
iPrefaceThis thesis describes the research which I conducted during my three year employmentat the Institute for Experimental Mathematics. I hope that the work presented here canhelp serve as an example of one the institute's major goals, which is the enhancement ofinterdisciplinary work between engineers and mathematicians. Members of the Algebraand Number Theory Group, and the stimulating character of the Institute, contributed agreat deal to the successful completion of the thesis. I wish to thank the following peoplefrom the institute, and from outside, for their support.First of all, I am indebted to my advisor, Prof. Han Vinck, for his support and advicethrough all stages of the project, and the outstanding work atmosphere he has created inour group.I am grateful to Prof. Richard Blahut from the University of Illinois and Prof. Henkvan Tilborg from the Eindhoven University of Technology for their support as membersof my Ph.D. committee.From the two math groups I would particularly like to thank Dr. Wolfgang Happle,Prof. Reinhard Kn�orr, and Dr. Hans-Georg R�uck for their many hints and ideas.I would also like to thank the members of our group: Volker Braun, Olaf Hooijen,Dr. Tam�as Horv�ath, Karin Rufaut, Dr. van Trung Tran, Heiner Schwarte, and Adriaanvan Wijngaarden for their general support and for being such pleasant coworkers. Inparticular, thanks to Olaf for the fruitful work we did jointly.Thanks also to Niko Lange from the Institute for Applied Microelectronics, Braun-schweig, for his help in evaluation issues regarding chip implementation.My thanks go also to Prof. Wayne Burleson and Jeong Yongijn from the University ofMassachusetts at Amherst, for their hospitality and the insight in modern VLSI designmethods.There are also several students I would like to thank. Paul Even, Leon Grutters, BartJansen, Roel Pouls, Tonny Teunesen and Volker Wittelsberger posed numerous interestingtechnical questions and helped me stay in touch with implementational issues.Last, but not least, I wish to thank Sarah Fowler for correcting my English, a taskwhich certainly belonged to the less enjoyable ones needed for the completion of thisthesis.Essen, June 1994

iiAbstractThis thesis describes various e�cient architectures for computation in Galois �eldsof the type GF (2k). \E�cient" refers to the fact that the architectures require a smallnumber of elementary gates that are logical AND and exclusive OR. It is expected that,as a consequence, VLSI implementations of the architectures lead to chip designs whichconsume less area. All architectures are bit parallel, i.e. they apply only combinatoriallogic and do not contain registers. This results in naturally fast architectures. The workfocuses on the basic operations: multiplication, constant multiplication, and inversion.The architectures are based on algorithms which make extensive use of the decompositionof �elds GF (2k) into GF ((2n)m), the latter of which will be called composite �elds.Two e�cient algorithms which are related to composite �elds are developed. Onealgorithm �nds matrices which map binary �eld representation to composite �eld repre-sentations. The second algorithms performs a fast test to determine whether a polynomialover GF (2n) is primitive.First, previous bit parallel architectures over �elds GF (2n) and composite �elds arereviewed. We comment on some of the previous architectures. A suboptimum algorithmfor constant multiplication with a reduced number of gates is introduced. A complete listof optimized complexities for constant multiplication in the �elds GF (2k), k � 8 is givenin the appendix.A general architecture for multiplication in composite �elds is developed based onthe Karatsuba-Ofman-Algorithm. The algorithm is closely investigated with respect toa parallel hardware implementation. It is shown that multiplication of two polynomialsof degree less than m over GF (2n) is of order O((nm)log2 3). Through an exhaustivesearch, primitive polynomials are determined which perform modulo reduction with lowcomplexity. We are able to give detailed descriptions of e�cient parallel multipliers for�eld orders � 232.It is shown that for certain �eld orders, a combined optimization of the polynomialmultiplication and modulo reduction further improves the gate count and the delay ofmultiplier architectures. We provide suitable �eld polynomials and detailed descriptionsof corresponding multipliers. The gate counts achieved for some �eld orders are the lowestones reported in technical literature.A comparative synthesis maps several parallel multiplier architectures to the gate-array library of TC 160G family. It is found that the comparatively low gate countof the architectures over composite �elds can be transformed to netlists of gate-arrays.We conclude that the theoretical gate count is a valid measure for the number of gateequivalences of VLSI implementations if gate arrays are used. A speed estimation of thecomposite �eld multipliers results in a data throughput of up to 3.88 Gbit/sec.An algorithm from Itoh and Tsujii for inversion over composite �elds is applied toelements in standard base representation. A relationship between this algorithm and anarchitecture over tower �elds proposed by Morii and Kasahara is developed. For the �eldsGF (28) and GF (216) are, as an instance, architectures for parallel inverters with moderategate count provided.

iiiA new concept for systems involving �nite �eld arithmetic is introduced. We proposea combined software/hardware approach which possesses the advantage of alterability. Asan application, a composite �eld multiplier over GF (216) is attached to a 16 bit DSP. Theexternal arithmetic enables the processor to perform general multiplication more than amagnitude faster than in software. We implemented a shortened (10,8) Reed-Solomoncode which allows decoding at a speed of up to 1.9 Mbit/sec.

Contents
1 Introduction 11.1 Motivation . 11.2 Finite Field Arithmetic in Hardware . 21.3 Thesis Outline . 32 Mathematical Background and Two Algorithms 52.1 Finite Fields . 52.1.1 Basic Properties . 52.1.2 Polynomials and Extension Fields 72.1.3 Bases of Finite Fields . 82.2 Mapping between Binary and Composite Field Representations 92.3 An E�cient Test on Primitivity . 133 Previous Bit Parallel Architectures 153.1 Traditional Multipliers . 153.1.1 Mastrovito's Standard Base Multiplier 163.1.2 Dual Base Multipliers . 193.1.3 Normal Base Multipliers . 243.2 Non Traditional Multipliers . 263.2.1 Multiplication in GF (2k) using the Karatsuba-Ofman Algorithm . . 273.2.2 Multiplication in Tower Fields . 283.2.3 Other Architectures . 293.3 Inversion . 293.3.1 Direct Inversion over GF (2n) . 293.3.2 Inversion in Composite Fields . 303.3.3 Inversion in Tower Fields . 304 Parallel Constant Multipliers 324.1 Constant Multipliers over GF (2n) . 324.1.1 Two Suboptimal Algorithms . 324.1.2 Experimental Results . 394.2 Constant Multipliers over GF ((2n)m) . 40iv

v5 Multipliers over General Composite Fields GF ((2n)m) 425.1 Principal . 425.2 The Karatsuba-Ofman Algorithm . 435.2.1 Introduction . 435.2.2 Recursive Description and Complexity 445.2.3 A Matrix Representation . 475.3 E�cient Polynomial Multiplication in Finite Fields 505.4 Reduction Modulo the Field Polynomial 515.5 Results . 545.5.1 Space and Time Complexities . 545.5.2 Discussion . 566 Multipliers over Fields with Certain Composition 596.1 Multipliers over GF ((2n)2) . 596.1.1 Architecture and Complexity . 596.1.2 Results . 616.1.3 Evaluation . 636.2 Multipliers over GF ((2n)4) . 646.2.1 Architecture and Complexity . 646.2.2 Results . 686.2.3 Evaluation . 687 A Comparitive Gate Array Synthesis of Multipliers 707.1 Motivation . 707.2 Architectures Compared and Methods . 717.3 Results . 737.3.1 Comparison of the Gate Consumption 737.3.2 Comparison of the Time Behaviors 747.3.3 Estimation of the Theoretical Throughput of Multipliers over Com-posite Fields . 757.4 Conclusions . 768 Parallel Inverters over Composite Fields 788.1 Introduction . 788.2 Itoh and Tsujii's Algorithm for Inversion in Composite Fields 798.3 Analysis of the Complexity of a Parallel Realization 808.3.1 Complexity of Step 1 . 818.3.2 Complexity of Step 2 . 828.3.3 Complexity of Step 3 . 848.3.4 Complexity of Step 4 . 848.3.5 Overall Complexity . 848.4 A Relationship with Morii and Kasahara's Inverter 85

vi8.5 Two Examples . 868.5.1 A Parallel Inverter over GF (28) . 878.5.2 A Parallel Inverter over GF (216) . 889 An Application: A DSP Based Reed-Solomon Decoder with ExternalArithmetic Unit 909.1 Motivation . 909.2 Introduction . 919.3 Implementational Aspects . 919.3.1 Code Speci�cation and Decoding Algorithm 919.3.2 The Hardware Concept . 939.4 Results and Comparison . 959.5 Outlook . 9610 Discussion 9710.1 Summary and Conclusions . 9710.2 Recommendations for Further Research . 99A Direct Inversion in GF (2n) 101B Complexities of Constant Multipliers 105

