =
dy + po(dy + d), which would take 6®;,, 5®,, and 1 ®t. This is already an
improvement of the complexity of Equation (8.10). However, using the relations

do = dy+dj+dS+ podg =0,
dy+dy = dy+ pods,
do = dp+ po(dy+dy) = dj + pods + pds, (8.11)

it becomes possible to compute D = df, with 5®,,, 46,,, and 2Q¢"*.
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8.3.3 Complexity of Step 3

The operation of Step 3 is
(A

which is inversion in the subfield GF(2") because of Lemma 2. Since our goal is the
development of a parallel architecture, inversion in the ground field must also be performed
bit parallel. For inversion in small subfields the direct method based on matrix inversion,
which is described in Subsection 3.3.1, is suited. In particular, for values n < 6 direct
inversion has a lower gate count than a parallel implementation of the architectures based
on Fermat’s Theorem, such as proposed in [IT88]. Formulas for direct inversion in the
field GF(2"), with n < 7 are listed in Appendix A. It should be noted that the formulas
listed are not optimized. For instance, the inversion formulas for GF(2?) require 23 XOR
and 22 AND gates if implemented in a straightforward manner. On the other hand, in
[Mas91, Section 9.2] optimized formulas for this case are given, which have an estimated
gate count of 25, involving XOR, AND, and binary inverters.

The complexity of Step 3 is in our notation:

03 = ®;1

8.3.4 Complexity of Step 4

Step 4 requires the operation

AT _Arfl — Afl,
where A™" € GF(2")and A™"! € GF((2")™). In order to determine the complexity of this
step, we denote B = by € GF(2")and C(z) = Y7  c;a® € GF((2")™). The operation
B-C =D mod P(X) is:

m—1 m—1
D=B-C = b Z et = Z boc;x'. (8.12)
i=0 i=0
m—1 )
== dix’.
i=0

Equation (8.12) has a complexity of m multiplications in the ground field. There is no
reduction modulo P(z) required. Hence the complexity of Step 4 equals:

04 =mQg,.

8.3.5 Overall Complexity

The overall complexity is achieved by summation of the four partial complexities:
C = C1+C§+C3+C4
= [Uog2(m - l)J + Hw(m - 1)]®nm
+@1+m®, + (m—1)*®, + (m — 1)*m ", (8.13)
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where the non-optimized complexity of Step 2 was assumed.

In terms of complexity, the most important steps are the first and the third ones.
The major gain of the new method is that the exponent of A is reduced from 2™ — 2 to
r—1=(2"—-1)/(2"—1)—1in Step 1. In Subsection 8.3.1 it was shown that the number
of operations in GF((2")™), required for Step 1, is of order O(log, m), whereas it was
stated in Equation (8.2) that raising A to the power of 2" — 2 is of order O(log,(nm)).
The “price” which must be paid for the gain is Steps 2, 3 and 4, of which Step 3 is the most
critical one. However, as can be seen in Appendix A, the direct inversion GF'(2") required
by Step 3 can be implemented with a relatively small number of gates if n is kept small.
Generally speaking, we must find a trade off between the two parameters n and m of the
composite field GF((2")™). The first one determines the complexity of the inversion in the
subfield, while the latter one determines the number of multiplications in the composite
field GF((2")™). Section 8.5 will give two examples for the decomposition of the fields
GF(2%) and GF(2'%), which leads to parallel inverters with moderate complexity.

8.4 A Relationship with Morii and Kasahara’s In-
verter

This section establishes a relationship between Itoh and Tsujii’s algorithm for inversion in
GF((2")™) in standard base, and the core algorithm of Morii and Kasahara’s architecture
for inversion over tower fields. The first one is described in the previous section, the latter
one in Subsection 3.3.3. It will be shown that the core algorithm of the architecture is
the same as Itoh and Tsujii’s method for the case m = 2.

Morii and Kasahara’s architecture is based on consecutive field extensions of degree 2.
However, the core algorithm is based on one field extension. In order to establish the
relation, the composite fields considered are GF((2")?). The field polynomial is P(z) =
22 + & + po. An arbitrary field element is represented by A(x) = ayz + ao, its inverse B
by B := A7! = byx + by. Let’s recall the core algorithm of the inverter proposed by Morii
and Kasahara, given in Equation (3.44):

by = ap+ay
0 ao(aota1)+poa?
by = o
ao(ao+a1)+poai

It was stated that there are 1 inversion, 3 general multiplications, 2 additions, 1 constant
multiplication with py and 1 squaring required to compute the inverse from the equations
above.

In the sequel, we investigate the algorithm from Section 8.2 for the case m = 2 with
the field polynomial P(z). The parameter r is now r = (22* —1)/(2" —1) = 2"+ 1. Step 1
of the algorithm is:

AT = (ayz + ao)r_1 = a1 2" + ag = [ay511]7 + [a1801 + ag). (8.14)
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The computation in Step 2 is:
A" = AT_IA = [aoalsl,l + G?SOJ “+ apa; + a?sl,l]x + [agals[),l + CL% + a?slylpo]. (815)

However, A" is an element of the subfield and therefore its coefficient at z is zero. Using
this, a relation between the coefficients can be established:

2 2
0 = apa151,1 + ajson + apar +ajsi;
&S0 = apS1,1 + a18p,1 + ap + a151,1
< A1S01 + Ay = (CL[] + a1)8171 (816)

Inserting the auxiliary relation (8.16) into the Equations (8.14) and (8.15) results in new
expressions for Step 1 and Step 2, respectively

Aril = 8511 (alx + [a1 + ag]),
and
AT = 51,1[a0 (CL1 + ao) + a%pg]. (817)

Step 3 is the inversion of A":

(A7) = si1 [ao(ar + ao) + aipo] .

The result in Step 4 is computed as B = A" 1(A") 1

B(.ZC) = blx + bo
a1x + (ay + ap)
ao(ar + ap) + aipy’

= A"tA) = (8.18)

Equation (8.18) is exactly the same as the resulting Equations (3.44) of the core
algorithm of Morii and Kasahara. If only one field extension is used for the tower inverter,
its architecture is the same as the architecture of Itoh and Tsujii’s inverter in standard
base in the field GF((2")?). Moreover, the architecture described in the previous section
can be viewed as a generalization of Morii and Kasahara’s core algorithm. However, it
is not true that it is a generalization of Morii and Kasahara’s architecture, since this is
based on tower fields, i.e. multiple field extensions of degree two.