Chapter 1Introduction
1.1 MotivationThe mathematical discipline, Algebra, includes the theory of �nite �elds. Its developmentdates back in the early nineteenth century, when Carl Friedrich Gau� and Evariste Galoisworked on the general theory of �nite �elds. Previous work was done by Pierre de Fermat,Leonhard Euler, Joseph-Louis Lagrange and Adrien-Marie Legendre. In honor of EvaristeGalois' fundamental work on the topic, �nite �elds are also referred to as Galois �elds.The two names will be used interchangeably. Galois �elds with q elements are denoted asGF (q).Over the last thirty years, Galois �elds have gained wide spread technical applications.Areas where they have applications are:� Algebraic codes [Bla83] [ML85]� Cryptographic schemes [vT88] [Sch93]� Digital signal processing [Bla85] [McC79]� Random number generators [WP90]� VLSI testing [GSB91]The �rst two topics play an important role in modern digital communication. Since thereis an increasing number of applications of communication systems expected in the nearfuture | with increasing impacts on various aspects of our society | we will brie
yexplain the principals of these topics.Transmission of digital data and its storage is often accompanied by the possibility ofcorruption of data. The principal of channel coding is that redundancy is introduced tothe data before transmission or storage. Because of the extra information added, channelcodes are principally capable of determining whether and where errors have occurred.In particular, BCH codes1 and their subclass of Reed-Solomon codes (RS codes) have1BCH codes are named after their inventors, Bose, Chaudhuri, and Hocquenghem.1

Introduction 2proved to be extremely useful in technical communication systems. These codes requirearithmetic in Galois �elds. Most often, the use of �elds with characteristic two allows adirect representation of binary data as �eld elements. So far, RS codes tend to performarithmetic in �elds GF (28), while application of �elds up to GF (232) seems promising fortoday's applications, since computer busses wider than eight bit have become important.More about RS codes will be said in Chapter 9.Technical communication systems are endangered by the possibility of unauthorizedreading and falsi�cation of digital data. For the increasing number of applications ofdigital communication in areas such as electronic banking, security aspects will becomea crucial issue. Several cryptographic schemes are based on the assumed di�culty ofthe discrete logarithm problem in �nite groups or �nite �elds. Examples of such schemes,which have been applied widely, are the Di�e-Hellman key-exchange protocol [DH76] andthe ElGamal scheme [ElG85]. A good overview on schemes applying �nite �eld arithmeticcan be found in [Odl84]. The latest recommendations for such systems suggest arithmeticin �elds of order 2500{21000 so that security is assured. These �eld sizes refer to 500{1000bit arithmetic modules. However, it should be kept in mind that it is di�cult to predictthe security of cryptographic systems for the future, as can be seen in the recent attackon the RSA scheme [Kol94].Most architectures to be developed in this thesis will provide architectures with worked-out examples for �elds up to an order of 232. However, the theory provided allows gener-alization to higher �eld orders, such as those needed for many cryptographic applications.1.2 Finite Field Arithmetic in HardwareIt is often required that systems involving �nite �eld arithmetic are fast. An exampleis channel coding in high speed data transmission. In order to meet this requirement,it might be necessary to implement the modules providing Galois �eld arithmetic on asemiconductor chip. Nowadays, hardware implementation usually implies a realizationas a VLSI (Very Large Scale Integration) chip. VLSI modules performing Galois �eldarithmetic can roughly be classi�ed into bit parallel and bit serial architectures. Theformer one applies only combinatorial logic, the latter one also applies registers. Generallyspeaking, there exist a time-space trade-o� between the two types. While bit parallelarchitectures tend to be faster, bit serial architectures generally require less area thantheir parallel counterparts which provide the same function. All architectures treated inthis thesis are bit parallel. For convenience, the terms \bit parallel" and \parallel" willbe used interchangeably.There are several aspects to be considered if VLSI architectures are to be evaluated.The most important ones are:� Space complexity (chip area requirement)� Time complexity (circuit delay or performance)

Introduction 3� Hierarchy� Regularity� ModularityThe �rst two aspects are unique measures for architectures which have been imple-mented. The architectures investigated in this thesis will be measured using theoreticalspace and time complexities. The theoretical space complexity is measured by the num-ber of two input modulo 2 adders (logical exclusive OR, XOR,) and the number of twoinput modulo 2 multipliers (logical AND.) The theoretical time complexities are de�nedas the number of gate delays which are contained in the critical path. The architecturesto be developed in this thesis focus on a low gate count, although the time complexitiesare also considered for most architectures. Chapter 7 deals with the relationship betweentheoretical gate count and area requirements of actual implementations.The latter three aspects in the list above are structural properties [WE92]. Hierarchy isunderstood as the repeated division of a module into submodules. This eventually resultsin submodules with a comprehensible complexity. Regularity refers to architectures whichare composed of similar modules or submodules. An example of regular structures arearray architectures. Modularity is a property of architectures whose submodules possesswell de�ned functions and interfaces. The architectures over composite �elds GF ((2n)m),to be developed in this thesis, possess most of the structural properties. Subsection 5.5.2discusses how the use of sub�elds GF (2n) results in naturally structured architectures.1.3 Thesis OutlineChapter 2 provides the mathematics of �nite �elds which is relevant to this thesis. A classof extension �elds, referred to as composite �elds, which is crucial for most architecturesdeveloped in the subsequent chapters, is introduced. Two algorithms related to composite�elds are developed. The �rst algorithm �nds linear mappings between di�erent �eld rep-resentations. The second one determines whether a polynomial over GF (2n) is primitive.In particular, these polynomials can be used to generate composite �elds.Chapter 3 gives an overview of previous bit parallel architectures. The three classi-cal types of multipliers, those applying standard, dual, and normal base representationof �eld elements, are introduced. Expressions for their space complexities are derived.Some comments on Mastrovito's standard base multiplier and on Berlekamp's dual basemultiplier are given. Next, several parallel multipliers and inverters which operate overextension �elds of GF (2n) are introduced.In Chapter 4, constant multiplication over GF (2n) with reduced complexity is dis-cussed. A locally optimum algorithm is introduced. We compare the optimized complex-ities with the complexities of a straightforward approach for �elds up to GF (216). Inthe appendix, complete tables with optimized complexities for constant multiplication in�elds up to GF (28) are provided. The tables can be directly used for the determination

Introduction 4of the gate count of RS encoders. Upper bounds for the space complexity of constantmultiplication in composite �elds are also developed.In Chapter 5, a general method for e�cient bit parallel multiplication in composite�elds is developed. The method applies the Karatsuba-Ofman algorithm, which is dis-cussed in detail. Through an exhaustive search, �eld polynomials which allow moduloreduction with low complexity are found. Detailed descriptions for multiplier architec-tures in composite �elds up to GF (232) are provided.Chapter 6 derives parallel multiplier architectures for two classes of composite �elds,namely GF ((2n)2) and GF ((2n)4). The two types of architectures are special cases of thepreviously described general method. By applying a combined optimization of polynomialmultiplication and modulo reduction, the space and time complexities can be furtherreduced.In Chapter 7, the VLSI syntheses of various multipliers are compared with respect tospace and time complexities. The architectures compared are standard, dual, and normalbase multipliers over GF (2k), and the composite �eld multipliers over GF ((2n)m). It isfound that the latter one performs best for a gate array implementation with respectto area requirement. An estimation of the data throughput of an arithmetic modulecontaining a composite �eld multiplier results in a maximum of 3.88 Gbit/sec.Chapter 6 applies an e�cient algorithm from Itoh and Tsujii for computing the inverseover composite �elds to �elds represented in standard base. Expressions for the spacecomplexity are derived. A relationship to an architecture over tower �elds, i.e. multiple�eld extensions of degree two, is developed. As examples, inverters over the �elds GF (28)and GF (216) are described and their space complexities are determined. It is found thatimplementation of parallel inverters for these �elds are possible in terms of gate count.In Chapter 9, a new concept for technical systems involving Galois �eld arithmetic isintroduced. We propose a combined software/hardware approach. A 16 bit Reed-Solomondecoder is implemented on a digital signal processor which accesses an external multiplierover GF (216). Using a shortened Reed-Solomon code with code parameters (10,8) and adirect decoding algorithm, a decoding speed of up to 1.9 Mbit/sec becomes possible.