8.5 Two Examples

In this section the space complexity of parallel inverters in the technically important fields
GF(2%) and GF(2'%) will be investigated. The measure which will be used is the number
of modulo 2 adders (XOR) and multipliers (AND). It will be shown that the same field
decomposition which was used for the multiplier architectures in the previous chapters
can be applied. Hence these multipliers can be used as modules within the inverter
architecture.
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8.5.1 A Parallel Inverter over GF(2°)

For inversion in the field GF(2®) we choose a decomposition into GF'((2)?). The primitive
field polynomial for the ground field is Q(y) = y* + y + 1, and the extension field is
generated by P(z) = 2? + x + w'". The choice of Q(y) allows the application of the
Mastrovito multiplier for the ground field, which has a complexity of 15 XOR/16 AND
gates. The coefficient py = w'* of P(z) has a complexity of 1 XOR gate for constant
multiplication, as can be seen from the first table in Appendix B.

As Section 8.4 showed, the optimized equations of the tower inverter can be used for
this composite field. The inverse, B, of an element A = a1 + ay can be computed from
Equation (8.18):

B(IE) = ble + bo

— Ar—l(Ar)—l _ a1x + (al + ao)

ao(ar + ag) + aipy

In this case, all arithmetic operations are performed in the ground field GF(2*). The
operations required are 1 inversion, 3 general multiplications, 2 additions, 1 constant
multiplication with py and 1 squaring. Next, the gate count of the arithmetic operations
in a parallel hardware implementation will be determined.

e For computing the inverse in GF(2%), the direct method described in Section 3.3.1 is
developed. Appendix A lists formulas for direct inversion. For the ground field con-
sidered here, a straightforward realization of the formulas would require 23 XOR/22
AND gates. This is certainly an upper bound, because redundancies in the formulas
have not been used to improve the gate count.

For the three general multiplications, the Mastrovito multiplier from Subsection 3.1.1
is used. This results in a gate count of 3(15XOR + 16 AND) = 45 XOR + 48 AND.

The two additions in GF(2*) require 2 - 4 = 8 XOR gates.

Constant multiplication with p, = w'? requires 1 XOR gate.

Squaring of an element ¢ = Y7 ¢;y® in GF(2*) involves the following operation:

= ey’ + eyt + eyt oo =3y’ + (e3 )yt + ey + (e + ),

where y® = y3 + y? mod Q(y) and y* = y + 1 mod Q(y). The complexity of the
operation is 2 XOR.

The overall complexity for parallel inversion in GF((2*)?) is obtained by summation of
the partial complexities. By denoting the complexity with Ch: we get:

Cor < (23445484 1+ 2) XOR + (22 + 48) AND = 79XOR + 70 AND
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This complexity is remarkably low. It is interesting to compare this complexity with
standard base multiplication. The Mastrovito multiplier, which is one of the best standard
base architectures, has a gate count of 84 XOR/64 AND (see Table 3.1.) We conclude that
inversion in GF(2%) can be performed with almost the same gate count as multiplication,
if composite fields are introduced.

8.5.2 A Parallel Inverter over GF (2!

For inversion in the field GF(2'®) we choose a decomposition into GF((2*)*). A decom-
position into GF((2%)?) is not advisable, because this would require direct inversion in
GF(2%) which is already very costly if direct inversion is applied.

The primitive field polynomials chosen are Q(y) = y*+y+1 and P(z) = a*+ 23+ 22 +
po. Again we can apply the Mastrovito architecture to the ground field multiplication.
For multiplication in GF((2*)*), the architecture developed in Chapter 6 will be used.
Table 6.2 shows that the complexity of the multiplier is 144 XOR and 238 AND gates.

We apply the inversion algorithm described in Section 8.2. The parameter for the
decomposition is m = 4. In the sequel, the gate counts of the four steps of the algorithm
are evaluated.

e According to Equation (8.6), there are 36 constant multiplications, 9 additions and
3 general multiplications required for Step 1. The general multiplications refer to
arithmetic in the composite field GF((2%)?), the two first types of operation to
arithmetic in the ground field GF(2*). In order to find a measure for the constant
multiplication, we use the optimized average complexity given in Table 4.1. For this
ground field, it is 3.3 XOR gates per constant multiplication. Using this estimation,
we obtain a complexity for Step 1 of 36:3.64+9-4+3-144 = 658 XOR and 3-238 = 714
AND.

e For Step 2, the optimized complexity developed in the example in Subsection 8.3.2
is valid. It is 5 multiplications, 4 additions and 2 constant multiplications. All
arithmetic is performed in the ground field. Hence the complexity equals 5-15+4 -
4+42-3.3=98 XOR and 5-16 = 80 AND.

e As in the previous example, an upper estimate for one inversion in the ground field,
required for Step 3, is 23 XOR and 22 AND.

e The four ground field multiplications required by Step 4 have a complexity of 4-15 =
60 XOR and 4 - 16 = 64 AND.

The overall gate count is obtained by summation of the partial complexities. By denoting
the complexity with Chie we get:

Che < 839 XOR + 880 AND.
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As expected, the complexity has increased dramatically if compared to the inverter
over GF(2%). However, the complexity is still in the range of the complexities of the
multipliers which were synthesized in Chapter 7. As matter of fact, the multiplier over
GF((2%)%), which was synthesized, has a theoretical gate count 576 XOR and 998 AND.
This complexity is comparable to the gate count of the inverter. Since the synthesis
resulted in an actual gate consumption of 3554 gate equivalences, we can expect that the
inverter will have a similar area complexity. This rough estimation implies that parallel
implementations of inverters over GF(2'°) are still possible.



Chapter 9

An Application: A DSP Based
Reed-Solomon Decoder with
External Arithmetic Unit

Parts of this chapter were presented in [PH94].

9.1 Motivation

In this chapter the implementation of a Reed-Solomon decoder) (RS decoder) on a digital
signal processor (DSP) is discussed. The DSP has an external, field programmable gate
array (FPGA) attached, containing the parallel finite field multiplier over GF((24)*) which
was developed in Chapter 5. We will show that the external FPGA enables the processor
to perform Galois field multiplication more than one magnitude faster than in software.

The major goals which were pursued by the implementation can be described as fol-
lows:

e Development and verification of a new concept for systems involving finite field
operations, consisting of a general purpose processor and a dedicated external finite
field arithmetic unit.

e Verification of the architectures for parallel multiplication over composite fields de-
veloped in this thesis.

e Development of an RS code operating with symbols longer than 8 bits and short
block length.

e Implementation of a reasonably fast (> 1 Mbps) RS decoder which is reprogrammable
and whose code parameters are thus alterable.