Chapter 2Mathematical Background and TwoAlgorithms
2.1 Finite FieldsThis section introduces the basic de�nitions and properties of �nite �elds which are rele-vant to the material treated later in this thesis. All statements are given without proof,but it will always be referred to the appropriate literature. Classically, books which coveralgebraic coding also treat to some extend the mathematics of �nite �elds, as do, forinstance, the references [Ber68] [PW72] [Bla83] or [LC83]. The number of mathematicalbooks which are entirely devoted to �nite �elds is rather limited. Besides Lidl and Nieder-reiter's thorough mathematical treatment of the matter in [LN83], there are McEliece'sbook [McE87] and, more recently, the references [BGM+93] and [Jun93].2.1.1 Basic PropertiesWe start with the de�nition of a fundamental algebraic structure which is called group.Its basic property is that it assigns to a pair of elements of a set a third element of thesame set by applying one operation, denoted as �.De�nition 1 A set G together with a binary operation G � G ! G is called a group ifthe following conditions are satis�ed:� The binary operation is associative: (a � b) � c = a � (b � c), for all a; b; c 2 G.� There is an identity element e 2 G such that a � e = e � a = a, for all a 2 G.� For any element a 2 G, there exists an inverse element a0 2 G such that a � a0 =a0 � a = e.If a group satis�es additionally the condition that a � b = b � a, for all a; b 2 G, the groupis said to be commutative or abelian. 5

Mathematical Background 6Now we are in the position to de�ne the algebraic structure �eld.De�nition 2 [LC83] Let F be a set of elements on which two binary operations, calledaddition \+" and multiplication \�", are de�ned. The set F together with the two binaryoperations + and � is a �eld if the following conditions are satis�ed:� F is a commutative group under addition +. The identity element with respect toaddition is called the zero element or the additive identity of F and is denoted by 0.� The set of nonzero elements in F is a commutative group under multiplication �.The identity element with respect to multiplication is called the unit element or themultiplicative identity of F and is denoted by 1.� Multiplication is distributive over addition; that is, for any three elements a; b; andc in F : a � (b+ c) = a � b+ a � c.There are �elds with a �nite number of elements which will be called �nite or Galois�elds. Such �elds with q elements will be denoted by GF (q). In the remainder of thethesis, only �nite �elds will be considered.De�nition 3 The order of a �eld is the number of its elements.Theorem 1 [McE87] The order q of a �eld must be a power of a prime: q = pm, p prime.Theorem 2 [McE87] There exists a unique �eld of order pm, for any prime p and anypositive integer m.De�nition 4 The smallest positive integer � for which P�i=1 1 = 0 in a �eld, is called the�eld's characteristic.All architectures in this thesis are based on Galois �elds of characteristic two. An inter-esting consequence, which follows directly from the characteristic two property, is thatevery element a is its own additive inverse which leads to: b� a = b + a.De�nition 5 Let a be an element of GF (q). The smallest positive integer s for whichas = 1 is called the order of the element.De�nition 6 Elements which have (maximum) order s = q � 1 are called primitiveelements1.It can be shown that elements with maximum order exist for every �nite �eld. Primitiveelements � and their powers generate the entire multiplicative group f1; �2; �3; : : : ; �q�2gof a �eld. This power representation will be often used in this thesis in order to refer to�eld elements.Theorem 3 [LC83] Let a be a nonzero element of a �nite �eld GF (q). Then aq�1 = 1.Many �nite �eld architectures for inversion are based on this theorem, since it followsimmediately that a aq�2 = 1 and thus a�1 = aq�2.1There is some confusion in the literature about the terminology for these elements. Some books referto them as \primitive elements", whereas they are some times referred to as \primitive roots."

Mathematical Background 72.1.2 Polynomials and Extension FieldsThis subsection describes some properties of polynomials over �nite �elds. The importantprinciple of extensions of �nite �elds will also be introduced. A special type of extension�elds, named composite �elds, will be de�ned.A polynomial A(x) = amxm + am�1xm�1 + � � �+ a0 whose coe�cients ai are elementsof a �eld GF (q), is said to be a \polynomial over GF (q)." A polynomial is monic if itshighest coe�cient am is one.De�nition 7 [LC83] A polynomial A(x) is irreducible over GF (q) if A(x) is only divisibleby c or by cA(x) where c 2 GF (q).In the sequel, \a j b " denotes \a divides b," where a and b can either be numbers orpolynomials.De�nition 8 Let P (x) be a polynomial of degree m over GF (q) with P (0) 6= 0. Thesmallest positive integer s for which P (x) j (xs � 1) is called the order of P (x).Theorem 4 [LN83] The order s of every irreducible polynomial of degree m over GF (q)ful�lls the condition: s j (qm � 1).A consequence of the last theorem is that the maximum possible order of an irreduciblepolynomial is s = (qm � 1).De�nition 9 A monic polynomial of degree m with maximum order s = (qm � 1) is saidto be a primitive polynomial.It can be shown that primitive polynomials of degree m over GF (q) exist for any �eldGF (q). Maximum order polynomials are of major importance for the remainder of thisthesis.An irreducible polynomial P (x) of degree m over GF (q) can be used to construct anextension �eld of GF (q). The extension �eld is of order qm and is denoted by GF (qm).The �eld GF (q) is then a sub�eld of GF (qm) [McE87]. All qm elements of the extension�eld can be represented as polynomials with a maximum degree of m � 1 over GF (q).These qm polynomials are the residue classes modulo P (x) of all polynomials over GF (q).Hence the polynomial P (x) determines the algorithms for the arithmetic operations inthe �eld.Theorem 5 [LN83] If a is an element of the �nite �eld GF (qm), the elementa qm�1q�1is in the sub�eld GF (q).