90
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9.2 Introduction

Reed-Solomon codes are error control codes, belonging to the important class of cyclic
codes [LC83] [Bla83|. They are a special case of BCH (Bose-Chaudhury-Hocquenghem)
codes. RS codes are, in addition to cryptography and signal processing, one of the most
important technical areas where finite fields are applied. Over the last twenty years they
have gained widespread application, ranging from space communication [LL84] [WHPH87]
[PRM90] to error correction on compact discs [Pee85] [SI91]. RS codes perform arithmetic
in Galois fields of the form GF(2F), where each field element is represented by k binary
bits. The vast majority of applications so far has operated over fields with & < 8 [SI91]
[Mes91]; RS codes over GF(2%) were actually standardized as part of a concatenated
coding scheme of the ESA (European Space Agency) and NASA [Kum83]. On the other
hand, today’s digital systems tend to possess binary word lengths that are longer than 8
bits. Typical are 16 or 32 bits, while an extension to 64 or more bits is expected in the
near future. RS codes which operate over Galois fields with field order exponents k equal
to 16 or 32 are therefore certainly attractive for many applications.

Another advantage of an increased symbol length matching the bus width of today’s
processors is, that faster software implementations of RS decoders and RS encoders be-
come possible. Although the use of a multi purpose processor as a decoder limits the
possible data throughput to one or two magnitudes of a VLSI solution [PD90] [Mes91],
a DSP inhibits several advantages. In addition to the shortened development time and
costs, programmable decoders offer much more flexibility if changes in the coding scheme
become necessary. An impressive example of the drawbacks of fixed coding schemes is
given by the Galileo spacecraft’s flight to the planet Jupiter, and the problems caused by
its non-unfolding antenna [CDD*93].

9.3 Implementational Aspects

9.3.1 Code Specification and Decoding Algorithm
The parameters of the implemented code are as follows:

e RS-code characteristics:

n =10 : number of symbols per RS codeword
k=8 : number of information symbols per RS codeword
t=1 : number of symbol errors that can be corrected per RS codeword

code rate : 0.8
e The generator polynomial of the the RS-code is:
g X)= (X -a)(X -a") = (X - 1)(X —a), (9.1)

with a being a primitive element of GF((2%)*). The pair of consecutive roots {1, a}
of this generator polynomial were taken as suggested in [Ber82]. They indeed proved
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to be optimal with respect to the encoder complexity (gate count) after an exhaus-
tive search through all possible pairs of roots.

e Arithmetic is performed in the composite field GF((2%)%), with Q(y) = y* +y + 1
and P(x) = 2%+ 23 + 22 +w being the field polynomials of the ground and extension
field, respectively.

Standard RS-codes over a field GF(¢) have a code word length n that is equal to
n = ¢ — 1 [Bla83], [LC83]. Using a field GF(2'®) would result in a code word length of
(216 —1) x 16bit = 131 kByte. This kind of block size is extremely difficult to handle with
respect to the required memory and introduced delay. Therefore the approach taken here
uses a shortened RS-code.

In the case of a shortened RS-code only n < ¢ — 1 symbols of the code word are used
to carry information; the others are considered to be zero symbols. If a systematic code
is used, the decoder has the a priori information about which of the information symbols
are in fact the zero symbols. These symbols carry no information and can therefore be
neglected in decoding algorithms.

Shortened RS-codes are, just like standard RS-codes, Maximum Distance Separable
(MDS) Codes, because they meet the Singleton bound with equality: dp;, = n —k + 1
[Bla83]. With a symbol error probability equal to ps and using the weight distribution
of MDS-codes [ML85], the undetected error probability for a (n,k) (shortened) RS-codes
over GF'(q) is upperbounded by :

n 1—d .
Py(E) =3 ( § ) (=1 > (=1 ( Z ; ! > ¢ L= p)"
i=0 Jj=0

In order to keep the introduced decoding delay low, we constructed a code with a
relatively short block length of 10 symbols and d,,;, = n — k +1 = 3. To avoid the
time consuming solving of the key equations by means of Euclid’s or Massey/Berlekamp’s
algorithm, a design parameter of ¢ = 1 was chosen. Using a code with £ = 1 results in
a pair of syndromes (9.2) and (9.3), which allow the determination of error location and
error magnitude by a direct method.

Code words are multiples of the generator polynomial (9.1). At the decoder we receive
words 7(X), which can be considered code words ¢(X) with possible error words e(X)
added to them:

r(X) = c(X) + e, X7, 0<i<09.

Evaluation of this received word at the roots of the generator polynomial g(X), gives
the syndromes:

Y = 7"(1) :C(l)+€i1i:€i251
9 (9.2)
=Tg+rgt - FTrLHT0= 20T

and . ,
YX =r(a) =cla)+ea’ =ea' =S,

= (---(T9a+rg)a---+r1)a+r0, (9'3)
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with Y :=¢; (, e; € GF(2!%)) being the error value and X := o indicating an error at
position 7 [Bla83].

With the calculation of Sy, which takes 9 additions (i.e. bitwise XOR,) the value Y
of the error is known. Furthermore, when this value is zero, we assume that no error
has occurred. For the calculation of Sy in (9.3), which is actually the evaluation of a
polynomial with known powers 2/ and variable coefficients r;, Horner’s rule [Knu81] is
well suited. In this particular case it has a complexity of 9 additions and 9 multiplications.

In the second decoding step the error position X can be found by systematically
trying which one of the possible values of X satisfies Sy = Y X, with S, and Y given.
The complexity of this method is in the worst case, i.e. an error at position ¢ = 7, eight
multiplications. When none of the possible X satisfy the equation, an uncorrectable error
(i.e. more than two symbol errors) is detected. Using this kind of systematic search we
avoid the inversion of Y, (i.e. X = Sy x Y1) which would take 15 multiplications and 16
squaring operations if the standard binary method for exponentiation is applied [Knu81].

9.3.2 The Hardware Concept

As mentioned in the introduction, the decoder was implemented on a DSP TMS320 C25
from Texas Instruments which has internally and externally a 16 bit wide bus. The
TMS320 C25 is an enhanced version of the TMS320 20 with an instruction cycle of 100ns
when running at full speed (40 MHz.) In the field GF(2'%), addition is simply performed
by a bitwise XOR of the two operands which takes only one instruction cycle. In order
to overcome the bottleneck imposed by slow finite field multiplication in software, an
external multiplier was attached. A block diagram of the decoder is shown in Figure 9.1.

From the available methods for finite field multiplication — table look-up, calculation
in software, serial hardware multiplication and parallel hardware multiplication — only
the last one is suited for this application. The frequently applied table look-up [TM90],
[YACDS89] would easily exceed the memory available on chip for the field size used. Ex-
ternal memory would not only be penalized by a higher access time, but will not even be
sufficient if the proposed system design is generalized for processors with longer word size.
For instance, if TT’s third of forth generation DSPs with 32 bit are applied. In general,
the memory size required for a table look up in GF(2%) is of O(2F), where k is also the
processor’s word size.

We used the multiplier architecture proposed in Chapter 5 which has a gate count of
144 AND / 258 XOR and which could easily be implemented on a XC3142 FPGA from
Xilinx. The multiplier chip is located on a printed circuit board which can be accessed
by the DSP via its regular I/O ports through fast interface logic. However, the access
time of the DSP I/O ports by assembler instructions is rather long (both read and write
need 2 machine cycles, i.e. 200ns), such that the overall time for performing an entire
multiplication adds up to 700ns when using indexed addressing, or even 1000ns when
multiplying two numbers that were not previously in registers.
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Figure 9.1: Block diagram of the DSP based RS decoder with external finite field multiplier
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Hardware Software
C-library MAPLE
pure | TMS320C25 IBM 80486DX2 | TMS320C25 IBM
FPGA + FPGA RS6000/580 | 66 MHz (estimated) | RS6000/580
80ns 700 ns 4.8 ps 6.1 ps 12 ps 2.6 ms

Table 9.1: Speed comparison of various methods for general multiplication in the finite
field GF(2'9)

9.4 Results and Comparison

Table 9.1 shows a comparison of hardware/software solutions for general multiplication
in GF(2'%). For reasons stated above, we assume that table look-up is not feasible and
therefore all methods given in the table calculate the result of the multiplication. The
software methods are based on a self written C-library with an especially optimized mul-
tiplication routine and the multi purpose program MAPLE for algebraic computation.
For a generalization of the results for larger fields it should be noted that the speed of the
library function increases at least proportionally with the logarithm of the field order 2F.
For instance, multiplication in GF'(2°%) would at least double the multiplication time.

The maximum data rate of the decoder is limited by the time required for the decoding
algorithm plus some overhead for the interrupt handling. For the system implemented, a
CD based signal was used which results in a clock speed of 10/8 x 1.41Mbps = 1.76Mbps.
This correspondents to 91 us for the receiving of an entire block of 160 bits. The DSP
needs 68 us for input, output, and decoding in a worst case situation, which is 75 % of the
available 91 us. Therefore the data rate can be increased theoretically up to 1.9 Mbps.
The DSP I/O and decoding process cause a delay of two blocks or 320 bits, which is equal
to approximately 0.2 milliseconds.

Table 9.2 shows a comparison of our system with the two DSP-based RS-decoders
proposed in [TM90] and [YACDS89]. These decoders apply table look-up for multiplication
in the fields GF(2®) and GF(2%), respectively. The coding schemes implemented are
standard, i.e. non-shortened, RS-codes. We are aware of the fact that it is difficult to
provide a fair comparison due to progress in processor technology and due to different
code parameters used. However, the significantly increased data rate of our approach
compared to those in [TM90], [YACD89] seems to prove the success of the new system
design, using dedicated external arithmetic units that allow arithmetic in fields which
match the processor’s bus structure.

A complete version of the system, including an FPGA encoder and a simulated channel
which corrupts digital data from a compact disc player at a speed of 1.76 Mbps, was
exhibited in the research section of the CeBIT computer fair, held in March 1994 in
Hannover, Germany.
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System DSP Coding Scheme | Code | Maximum | Delay Decoding
rate | data rate algorithm
Proposed Texas Inst. (10,8) over 0.80 | 1.9 Mbps | 0.2 ms Direct
TMS320C25 GF(2'9) solution
[TM90] NEC (255,223) over | 0.87 | 275 kbps | 14.5 ms Euclid
1990 pPD77220 GF(2%)
[YACDS89] || Texas Inst. (15.k) over 0.67 - 16 - 4.4 - Massey-
1989 TMS32010 GF(2%) 0.93 80 kbps 0.9 ms | Berlekamp

Table 9.2: Comparison of DSP based RS decoders

9.5 Outlook

Our approach looks promising for an extension of the error correction capability to ¢ > 1.
For this, in addition to the multiplier, a fast external finite field divider/inverter such as
proposed in Chapter 3.3 should be attached to the DSP. This would make more general
and more powerful DSP based decoders possible. The inverter would allow a fast solution
of the key equations either through Euclid’s algorithm, Massey-Berlekamp’s algorithm or
an extended version of the direct methods such as the algorithms proposed in [DZ85]. A
further improvement can be made if the access time of the external hardware is accelerated.
We used the standard I/O ports of the DSP, but a sophisticated DM A-based access scheme
may result in faster multiplication/inversion.



Chapter 10

Discussion

10.1 Summary and Conclusions

This thesis describes various bit parallel VLSI architectures for computation in Galois
fields of characteristic two. The arithmetic functions considered are: multiplication with
a constant, general multiplication and inversion. The architectures make extensive use
of a decomposition of fields GF'(2¥) into a subfield GF(2"), together with an extension
of degree m, where nm = k. These fields are referred to as “composite fields.” The
architectures are based on algorithms which lead to small theoretical gate counts.

The architectures use a polynomial representation of composite fields elements. This
means, the elements are represented by polynomials with a maximum degree of m — 1
and coefficients of GF(2"). Thus, computation in GF((2")™) is performed by applying
arithmetic modules from GF(2"). This setup possesses several natural advantages for
VLSI implementations:

e The architectures are modular, with modules performing GF(2") arithmetic with
well defined functions and interfaces.

e Since multiplication is considerably more “costly” than addition in GF'(2") in terms
of gate count and delay, efficient algorithms known from integer arithmetic can be
applied to arithmetic in GF'((2")™). This may result in an improved gate count.

e Since the complexity of inversion in finite fields GF(2¥) increases dramatically with
the field order, algorithms over composite field which reduce inversion in GF((2")™)
to inversion in GF'(2") are potentially very efficient.

There are two efficient algorithms described which can be used as tools for the prac-
tical application of composite field architectures. The first algorithm describes a linear
mapping between a binary (traditional) field representation and a composite field repre-
sentation, such that the architectures introduced here can be used together with other
architectures. The second algorithm performs a test in order to determine whether a

97
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polynomial over GF(2") is primitive. Polynomials which pass the test can be used for
constructing composite fields. The latter algorithm seems to be especially useful, since
tables of these polynomials are very rare in literature. The tables available usually contain
irreducible polynomials over GF'(2) or polynomials over other prime fields; one of the few
exceptions is reference [GT74].