Mathematical Background 8De�nition 10 The trace Tr(a) of an element a 2 GF (qm) relative to the sub�eld GF (q)is de�ned by: Tr(a) = a+ aq + aq2 + � � �+ aqm�1It can be shown that Tr(a) 2 GF (q).In the following, a term introduced by Green and Taylor [GT74] will be adopted fordenoting a certain type of extension �elds of characteristic two:De�nition 11 We call two pairs fGF (2n); Q(y) = yn+Pn�1i=0 qiyig and fGF ((2n)m); P (x) =xm +Pm�1i=0 pixig a composite �eld if� GF (2n) is constructed from GF (2) by Q(y),� GF ((2n)m) is constructed from GF (2n) by P (x).Composite �elds will be denoted by GF ((2n)m).A composite �eldGF ((2n)m) is isomorphic to the �eldGF (2k), k = nm, in a mathematicalsense [LN83]. However, although two �elds of order 2nm are isomorphic, their algorithmiccomplexity with respect to the �eld operations addition and multiplication may di�erand depends on the choice of n and m and on the polynomials Q(y) and P (x). Theintroduction of composite �elds for arithmetic in �elds of order 2nm will be crucial for thearchitectures to be developed in this thesis.In the sequel, a root of Q(y) will be denoted as !, a root of P (x) will be denoted as �.Assuming that both polynomials are primitive, the elements of the ground �eld GF (2n)can be represented by f0; 1; !; !2; : : : ; !2n�2g, and the elements of the composite �eld canbe represented by f0; 1; �; �2; : : : ; �2nm�2g2.1.3 Bases of Finite FieldsAlthough, in principle, there exist many di�erent bases for representing elements of aGalois �eld, there are three bases which are of major importance from a technical pointof view. This subsection provides the formal de�nition of the three bases, which arestandard, normal, and dual base. Their application to arithmetic architectures will betreated in Section 3.1.An extension GF (qm) of the the �eld GF (q) can be viewed as as m-dimensional vectorspace over GF (q). Each element of GF (qm) can be represented as a linear combination ofthe m elements of the base f�0; �1; : : : ; �m�1g. The coe�cients of the linear combinationare elements of the �eld GF (q).De�nition 12 The set f1; �; �2; : : : ; �m�1g;where � is a root of the irreducible polynomial P (x) of degree m over GF (q), is calledstandard (or canonical or polynomial) base.

Mathematical Background 9This base is directly related to the representation of �eld elements as polynomials, aswas stated in the previous subsection. In this case, a �eld element A is represented bythe polynomial A(x) = a0 + a1x+ a2x2 + � � �+ am�1xm�1, and each element represents aresidue class modulo P (x). Since � is a root of P (x), the polynomial representation A(x)is equivalent to A(�) = a0 + a1� + a2�2 + � � �+ am�1�m�1.De�nition 13 The set f�; �q; �q2; : : : ; �qm�1g;where � is root of the irreducible polynomial P (x) of degree m over GF (q), is called normalbase if the m elements are linearly independent.It can be shown that normal bases exist for all Galois �elds. The normal base representa-tion is especially attractive for certain applications which involve exponentiation in �nite�elds, because raising to the qth power is simply a cyclic shift.De�nition 14 Let B = f�0; �1; : : : ; �m�1g be a base of GF (qm). The dual basef
0;
1; : : : ;
m�1g of B is a base satisfying:Tr(�i
j) = (1 ; if i = j0 ; if i 6= j:It can be shown that there exists a dual base for every base.2.2 Mapping between Binary and Composite FieldRepresentationsThis section describes an algorithm which determines a binary matrix that de�nes theisomorphic mapping between the �eld representations GF (2k) and GF ((2n)m) with k =nm. The algorithm was developed in cooperation with the Number Theory and AlgebraGroup at the Institute for Experimental Mathematics. The mapping might be importantin an application of composite �elds, where composite �eld arithmetic modules have aninterface to modules that operate with a binary standard base representation. In thiscase, simply a linear mapping at the input and output of the composite �eld modulehas to be performed. A possible scenario is, for instance, a Reed-Solomon decoder chipbased on composite �eld arithmetic which decodes symbols generated by an encoder thatuses a binary �eld polynomial for its arithmetic. In the following it is understood thatthere exists only one �eld of order 2k, and that the term \di�erent" refers to di�erentrepresentations of elements rather than to di�erent �elds. The mapping to be developedassumes a standard base representation of both �eld elements.Our goal is the determination of a binary matrix T of size (k � k) which performsan isomorphic mapping of �eld elements represented with respect to GF (2k) to elements

Mathematical Background 10represented with respect to GF ((2n)m). The inverse of T, denoted by T�1, will performthe mapping in the other direction. However, the algorithm can be applied in a straight-forward manner for the determination of other �eld mappings as well, e.g. between twoisomorphic �elds given by di�erent binary �eld polynomials. In the sequel, we will assumethat all �eld polynomials are primitive, i.e. they have maximum order.First, we will provide some notations. Arithmetic in GF ((2n)m) is performed modulothe two �eld generators Q(y) and P (x). Q(y) is a binary polynomial which generates thesub�eld GF (2n): Q(y) = yn + qn�1yn�1 + � � �+ q1y + 1; qi 2 GF (2):P (x) is a polynomial over GF (2n), which generates the composite �eld representationGF ((2n)m): P (x) = xm + pm�1xm�1 + � � �+ p1x+ p0; pi 2 GF (2n):A primitive element in GF ((2n)m) which is a root of P (x) will be denoted �: P (�) = 0.A primitive element in GF (2n) will be denoted as !, where Q(!) = 0. Every element Ais represented as a vector with m components from GF (2n), while every vector elementis itself a binary n vector:A = (am�1; am�2; : : : ; a0); ai 2 GF (2n)= ((am�1;n�1; am�1;n�2; : : : ; am�1;0); (am�2;n�1; am�2;n�2; : : : ; am�2;0); : : : ;(a0;n�1; a0;n�2; : : : ; a0;0)); aij 2 GF (2): (2.1)Equation (2.1) shows that A is also represented by a binary nm = k vector. In particular,this is how all elements from GF ((2n)m) are represented in actual digital systems, suchas VLSI chips.Arithmetic in GF (2k) is performed modulo the binary �eld polynomial R(z) of thefollowing form: R(z) = zk + rk�1zk�1 + � � �+ r1z + 1; ri 2 GF (2):Let � be a root of R(z) and B2 = (�k�1; �k�2; : : : ; �; 1) is the standard base with whichthe elements of GF (2k) are represented. Each element of GF (2k) is thus represented asa binary k vector, denoting a linear combination of the base elements.In order to construct the isomorphic mapping, we are looking for k base elementsrepresented with respect to GF ((2n)m), to which the k base elements from B2 are tobe mapped. Clearly, the \one" element is mapped to the \one" element. The primitivebase element � must be mapped to a primitive element �t, the base element �2 must bemapped to �2t, and so on: T�i = �it; i = 0; 1; : : : ; k � 1We are now left with the determination of the exponent t. The mapping betweenthe two �eld representation must be homomorphic with respect to both �eld operations,

Mathematical Background 11addition and multiplication. In order to assure that the mapping is homomorphic withrespect to multiplication, it is not su�cient to map � to just any primitive element �t.The condition is rather that R(�t) = 0 (mod Q(y); P (x)): (2.2)There will be exactly k primitive elements which ful�ll this condition, namely �t and itsk� 1 conjugates �t2j , j = 1; 2; : : : ; k� 1. The exponents t2j are computed modulo 2k� 1.In the following the algorithm will be stated.1. (Initialization) Let � be the primitive element in GF ((2n)m) for which P (�) = 0.Set t := 1. Prepare a list with 2k � 1 addresses and memory for one binary entryper address. Enter the vector (0; 0; : : : ; 0; 1) into the rightmost column of T. Thisprovides a mapping of the one element to the one element.2. Compute R(�t) (mod Q(y); P (x)). If the result is zero, the element is found; gotoStep 7.3. Neither �t nor the conjugates �t2j , j = 1; 2; : : : ; k � 1 are the elements to which� is mapped. Therefore enter zeros in the list at addresses t2j (mod 2k � 1),j = 0; 1; 2; : : : ; k � 1.4. Set t := t + 1. If the list already has a zero entry at address t, goto Step 4 (i.e.repeat this step until an address t is found which does not have an entry.)5. Check if �t is primitive element by computing GCD(t; 2k � 1). If it is not primitive,goto Step 4.6. Goto Step 2.7. Enter the binary vector representation (2.1) of �t into the second rightmost columnof T. Into the next column on the right hand side, the binary vector representationof �2t is entered, into the next �3t, and so on until �(k�1)t is entered into the leftmostcolumn.Before we comment on the performance of the algorithm, an example is given.Example. We consider the two �eld representationGF (28) andGF ((24)2). The�eld polynomial of GF (28) is R(z) = z8+ z4+ z3+ z2+1. We denote the root of Rwith �: R(�) = 0. The representation GF ((24)2) is generated by Q(y) = y4 + y+1and P (x) = x2 + x+ !14, where Q(!) = 0 and P (�) = 0.We start by computing R(�):R(�) = �8 + �4 + �3 + �2 + 1 = !14�+ !12 6= 0It should be stressed that all arithmetic is performed according to the rules ofthe composite �eld representation. We see that neither � nor its conjugates �j ,