After the introduction of a locally optimum algorithm for gate optimization of constant
multipliers, different architectures for multiplication of two arbitrary elements in compos-
ite fields are developed. A general architecture can be applied to fields GF((2")™), where
m is a power of two. The architecture is based on the Karatsuba-Ofman algorithm, whose
application to the multiplication of polynomials over fields GF'(2") is studied in detail.
It is shown that the computational complexity of this operation is of order O((nm)'°823),
and the theoretical delay of order O(log,(nm)). Applying an exhaustive search results in
primitive polynomials which perform modulo reduction in fields up to GF(2%%) with low
complexity. For two types of composite fields, those with the fixed compositions GF((2")?)
and GF((2")*), improved architectures are provided. For all field orders, architectures
were found that are below the 2k? —1 lower complexity bound of traditional architectures.
Moreover, the complexities are also below the complexities of an architecture that applies
the Karatsuba-Ofman algorithm to elements in a binary field representation [Afa90]. The
multiplier over GF(2%), introduced in Section 6.1, has the lowest gate count reported in
technical literature. For larger fields, the architectures perform slightly worse than those
over tower fields, but possess the advantage of a higher modularity.

A VLSI synthesis compares three traditional multipliers, which uses standard, dual,
and normal base representation, respectively, with composite field multipliers. The syn-
thesis performs an automatic mapping of the architectures to a sea-of-gates chip. The
major result is that the theoretically improved gate count of the composite field multi-
plier can be transformed to actual gate array implementations under the given conditions.
We conclude that the proposed multiplier architectures are of great interest for technical
applications.

An algorithm of Itoh and Tsujii for inversion in composite fields is applied to elements
in standard base representation. The algorithm reduces inversion in GF((2")™) to in-
version in the ground field GF'(2"). The algorithms is divided into four steps, each of
which are investigated with respect to space complexity. It is proposed that inversion in
GF(2") is performed by a direct method. Two examples show that parallel inversion with
elements in standard base is possible with a surprisingly low gate count.

A new concept for systems involving finite field arithmetic is proposed. The concept is
based on a general purpose processor together with dedicated hardware for computation
in finite fields. As an application for the parallel architectures over relatively large fields
developed in this thesis, a fast Reed-Solomon (RS) decoder with 16 bit symbols was
implemented on a digital signal processor. The processor has an external finite field
multiplier over GF(2'%) attached. It is shown that a shortened (10,8) RS code allows a
decoding speed of up to 1.9 MHz/sec.
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10.2 Recommendations for Further Research

It has been demonstrated in this thesis that it is advantageous to apply composite fields
to bit parallel VLSI architectures. During the research, several questions regarding the
architectures presented arose which are as yet unanswered. Moreover, some extensions of
the results can be suggested.

1.

Chapter 5 develops a general architecture for multiplication over GF'((2")™). Whereas
it was possible to provide general expression for the complexity of the multiplication
of two polynomials over GF'(2"), field polynomials P(z) which perform the opera-
tion mod P(z) with low complexity were determined through an exhaustive search.
It would be interesting to provide general expression for modulo reduction with low
complexity as well. A possible approach would be to investigate the existence of
field polynomials over GF'(2") with low coefficient weight.

In Chapter 6, only the existence of Type I polynomials over GF'(2"), n odd, could
be proved. We could not find a similar proof of existence for Type II polynomials
over GF(2"), n even. Since the fields GF((2")*), n even, are especially interesting
for technical applications, it would be helpful to provide such a proof.

[t seems interesting that Type I polynomials do not exist over fields GF(2") when
n = 2,4,6,8. These observations suggest a further study of the question “Do Type I
polynomials exist only over fields GF(2") with n odd”? An answer to this question
would extend Lemma 1 on page 66. A more generalized question is: “Do primitive
trinomials of degree four exist over fields GF(2") with n even?” In order to answer
this question it might be helpful to study [Gol67], where the non-existence of binary
trinomials of degree 8¢, ¢ integer, is stated.

Both types of architectures in Chapter 6, over fields GF((2")%) and GF((2")*%),
improve the general architecture of Chapter 5 over GF((2")™) by combining the
third stage of the Karatsuba-Ofman Algorithm and the modulo reduction. An
extension of this approach to composite fields with m = 8,16, ... seems promising.

Up to which field order the parallel multiplier developed in Chapter 5 can realis-
tically be implemented in VLSI should be investigated. For instance, is parallel
multiplication in fields of order ~ 2°% possible?

A locally optimum algorithm for optimized constant multiplication over GF'(2") was
introduced in Chapter 4. In order to obtain solutions which are globally better, it
might be worth while to apply the principle of simulated annealing [AK89] to the
algorithm.

In [Mas91, Chapter 6] hybrid multipliers were introduced. These multipliers are
architectures based on composite fields which perform the ground field multiplica-
tion in parallel, but perform the extension field algorithm in a serial manner. In
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particular, hybrid architectures seem to be attractive for arithmetic in Galois fields
of very higher order, such as needed for some applications in cryptography. With
the material provided in this thesis, the construction of hybrid multipliers over large
Galois fields should be possible: The algorithm of Section 2.3 can be used for the
determination of suitable field polynomials; the results of the gate array synthesis
described in Chapter 7 can be used for an estimation of the time performance.

8. Asstated in Section 9.5, a programmable RS decoder should be implemented which,
in addition to a finite field multiplier, has also a parallel hardware inverter attached.
What is the achievable speed of the hybrid software/hardware decoder?



Appendix A

Direct Inversion in GF(2")

The following formulas describe direct inversion in the fields GF(2"), n = 3,4,5,6,7. The
notation of the variables refers to

B = (bn—la H 'JbIJbO) = A_l - (a'n—la H '7a17a0)_17

where A, B € GF(2"). The formulas are not optimized, i.e. they contain redundancies.
For an implementation, a gate optimization is recommended. The field polynomials are

given in Table 3.1.