Mathematical Background 12j = 2; 4; 8; 16; 32; 64; 128 are elements to which � is mapped. Appropriate entries inthe list are made.The next element to be checked is �7 (we know from the list that �t, t =2; 4 do not have to be tested, and the elements t = 3; 5; 6 are not primitive.)One obtains R(�7) = !11 6= 0. Again, we make entries in the list at addresses7; 14; 28; 56; 112; 131; 193; 224.The �rst element which ful�lls condition (2.2) is �37, i.e. R(�37) = 0. Now thebase element � is mapped to �37, base element �2 to �74, base element �3 to �111,and so on. The last pair to be mapped is base element �7 to �4. We compute thebinary representation of the �i with respect to the �eld GF ((24)2). For instance,for the element �37 we obtain:�37 = !�+ !12 = (0010 1111):All 7 binary representation are entered into the matrix from right to left, whichyields the transformation matrix.
T = 0BBBBBBBBBBBB@

0 0 1 0 0 0 0 00 1 1 0 0 1 0 00 0 0 1 1 0 1 01 0 0 1 0 0 0 00 0 1 0 0 1 1 01 0 0 1 1 0 1 00 0 1 0 0 0 1 00 0 0 0 1 0 1 1
1CCCCCCCCCCCCAEvery element E represented with respect to GF (28) can now be mapped to a repre-sentation with respect GF ((24)2) through E0 = TE. The mapping is homomorphicto all �eld operations. The inverse mapping, i.e. from a GF ((24)2) representationto a GF (28) representation, is performed through T's inverse.The algorithm has the structure of an exhaustive search through all 2k�1 elements ofthe multiplicative group of GF (2k). However, by applying a list with the conjugates of theelements already checked, the computation is reduced by the factor k. The most costlyoperation in every step is the evaluation R(�t). If only these evaluations are considered,the algorithm has a complexity of orderO �(2k � 1)k ! � O 2k � 1k ! ;where �(�) denotes the Euler function.It should be noted that there are always k di�erent transformation matrices withcorresponding inverse matrices. The matrices are computed from the �rst element foundand its k� 1 conjugates, respectively. In the example above, it is also possible to performhomomorphic mappings from � to �t, t = 41; 73; 74; 82; 146; 148; 164. These are the 7conjugates of �37. In actual implementations it might be advantageous to choose thetransformation matrix with the smallest number of entries.

Mathematical Background 132.3 An E�cient Test on PrimitivityThe goal of this section, is the development of a fast algorithm which tells whether amonic polynomial of degree m over GF (2n) is primitive. In the sequel, we present animplementation developed together with the Number Theory group at the Institute forExperimental Mathematics2. Polynomials which pass the test can be used for constructingcomposite �elds. The algorithm was �rst introduced by Alanen and Knuth in their 1964paper [AK64]. The version described here also includes a considerable speed improvementsuggested in Appendix 2 of the reference.By de�nition, a polynomial P (x) over GF (2n) of degree m is said to be primitive ifit is irreducible over GF (2n) and if it has the maximum order, in our case 2nm � 1. Theorder of P (x) is de�ned as the smallest integer s such that xs � 1 � 0 mod P (x). Next,two results from [AK64] are slightly modi�ed in order to match the �nite �elds consideredin this thesis.Theorem 6 (Lemma 1 in [AK64]) If a monic polynomial of degree m over GF (2n) hasorder s = 2nm � 1, it is primitive (no test for irreducibility necessary.)The following proof for the theorem is di�erent from the original one:Proof. We consider the ring R of polynomials in x over GF (2n) consistingof the residue classes modulo P (x). The ring has exactly 2nm elements (residueclasses.) On the other hand, the elements f1; x; x2; : : : ; xs�1g, s := 2nm �1, are all distinct modulo P (x), therefore belonging to s di�erent residueclasses. Including the residue class containing the zero element, the elementsf0; 1; x; x2; : : : ; xs�1g are a complete set of representatives of all residue classesof R. Since xs � 1 mod P (x), we have xk xs�k � 1 mod P (x) for all 0 � k <s. This means that every element xk has a multiplicative inverse modP (x).Hence R is also a �eld. Since there is only one such �eld, P (x) is �eld generatorand in particular irreducible. �Theorem 7 (Theorem in [AK64]) The constant coe�cient p0 of a primitive polynomialof degree m over GF (2n) is a primitive root (i.e. an element with order 2n � 1) in theground �eld GF (2n).Proof. The m roots of every primitive polynomial P (x) are a primitiveroot � from the extension �eld GF ((2n)m) and its m � 1 (primitive) conju-gates: P (x) = (x� �)(x� �2n)(x� �22n) � � � (x� �2(m�1)n):Hence, the constant coe�cient can be written as:p0 = m�1Yi=0 �2i n = �e2Special thanks to Dr. Wolfgang Happle for his support

Mathematical Background 14with e = 2nm � 12n � 1 :For every element � 2 GF ((2n)m), �e is element of GF (2n) [LN83]. Moreover,if � has maximum order 2nm � 1 in the extension �eld, �e has order (2nm �1)=e = 2n � 1, which is maximum order in the ground �eld. �For the test procedure we take advantage of the fact that a polynomial which dividesxs � 1; s integer, has an order o with either o = s or with o j s; o < s. We are now ableto state a fairly e�cient algorithm for testing a polynomial P (x).1. Compute 2nm � 1 and its r maximum divisors di,i = 1; 2; : : : ; r.2. Check if either x = 1 is a root or if p0 is not a primitive root in GF (2n) (trivialchecks.) If so, the polynomial is not primitive.3. Check if x2nm�1 � 1 mod P (x). If not, the polynomial is not primitive. OtherwiseP (x) is a candidate.4. Check if xdi � 1 mod P (x), i = 1; 2; : : : ; r. If this is ful�lled for any i, P (x) has anorder less than 2nm � 1 and is thus not primitive. On the contrary, if non of the disatis�es the condition, the polynomial is in fact primitive.By using maximum divisors in Step 4 all possible orders less than 2nm�1 are checked.In order to obtain the maximum divisors in Step 1, the factorization of 2nm � 1 mustbe known. Fortunately, the numbers 2k � 1 are well studied, such that the factorizationeven for values k � 210 can be calculated [Rie85]. It should be noted that the testsxs � 1 mod P (x) are basically exponentiations modulo a polynomial. Since the valuesof s are rather large, the algorithm implemented uses the \binary method" [Knu81] ofrepeated multiplying and squaring which can be applied very elegantly to operations in�elds of characteristic two. The complexity of a test is thus of O(log(nm)).Example. We consider the �eld GF ((24)4) with Q(y) = y4+y+1. The factor-ization of the �eld order minus one is: 216�1 = 257�17�5�3. The corresponding r = 4maximum divisors are: d1 = 255; d2 = 385; d3 = 13107; d4 = 21845. The �(15) = 8primitive roots of the ground �eld are: f!; !2; !4; !7; !8; !11; !13; !14g. We im-plemented an exhaustive search algorithm in C, accessing a self written C-libraryproviding Galois �eld arithmetic. The search determined all primitive polynomials.Running the algorithm on an IBM RS6000/580, the search was performed in 57 sec.There were 216 � 1 = 65535 polynomials tested of which 14�(216 � 1) = 8192 werefound to be primitive.

Chapter 3Previous Bit Parallel Architectures
3.1 Traditional MultipliersIn this section three di�erent approaches for bit parallel multipliers are introduced. Sincethis chapter, as well as the entire thesis, is restricted to bit parallel architectures, the terms\bit parallel multiplier" and \multiplier" will be used interchangeably for convenience.The expression \traditional multiplier" heading this section is a somewhat informal namefor a class of Galois �eld multipliers de�ned by the author. We understand it as a classof parallel architectures with the following properties:1. The multipliers do not operate over extension �elds of GF (2n).2. The space complexity of the multipliers is lower bounded by a total of 2n2� 1 gates(AND + XOR).The vast majority of the parallel multipliers proposed in technical literature, startingwith the early paper of Bartee and Schneider in 1963 [BS63], possesses both properties.Since the few publications about architectures using �eld extension tend to be recent,we hope that the name \traditional" is meaningful to the reader. However, there aremany new publications, often with important results, that describe architectures whichare \traditional" according to our classi�cation; we certainly do not intend to considerthese architectures to be old-fashion or inferior.In the sequel we introduce three di�erent approaches for traditional parallel multipli-ers. Each architecture uses a di�erent base for the representation of its operands. Thethree bases used | standard (SB), dual (DB), and normal base (NB) | lead to quitedi�erent architectures. Whereas the two latter ones will be explained more generally, theSB multiplier proposed by Mastrovito [Mas89] [Mas91] will be studied thoroughly. Wewill also comment on it, extending previous knowledge. A modi�ed version of the DBmultiplier will be introduced as well.Chapter 7 will show the results of a gate array synthesis of the three traditionalmultipliers compared to the architectures developed in this thesis.15

Previous Architectures 163.1.1 Mastrovito's Standard Base MultiplierArchitecture and ComplexityIn this section an architecture for the multiplication of �eld elements given in standardbase, introduced by Mastrovito in [Mas89] and [Mas91], will be developed. There areseveral reasons for choosing this architecture as a representative for standard base multi-pliers. First, it has one of the lowest gate counts among the traditional SB multipliers.Secondly, and maybe even more important, it will be used as the ground �eld multiplierfor the architectures over composite �elds to be developed in the Chapters 5 and 6. Italso serves as an example for a traditional multiplier with low complexity in Chapter 7,where several architectures are compared with respect to a gate array implementation.First, we will introduce a matrix notation for the multiplicationA(y)B(y) = C(y) modQ(y) in the �eld GF (2n). All elements are binary polynomials of degree less than n:cn�1yn�1 + : : :+ c0 = (an�1yn�1 + : : :+ a0)(bn�1yn�1 + : : :+ b0) mod Q(y):Alternatively, the elements B(y) and C(y) can be represented as column vectors con-taining the polynomial coe�cients. By introducing the matrix Z = f(A(y); Q(y)) themultiplication can be described as:C = 0BBBB@ c0c1...cn�1 1CCCCA = ZB = 0BB@ f0;0 � � � f0;n�1...fn�1;0 � � � fn�2;n�1 1CCA0BBBB@ b0b1...bn�1 1CCCCA : (3.1)The matrix Z is named \product matrix." Its coe�cients fij 2 GF (2) depend recursivelyon the coe�cients ai and on the coe�cients qij of the Q matrix which is introduced belowin (3.3) as follows:fij = (ai ; j = 0 ; i = 0; : : : ; n� 1;u(i� j)ai�j +Pj�1t=0 qj�1�t;ian�1�t ; j = 1; : : : ; n� 1 ; i = 0; : : : ; n� 1;(3.2)where the step function u is de�ned asu(�) = (1 � � 00 � < 0:The matrix-vector product in Equation (3.1) describes the entire �eld multiplication. TheQ matrix which is required to build Z is a function of the binary primitive polynomialQ(y) of degree n, generating GF (2n). Its binary entries qi;j are de�ned such that:0BBBB@ ynyn+1...y2n�2 1CCCCA � 0BBBB@ q0;0 q0;1 � � � q0;n�1q1;0 q1;1 � � � q1;n�1...qn�2;0 qn�2;1 � � � qn�2;n�1 1CCCCA0BBBB@ 1y...yn�1 1CCCCA mod Q(y): (3.3)

Previous Architectures 17The Q matrix describes the representation of the polynomials yn; yn+1; : : : ; y2n�2 in theequivalence classes modQ(y), i.e. after the reduction modulo Q(y).In the following, an example for the construction of the matrix Q and of the productmatrix Z is given:Example. Let Q(y) = y4 + y + 1 be the primitive polynomial generatingGF (24). Considering the equivalence classes mod Q(y), the polynomials y4, y5 andy6 are represented by: y4 � 1 + y mod Q(y)y5 � y + y2 mod Q(y) (3.4)y6 � y2 + y3 mod Q(y):Rewriting (3.4) in matrix notation yields the Q matrix:0B@ y4y5y6 1CA � 0B@ 1 1 0 00 1 1 00 0 1 1 1CA0BBB@ 1yy2y3 1CCCA mod y4 + y + 1:The product matrix can now be constructed by applying (3.2):C = ZB = 0BBB@ a0 a3 a2 a1a1 a0 + a3 a2 + a3 a1 + a2a2 a1 a0 + a3 a2 + a3a3 a2 a1 a0 + a3 1CCCA0BBB@ b0b1b2b3 1CCCA : (3.5)The implementational complexity of the matrix-vector product (3.2) depends solelyon the primitive polynomial Q(y). In [Mas89] generating primitive polynomials are givenfor �elds GF (2n), n = 2; 3; : : : ; 16. The polynomials are optimum with respect to thenumber of gates required to multiply in the �eld. For �elds in which primitive trinomialsof the form Q(y) = yn + y + 1 (3.6)exist, the space complexity is given by:#AND + #XOR = 2n2 � 1: (3.7)Polynomials of the form (3.6) exist for n = 2; 3; 4; 6; 7; 9; 10; 11; 15. However, for thetrinomial Q(y) = y5 + y2 + 1, the complexity (3.7) can also be realized. For other valuesof n where there are no primitive trinomial, the complexity is higher, as can be seen inTable 3.1.The delay (or time complexity) of the multiplier is upper bounded by:T = TAND + TXOR � 1 + 2dlog2 ne; (3.8)measured in gate delays.

Previous Architectures 18n Q(y) AND XOR Tand Txor2 2,1,0 4 3 1 23 3,1,0 9 8 1 34 4,1,0 16 15 1 35 5,2,0 25 24 1 56 6,1,0 36 35 1 47 7,1,0 49 48 1 48 8,5,3,2,0 64 84 1 59 9,4,0 81 80 1 610 10,3,0 100 99 1 611 11,2,0 121 120 1 612 12,8,5,1,0 144 207 1 713 13,7,6,1,0 169 202 1 614 14,9,7,2,0 196 282 1 715 15,1,0 225 224 1 516 16,11,6,5,0 256 281 1 6Table 3.1: Space and time complexity of the Mastrovito multiplier in the ground �eldsGF (2n)Some Comments on the Mastrovito MultiplierNext, we will state some additional facts about the Mastrovito multiplier. First we willgive a formula for computing the matrix Q. The binary entries qij of Q in Equation (3.3)can be computed recursively after the �rst row is �lled with the coe�cients of Q(y) =yn + qn�1yn�1 + : : :+ q1y + 1, i.e. q0;j = qj, through:qi;j = (qi�1;n�1 ; i = 1; : : : ; n� 2 ; j = 0;qi�1;j�1 + qi�1;n�1q0;j ; i = 1; : : : ; n� 2 ; j = 1; : : : ; n� 1:Since the matrix-vector operation in Equation (3.1) requires exactly n2 mod 2 multi-plications, the space complexity given through (3.7) can be further speci�ed as:#AND = n2; (3.9)#XOR � n2 � 1; (3.10)where Equation (3.10) is ful�lled with equality, if the �eld generator is of the type statedin Equation (3.6). The time complexity can be further speci�ed into multiples of XORand AND gate delays. The delays will be denoted as Txor and Tand, respectively. If it istaken into consideration that each path through the multiplier contains only one mod 2multiplier, it follows directly that the overall delay can be upper bounded by:T � Tand + 2Txordlog2 ne: (3.11)