1. Equations for inversion in GF(23):

bo = ag+a;+az+aias
bl = Qpay + a9
b2 = a + (03] + agao

2. Equations for inversion in GF(2%):

bo
by
by
b

g + a1 + a9 + agas + a1as + Ap1G2 + a3 + 10203
Aoy + aoga9 + a1a9 + as + apas + apa1as
apai + az + apas + a3 + apas + apasas

a1 + ags + as + qpas + ayaz + axas + ajazas

3. Equations for inversion in GF(2°):

bg = Qg+ a1+ a2+ ar1as + as + a;as + Aglaas + G10203 + A4 + ApA104 + A204 +

A10204 + G304 + a10304 + Q20304 + Q1020304

by = apa; + apas + ajay + apaiay + apaias + aoas + Agaiaea3 + a4 + a1 a4 + ApG1as

+aiaqsa4 + apgaszay

bg = Qg1 + a102 + ag + agasz + ApA1a3 + A4 + GoQg + A1 A4 + AgA1A4 + A204 + AoA2G4

+aiaqa4 + agaia2a4 + apasay + a1a3a4 + 20304

101
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b3:

b4:

Aoy + (03] + as + apas + ayas + o103 + QaogQ20s3 + a1a203 + ay + apaa + a1Qy4
+agaza4 + aza4 + apazays + a10304 + AoG1A304
a; + az + age + aga1a9 + a3 + Agasz + G203 + Apl2G3 + Qg + Gglg + A204

+agtgays + a10304 + 20304 + AoU0304

4. Equations for inversion in GF(2°):

b():

Qo + aq + (5] + [WN]25) + a1a9 + apga1as + as + apas + apgQo0as + 4 + a1Qy4
+agaiay + apasay + a1a904 + apga1a2a04 + aza4 + a1a304 + apaa3a4 +

Ao0304 + AoUoU3A4 + A1A20304 + AoA1A20304 + A5 + G105 + Qa1 a5 + Apasas +
10205 + Q305 + A1A305 + Q20305 + AoAa05 + Q10405 + Q20405 + A30405 +
ApA3a405 + A1A30405 + Q2030405 + Q102030405

apga + agas + arae + agaias + apgaias + asaz + a1aoa3 + agaaoaz + Ggay
+ai1a4 + Q204 + Goa1a2a4 + A304 + GoA3aG4 + ApA1A304 + A5 + G205 + QoG5
+azas + apazas + apa1a3as + 20305 + AgQ20305 + Q1020305 + ApA1A20305
+aja4a5 + agagas + aga3a4as + G1030405 + Ao03G405

Qo1 + a1a9 + aga1ae + apas + a1a3 + A2063 + a4 + @104 + Q264 + Q10204
+apaia0a4 + apaszay + aoa304 + ApQ2a3a4 + A1G20304 + a5 + Qpas + 105
+apaias + asas + apgasas + agaiasas + a1azas + agaazas + Aghaazas
+a10405 + QoG20405 + Q1020405 + AoA1A20405 + G30405

apaq + agag + ar1as + as + agas + a1as + agaias + a1a2a3 + aga1a2a03 + Ay
+agay + a1a4 + AoUoay + GoG3a4 + AgA1A304 + A20304 + A5 + QoA + Go1A5
+aszas + apa1a305 + 20305 + Q405 + ApAals + ApA1A405 + AoQaA405
+a1020405 + Q30405 + Q1030405 + ApA1A30405

apay + (05)] + apa9 + apga1as + as + apas + aiaq0ds + a4 + Aoy + a1a204 + 30y
+apa1a304 + Q20304 + ApA2a304 + A5 + QoQs + G205 + QG205 + ApA G205
+ajasas + agQoas3as + AgAals + 20405 + AgA2G405 + ApA30405 + GoU2A30405
ap + Qg + apa1a2 + a3 + A103 + ApG1A3 + AoA3 + A1A203 + A4 + A1Q4 + ApG20y4
+ajaszas + a5 + agas + agaG105 + A205 + A1A205 + A10305 + Q20305 + ApG20305
+ajasasas + agas + agaiasas + asasas + a1a0a4a5 + a3a4as + a1a3a405

+a9030405 + Q102030405

5. Equations for inversion in GF(27):

b():

Qo + a1 + as + a1a9 + as + ajas + apaiasas + a4 + @104 + G004 + a1a904
+azay + apazay + agaza4 + agasazay + apa9a3a4 + a5 + apas + apaias

+aqas + apgaqsas + aiaqsas + apgaqasas + apgaszas + ajazas + apgaiazas
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by

by

by

+aga3as + agt1a4a5 + AgA2G405 + Q1020405 + AoA2G30405 + A1 A2030405
+ag + Qpa1ag + A206 + A3 + ApA3Q0g + A20306 + AnA204Q6 + A1 A2040¢
+as3a40¢ + 1030406 + AgA1A30406 + A1A203040¢ + G506 + AoAs0g
+agaiasag + 1020506 + AA1A20506 + A30506 + ApA3050¢ + A2030506
+a102030506 + Q40506 + Q1040506 + A1A2040506 + A3040506 + A1 03040506
+CLQCL36L4CL5CL5 + 10203040504

apaq + agag + a1ag + agas + apa1a3 + A203 + 10203 + oA 1G4 + G304
+apaoa4 + 304 + Qpa304 + QpA1A304 + A20304 + ApQ2A304 + G1A20304
+agaiasazay + agas + ajas + agaias + apgasas + apgaiasas + agagas
+a1a3a5 + apa20a30a5 + AoQA1A20305 + G405 + G20405 + AgA2A405
+apa1a20405 + A30405 + AoA3A405 + ApG1A3A405 + Q2030405
+agaiasazasas + ag + ajag + apgaiag + arasa¢ + apgaiasag + agagag
+a1a306 + ApGaQg + A1A406 + AnG1A406 + A20405 + G1A2040¢ + QAyA3A406
+a1a30406 + ApA1030406 + Q102030406 + GoQ10506 + A20506 + Q1020506
+apaiazas5a6 + azasas + ags3aste + 2030506 + AgU2030506 + A10506
+apa40506 + Q1040506 + AoA1 Q40506 + A2040504

Aoy + a1a9 + agai1ae + ar1as + agxaz + ajazxas + ap1a203 + Agls + ApAady
+azas + arazas + azazays + a1a2a304 + a5 + agUs + apa1a5 + ApQaas + apaszds
+a1a3a5 + apaiazas + ApAoQ3as + AgG1G2a0305 + A10405 + AoQ1A405 + A20405
+a1a2a405 + A30405 + ApA30405 + A1A30405 + Ag + QAoUg + Apl20g + A10204
“+asag + apgaszae + a1a306 + AgA2aG306 + Q1020306 + Ao A2030¢ + A4Gg
+apa406 + ApA10406 + ApA1A20406 + AoG1G30406 + ApA2A30406 + Q102030406
+aga1a0a3a4a6 + QoQsag + AnQ1G506 + A30506 + ApA3050¢ + Q1030506
+a2a30506 + AnA2030506 + A1A2030506 + Q40506 + ApQ40506 + QoA G4A50¢
+0904050¢ + G1A2040506 + A3040506 + ApA3040506

Qpd1 + Aol + a1G2 + Apa1G2 + U203 + GgUals + A1 U203 + ApA1A203 + Qg
+apa2a4 + Apazay4 + A1A304 + QoA1A304 + 20304 + QoA2A3A4 + G5 + ApG1 a5
+aza5 + apaxas + apa1a2as5 + A3as + AoA1G2A305 + A20405 + AgA20405
+aia2a4a5 + Aga1G20405 + 30405 + A1A30405 + ApA1A30405 + A2030405
+ag + Qpag + oA + A0 + ApA1A206 + A30g + A1A306 + A20306
+a1a2a306 + ApQa0g + Q10406 + U040 + AoUoA406 + AoQ1A2040g
+CL0(L36L4CL6 + a1a3040¢ + a5 Qg + 120504 + aga109050g + Aoa3a50g
+a1a3a50¢ + GpA1A30506 + A2030506 + ApA2030506 + A1 Q2030506
+CL0(L16LQCL3(L5CL6 + ap4a50g + Ao3a4050¢ + 103040506 + A20304050¢

apay + a1a9 + o102 + as + apg20as3 + a1a203 + 4 + 1G4 + Aoy + a1a3a4
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+CLUCL16L36L4 + ao0304 + g3y + 1020304 + as + aias + ao0s + apg20as
+a1a9a5 + QpG1A205 + Qo305 + A1A305 + AgA20305 + Q405 + AgA1G4aA5
+AgA2aG405 + A1A20405 + AoA1A20405 + GoGaA30405 + A1 A2030405

+ag + GoUg + 10 + ApA10g + Q10206 + AgA1A206 + A1A306 + G20306
+apaga3ae + @1020306 + A4 + ApQAsGe + AoQA1A406 + A1A20406
+CLUCL16LQCL4CL5 + a1a3040¢ + apa1a304 06 + Ag20a3040¢ + AoasUg

+aiasa¢ + agaiasag + A2a506 + A1A20506 + QA1 A30506 + QoA A40506
+a2040506 + ApA2040506 + A1A2040506 + QoA A2040506 + A304050¢

apa1 + ag + agaiag + az + agasz + ayaz + apagsdsz + a1a203 + Aoaidads
+ay4 + apay + a1a4 + agaiay + apasay + a3y + agaia3a4 + Apa1a2a0304
+as + agas + Qpa1as + Qpaaas + A10205 + QA1 G205 + A305 + QoA Q305
+agasasas + agaqs + A10405 + GoQ1 405 + Q1030405 + ApA1A30405
+azazaq4as5 + ag + Qpas + ApA1a6 + A306 + ApA203A6 + A1 + A1A106
+apaia4a6 + A1020406 + A30406 + ApA3A406 + A1A30406 + ApA1A30406
+asag + apasag + Apa G506 + Q20506 + ApA30506 + AoQ1 3050
+apa2a30506 + Q102030506 + Q40506 + ApG4A506 + A1 040506 + Q2040506
+CLUCL26L4CL5CL5 + 30405046 + apa3a405ae + 103040506 + Ao10304050¢

a1 + ag + apag + agQ1a9 + a3 + Apas + AUz + A4 + AgA1Agq + U204 + AoG304
+apaga3a4 + 1020304 + a5 + Q205 + Q305 + ApA3a5 + ApA1A305 + Q20305
+agasasas + G405 + a10405 + ApG1020405 + Q30405 + ApA30405
+a1030405 + A2a30405 + AgAad30405 + Gg + GoAg + A10g + ApQ1Ug
+aia2a6 + apaiaga6 + azag + apazas + a1a306 + 20306 + ApG2a306
+a1a2a3a6 + QoA G20306 + AoQaGg + A1A406 + QoA G406 + A2040g
+apA20406 + Q1020406 + A3A406 + QoA30406 + ApA2030A406 + AoA50g
+a1a2a506 + ApA30506 + Q1030506 + A2030506 + ApA2G30506 + ApAsQ50e

+apasa4a506 + Q103040506 + A203040506 + QoA2A30410506



Appendix B

Complexities of Constant Multipliers

This appendix contains complete tables of the complexities for constant multiplication
with elements from GF(2"), n = 4,5,6,7,8. The complexities are measured in XOR
gates. The complexities were optimized with the second greedy algorithm described in
Chapter 4. Due to the nature of the algorithm, the complexities are suboptimum. The

average complexity for each field is given in Table 4.1 in the text.

|

w' XOR | w* XOR | w w w'  XOR
wt 1|t 4| w’ 4| w 6| wh 2
w? 2| Wb 5| wd 4| w 5| wh 1
w3 3| wb 4| w? 5| w 3

Table B.1: Space complexities for multiplication with elements of GF(2*) generated by

Qy) =y*+y+1, where Q(w) =0

By

By
By

By

w' XOR | w® XOR |w' XOR |w w'  XOR | w

wh 1| wh 6| w't 71 w'® 5| w?t 8 | w?® 5
w? 2| w’ 7| w'? 8 | wl” 5| w?? 8 | w?” 4
w3 3| Wt 7| w! 7| w'® 6| w? 8 | w? 3
w? 4w 7| wh 7| wt® 7| w 7| w? 2
w? 5| wto 7| wt® 5| w2 7| w? 6 | w30 1

Table B.2: Space complexities for multiplication with elements of GF(2°) generated by

Q(y) =y° +y*>+ 1, where Q(w) =0
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w' XOR|w' XOR|w' XOR|w' XOR|w' XOR|w' XOR
wl 1| w? 8| w? 9| w? 7| w 9| w 9
w? 2| wh 9 | w 8 | w 8 | w 9 | w 10
w3 3| wht 9| w? 9| w3 9 | w* 10 | w™ 10
w? 4| wh 10 | w?® 10 | w36 10 | w?t 11 | w8 10
w? 5| w'® 11 | w?” 10 | w37 12 | w?” 11 | w?” 9
Wb 6 | w!” 12 | w® 8 | w3 11 | w8 9| w® 5
w’ 7wt 12 | w? 8 | w¥ 10 | w? 8 | w* 4
wB 7wt 10 | 7| w0 11 | W™ 8 | wh 3
w? 7| w? 10 | w3t 6 | w* 10 | Wt 8 | wb! 2
w'? 7| w? 10 | w32 6 | w? 10 | w2 8 | wb? 1
Wl 7| w22 9
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Table B.3: Space complexities for multiplication with elements of GF(2°) generated by
Qy) =y° +y+ 1, where Q(w) =0
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|