Previous Architectures 19Using the extensions from above, it becomes possible to further specify the Mastrovitomultiplier. Table 3.1 is an improved version of Table 4.5 given in [Mas91]. It contains gen-erating polynomialsQ(y) for the ground �elds together with the space and time complexityof multipliers in these �elds. Both complexities are, unlike those in [Mas91, Table 4.5],separated into mod 2 multipliers (AND) and mod 2 adders (XOR). The row headed byQ(y) contains the positions of the non-zero coe�cients of the primitive polynomials.Example. We consider the multiplier in the ground �eld GF (24), i.e. n = 4.The �eld polynomial used is Q(y) = y4+ y+1. The multiplier can be implementedwith 16 AND gates and 15 XOR gates. This is the complexity needed for computingthe matrix vector product shown in Equation 3.5. The architecture has a timecomplexity of 1 AND gate delay and 3 XOR gate delays.3.1.2 Dual Base MultipliersArchitecture and ComplexityThis section presents a multiplier which uses the dual base representation of one operand.The algorithm on which the multiplier is based was �rst described by Berlekamp in [Ber82].In the paper, which describes the implementation of a Reed-Solomon encoder, the algo-rithm is applied to the multiplication of a constant �eld element with a variable one.First, we recall the de�nition of a dual base. Let Bs = f1; !; !2; : : : ; !n�1g be astandard base for a �eld GF (2n). A base Bd = f�0; �1; �2; : : : ; �n�1g is said to be a dualbase to Bs i�: Tr(!i�j) = (1 ; if i = j0 ; if i 6= j: (3.12)For the multiplier to be developed we represent the �rst operand A in the usual standardbase A = a0 + !a1 + !2a2 + � � �+ !n�1an�1;and the second operand in the corresponding dual baseB = �0b0 + �1b1 + �2b2 + � � �+ �n�1bn�1:Next, a formula for the multiplication of B (given in DB) with a base element ! from theSB will be derived. Consider:Tr(!jB) = Tr(!j�0b0 + !j�1b1 + !j�2b2 + � � �+ !j�n�1bn�1) = bj ; j = 0; 1; : : : ; n� 1;(3.13)where the de�nition of the DB (3.12) was used. If the j-th element of the product !B isdenoted (!B)j, we get(!B)j = Tr(!j(!B)) = Tr(!j+1B) = (bj+1 ; j = 0; 1; : : : ; n� 2;Tr(!nB) ; j = n� 1; (3.14)

Previous Architectures 20where Equation (3.13) was used twice, for the rightmost and the leftmost \=". Apparentlyall elements (!B)j except the highest one are obtained simply by a shift of the elementsof B. The coe�cient (!B)n�1 can be obtained as follows. Let Q(y) = 1 + q1y + � � � +qn�1yn�1 + yn be the binary �eld polynomial such that Q(!) = 0. Then!n = 1 + q1! + � � �+ qn�1!n�1; (3.15)which can be used for computing(!B)n�1 = Tr(!nB) = Tr((q0 + q1! + � � �+ qn�1!n�1)B);= b0 + q1b1 + � � �+ qn�1bn�1 = Q �B: (3.16)The last term in Equation (3.16) is the dot product of the element B and the coe�cientsof the �eld polynomial. A hardware implementation of this dot product has a complexityof C1 = (hw(Q)� 2)XOR � 1XOR; (3.17)where hw(Q) denotes the weight of the �eld polynomial, i.e. the number of coe�cientswhich are one.Now we turn to the computation of the product C = A � B. The operand B and theproduct element C are both represented in DB, whereas operand A is represented in SB.Starting from Equation (3.13) one obtains:cj = Tr(!jC) = Tr(!jAB) = Tr((!jB)A): (3.18)The �rst coe�cient is thenc0 = Tr(BA) = Tr(a0B) + Tr(a1!B) + � � �+ Tr(an�1wn�1B)= a0Tr(B) + a1Tr(!B) + � � �+ an�1Tr(wn�1B)= a0b0 + a1b1 + � � �+ an�1bn�1= A �B; (3.19)which is the dot product of the two factor elements. Hence, the coe�cient c1 turns outto be: c1 = Tr((!B)A) = A � (!B):However, the term (!B) can be easily computed through Equation (3.14) by a left shiftof the coe�cients and computing of (3.16). The same procedure is applied iteratively tothe other coe�cients: c2 = Tr((!2B)A) = A � (!(!B));c3 = Tr((!3B)A) = A � (!(!(!B)));...

Previous Architectures 21The formulas developed are well suited for a matrix description of a parallel version ofthe multiplier. For this, each element will be denoted as a vector containing n elements:0BBBB@ c0c1...cn�1 1CCCCA = 0BBBBBBB@ b0 b1 � � � bn�2 bn�1b1 b2 � � � bn�1 B �Qb2 b3 � � � B �Q (!B) �Q...bn�1 B �Q � � � (!n�3B) �Q (!n�2B) �Q
1CCCCCCCA0BBBB@ a0a1...an�1 1CCCCA : (3.20)An example for a DB multiplier is given below:Example. We consider multiplication in the �eld GF (24). The �eld polynomialis Q(y) = y4+y+1. Assuming that operand A = (a0; a1; a2; a3) is given in standardbase and operand B = (b0; b1; b2; b3) is given in dual base, a multiplication C = A �Bis performed by0BBB@ c0c1c2c3 1CCCA = 0BBB@ b0 b1 b2 b3b1 b2 b3 b0 + b1b2 b3 b0 + b1 b1 + b2b3 b0 + b1 b1 + b2 b2 + b3 1CCCA0BBB@ a0a1a2a3 1CCCA :The product element C is also given in dual base coordinates.The complexity of a hardware implementation of the DB multiplier is composed of thecomplexity for performing the matrix-vector multiplication (3.20) and of the complexityfor computing the products (!jB), j = 0; 1; : : : ; n�2. The complexity for Equation (3.20)is C2 = n2AND + n(n� 1)XOR = n2AND + (n2 � n)XOR:The complexity C1 for the computation of one dot product is given in Equation (3.17).Hence the over all complexity C = (n� 1)C1 + C2 is:#AND = n2; (3.21)#XOR = (n2 � n) + (n� 1)(hw(Q)� 2) � n2 � 1: (3.22)The number of AND gates required is, independent of the �eld polynomial, equal to n2.For the XOR complexity is equality given, i� an irreducible trinomial is used as �eldpolynomial, since then hw(Q) = 3. The application of a trinomial in the example aboveleads therefore to 42 = 16 AND gates and 42 � 1 = 15 XOR gates. It seems interestingthat the lower complexity bound of the dual base multiplier is exactly the same as theone of the standard base multiplier introduced in the previous section. Moreover, botharchitectures achieve the lower bound exactly when (certain) trinomials are used as �eldpolynomials.Another issue which must be addressed if the complexity of a DB multiplier is eval-uated, is the di�erent representations of the inputs and the output. The architecture