|

|

|

|

w' XOR|w' XOR|w' XOR|w' XOR|w XOR | w XOR
wl 1| w? 13 | w® 14 | W% 7| w® 13 | w'% 13
w? 2| w? 12 | w 15 | w% 8 | wh 12 | w0 12
w3 3|w 12w 16 | W 9 | W 12 | w12
w? 4| w? 11 | w*t 15 | w7 10 | w® 13 | w'® 12
w? 5 | w2 10 | w7 14 | W% 11 | w® 13 | w'® 11
w8 6 | w2’ 10 | w*® 13 | w% 13 | w? 12 | w'it 10
w’ 7| w? 11 | w? 12 | w™ 14 | w 11 | w't? 9
WS 8 | w? 12 | W™ 12 | w™ 14 | w?? 12 | w3 9
w? 8 | w30 13 | Wt 11 | w™ 13 | w* 13 | W't 10
w'? 8 | wdl 14 | w*? 11 | w™ 12 | w™ 14 | w'd 11
wit 8 | w* 14 | w5 10 | w™ 12 | w? 15 | w'it 12
w'? 8| w 14 | w™ 10 | W™ 13 | w? 15 | wtt? 12
w3 8 | wi 14 | w® 11 | w™ 14 | W7 14 | w'8 12
wh 9| w3 15 | w 12 | W' 13 | w? 14 | w'? 12
w's 10 | w36 15 | w7 11 | w™ 13 | w? 14 | w'?0 11
w'e 10 | ¥ 14 | W 11 | w™ 15 | w' 13 | w'?! 6
wt? 11 | w38 13 | w® 10 | w® 16 | w!ot 13 | w'?? 5)
w8 12 | w3 14 | wb 10 | wbt 15 | w!v? 12 | w'? 4
wt? 13 | w* 13 | W 9 | wh? 14 | W' 11 | w'4 3
w20 14 | w* 13 | w% 8 | wh 13 | W't 11 | w'? 2
w! 14 | w*? 13 | W% 7] wd 13 | W' 12 | w'? 1

107

Table B.4: Space complexities for multiplication with elements of GF(27) generated by
Qy) =y " +y+1, where Q(w) =0
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w* XOR | w* XOR | w* XOR | w* XOR | w* XOR | w* XOR
wt 3| wt 15 | w7 16 | w'?® 17 | '™t 17 | w213 19
w? 5| wt 13 | w88 18 | w30 16 | w!™ 16 | w24 17
w3 8 | wif 12 | w® 15 | w!?! 14 | w'7 16 | w?!® 16
wt 10 | w?7 11 | w®° 16 | w!32 14 | wi™ 16 | w?'6 16
w? 12 | w*® 10 | Wt 15 | w'ss 14 | W' 16 | w27 13
wb 14 | w*® 10 | w?2 15 | w!3? 13 | W!76 16 | w28 11
w7 15 | w9 10 | w? 15 | w!? 14 | W!77 16 | w?!? 10
w8 16 | w?! 11 | w 15 | w!36 13 | w!'78 16 | w220 10
w? 15 | w?? 12 | W% 14 | w37 12 | w'™ 15 | w?*! 11
w'o 15 | w?? 14 | w°8 13 | w!38 12 | '8 14 | w??2 13
wit 15 | w? 15 | w97 12 | wi3? 14 | w!8! 15 | w223 11
wt? 15 | w?® 16 | w98 12 | wl40 14 | w!82 16 | w224 12
w3 15 | w?8 17 | 12 | wtt 14 | '8 16 | w??® 13
wh 14 | w7 17 | w'00 12 | w2 14 | w84 17 | w226 15
wtd 15 | w?® 17 | w!o! 13 | wi4s 13 | w!® 17 | w27 15
w'b 16 | w®® 17 | w!02 14 | w4 14 | w186 17 | w??8 17
wt? 18 | w9 16 | w!03 15 | ' 14 | w187 16 | w??? 15
w'8 17 | wbt 17 | w04 17 | w'46 14 | '88 14 | w230 13
wt 16 | w82 17 | w!0® 17 | w7 14 | w!® 14 | w3 13
w20 15 | Wb 16 | w!06 18 | w'4® 15 | w'9 13 | w?32 13
w2t 14 | W% 16 | w07 16 | w'?? 16 | w!o! 13 | w23 14
w?? 12 | w9 16 | w!08 16 | w150 16 | w!9? 14 | w234 12
w23 10 | w6 16 | w'o? 16 | w!®! 17 | w!'93 14 | w23 13
w?t 9 | Wb 16 | w!'to 17 | wtd? 16 | wi94 13 | w?36 14
w2 10 | w©8 15 | w!t! 17 | w!?? 15 | w!'® 13 | w237 16
w2 11 | w® 15 | w!t? 16 | w'd4 15 | w!o6 13 | w238 15
w27 12 | W 15 | w!13 17 | wlb 15 | w!97 14 | w?39 17
w28 12 | W™t 15 | wil® 17 | wlb6 15 | w!98 14 | w240 17
w?® 12 | w™ 16 | w!t® 17 | w7 15 | w!'®? 16 | w?4! 17
w30 12 | W™ 15 | w!!6 16 | w!d® 14 | w200 15 | w?42 18
w3t 11 | w™ 16 | wit? 14 | w!®® 15 | w?0! 14 | w?4 17
w32 11 | W™ 18 | w!18 14 | w160 16 | w?02 12 | w2 16
w33 11 | W7 18 | w!1? 14 | w161 17 | w?03 11 | w2 17
w34 11 | W™ 19 | w!20 14 | w162 17 | w?04 11 | w246 17
w3 11 | ™ 19 | w!?! 14 | w!®3 17 | w20 10 | w47 17
w36 11 | w™ 17 | w!?2 14 | w'o¢ 16 | w206 10 | w48 16
w37 12 | w8 18 | w!'? 14 | W' 17 | w207 10 | w4 14
w38 14 | W8t 19 | wi?* 15 | wl66 18 | w3208 12 | w?50 12
w39 16 | wB 17 | w!'?® 17 | w'f7 19 | w209 13 | w?? 10
w0 16 | w? 16 | w!26 17 | w!®® 18 | w210 15 | w?? 8
wil 18 | wit 15 | wt?? 17 | w!®® 17 | Wit 15 | w2 5
wt? 17 | W 16 | w!'?8 17 | w0 17 | w22 17 | w24 3
w3 15 | w8 15

Table B.5: Space complexities for multiplication with elements of GF(2%) generated by
Qy) =y* +y° +y’ +y>+ 1, where Q(w) =0
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