Previous Architectures 22requires one operand, in our derivation A, to be in SB, and the other one, in our deriva-tion B, to be in DB. The product element C is again represented in DB. As a consequence,it is likely that base transformations are required in actual systems which apply the ar-chitecture. Thus the complexity of the transformations must be taken into account. Thebase transformations are linear mappings which can be represented as the multiplicationof a binary n element vector with a binary n�n matrix. However, in [GG93, Theorem 5.2]a condition is stated for which the base transformation is a mere permutation of the co-e�cients. The condition is, for extension �elds of GF (2), that the �eld polynomial isan irreducible trinomial. Since permutations can be hardwired in VLSI implementations,they require no extra gates. According to our complexity measure, which is a gate count,the permutation thus do not add to the complexity.Consequently, the lower bound in Equation (3.22) is not only exactly ful�lled if Q(y)is a trinomial, but also the multiplier does not require any arithmetic operations for thebase transformation. Hence, (3.22) is the exact overall measure for the number of XORgates needed for the multiplier if Q(y) is a trinomial.A Modi�cationIn this subsection a somewhat modi�ed version of the dual base multiplier introducedabove is developed. In the modi�ed algorithm, the element represented in SB will becyclicly updated, rather than the input element in DB. For the modi�ed architecturesimilar operations as for the one above, shift and add, will be used. Moreover, themodi�cation will not alter the complexity.In the beginning, multiplication of the element A = a0 + !a1 + !2a2 + � � �+ !n�1an�1in SB with the base element ! is considered. Again, the �eld polynomial is Q(y) =1 + q1y + � � � + qn�1yn�1 + yn, such that Q(!) = 0. Then Equation (3.15) holds. Themultiplication !A is:!A = !a0 + !2a1 + � � �+ !n�1an�2 + !nan�1;= an�1 + (an�1q1 + a0)! + � � �+ (an�1qn�1 + an�2)!n�1: (3.23)The operation !A requires a cyclic right shift of the vector (a0; a1; : : : ; an�1) and anaddition of the shifted vector with the vector an�1(�; q1; : : : ; qn�1). The complexity of thisoperation is C 01 = (hw(Q)� 2)XOR � 1XOR;which is exactly the complexity which was required for the operation !B, where B isgiven in DB.In order to compute the product C = A �B, where C is in dual base, we considercj = Tr(!jC) = Tr(!jAB) = Tr((!jA)B);which is similar to Equation (3.18), except that the parentheses in the rightmost expressionare placed di�erently. Then, according to Equation (3.19), the �rst coe�cient of the

Previous Architectures 23product is c0 = Tr(AB) = A �B;where \�" denotes the dot product of the two factor elements. Hence the coe�cient c1turns out to be: c1 = Tr((!A)B) = (!A) �B:The term (!A) can be computed through Equation (3.23). The same procedure is appliediteratively to the other coe�cients:c2 = Tr((!2A)B) = (!(!A)); �Bc3 = Tr((!3A)B) = (!(!(!A))) �B;...cj = Tr((!jA)B) = (!(� � � (!A) � � �)) �B: (3.24)Equation (3.24) is a recursive description of the multiplier. Since every vector elementrequires a dot product, the complexity for the n Equations (3.24), j = 0; 1; : : : ; n� 1 is:C 02 = n2AND + n(n� 1)XOR = n2AND + (n2 � n)XOR:The overall complexity can now be obtained through C 0 = (n� 1)C1 + C 02:#AND = n2; (3.25)#XOR = (n2 � n) + (n� 1)(hw(Q)� 2) � n2 � 1: (3.26)Unfortunately, a general matrix description for a parallel multiplier such as developedin the previous subsection in Equation (3.20) is not as elegant in this case. However, an ex-ample of the modi�ed multiplier makes the binary operations involved in Equation (3.24)more obvious.Example. We consider multiplication in the �eld GF (24). The �eld polynomialis Q(y) = y4+ y+1. The operand A = (a0; a1; a2; a3) is given in standard base, theoperand B = (b0; b1; b2; b3) is given in dual base, and the product C = (c0; c1; c2; c3)will be produced in dual base coordinates. The basic operation !T , T = (t0; t1; t2; t3)is for this example !T = (t3; t0; t1; t2 + t3):A matrix description of the multiplication C = A �B is thus:0BBB@ c0c1c2c3 1CCCA = 0BBB@ a0 a1 a2 a3a3 a0 a1 a2 + a3a2 + a3 a3 a0 a1 + a2 + a3a1 + a2 + a3 a2 + a3 a3 a0 + a1 + a2 + a3 1CCCA0BBB@ b0b1b2b3 1CCCA :It should be noted that every row of the matrix introduces only one new addi-tion for the rightmost entry, the other elements are simply a shifted version of thecorresponding row above.

Previous Architectures 24The complexity of the modi�ed multiplier given in (3.25) and (3.26) is exactly thesame as the complexity of the multiplier introduced earlier. Moreover, the lower bound ofthe XOR complexity is for both multipliers reached with equality, if the Hamming weighthw(Q) is minimal, i.e. if the �eld polynomial is a trinomial. The problem imposed by apossibly necessary base transformation remains the same for the modi�ed multiplier.The architectural di�erences between the two multipliers can be summarized as follows:� The modi�ed multiplier updates the input vector given in SB rather than the onegiven in DB.� The update operation requires a cyclic right shift of the vector elements rather thana non cyclic left shift.� The update operation adds values to certain elements of the input vector, whereasthe original architecture adds certain vector elements in order to obtain the newelement bn�1.However, it seems as though the di�erences do not lead to signi�cant improvements/draw-backs in the implementation of either architecture, so that both architectures can beconsidered to be of similar \quality."3.1.3 Normal Base MultipliersA circuit design for the multiplication of two �nite �eld elements represented in a normalbase (NB) (!; !2; !22; : : : ; !2n�1) was �rst described by Massey and Omura in a US patentapplication [MO84]. Due to their inventors, NB multipliers are sometimes referred to as\Massey-Omura multipliers." Although the original description focuses on a bit serialmultiplier, parallelization is straightforward. A parallel architecture can for instance befound in [WTS+85]. In the sequel, we will �rst develop the multiplier architecture andthen comment on its complexity.Consider two �eld elements A;B in NB:A = a0! + a1!2 + a2!22 + � � �+ an�1!2n�1 ; (3.27)B = b0! + b1!2 + b2!22 + � � �+ bn�1!2n�1 : (3.28)One property of the NB representation is that squaring of �eld elements is merely a cyclicshift of its coe�cients:A2 = an�1! + a0!2 + a1!22 + � � �+ an�2!2n�1 ; (3.29)B2 = bn�1! + b0!2 + b1!22 + � � �+ bn�2!2n�1: (3.30)The �eld multiplication of two elements yields the product element C:C = A �B (3.31)= c0! + c1!2 + c2!22 + � � �+ cn�1!2n�1:

Previous Architectures 25First, only the highest coe�cient cn�1 is considered. It is an as yet unspeci�ed, bilinearfunction of the two sets of input coe�cients ai; bi:cn�1 = f(a0; a1; : : : ; an�1; b0; b1; : : : ; bn�1): (3.32)The binary function in (3.32) is sometimes referred to as \f-function." If now both sidesof Equation (3.31) are squared:C2 = A2 �B2 (3.33)= cn�1! + c0!2 + c1!22 + � � �+ cn�2!2n�1 ;we obtain an expression similar to (3.32) for the coe�cient cn�2:cn�2 = f(an�1; a0; : : : ; an�2; bn�1; b0; : : : ; bn�2): (3.34)The function in Equation (3.34) is the same as the f-function in (3.32) but with the twosets of input values (a0; a1; : : : ; an�1) and (b0; b1; : : : ; bn�1) cyclicly shifted. The othercoe�cients (cn�3; cn�4; : : : ; c0) can also obtained from the f-function through the sameprocedure, i.e. through repeated cyclic shifts of the input values.Rather than providing general formulas for obtaining the f-function for a given �eldpolynomial Q(y), the method will be explained by an example.Example. The �eld considered is GF (24) with Q(y) = y4+y3+1. The normalbase is (!8; !4; !2; !), with Q(!) = !4 + !3 + 1 = 0. Multiplication of two �eldelements C = A �B in normal base yields:C = c3!8 + c2!4 + c1!2 + c0!= A � B = (a3!8 + a2!4 + a1!2 + a0!)(b3!8 + b2!4 + b1!2 + b0!)= !12(a2b3 + a3b2) + !10(a1b3 + a3b1) + !9(a3b0 + a0b3)+!8(a2b2) + !6(a2b1a1b2) + !5(a2b0 + a0b2)+!4(a1b1) + !3(a0b1 + a1b0) + !2(a0b0) + !(a3b3)The multiplication has created the elements (!12; !10; !9; !6; !5; !3) which have tobe expressed in terms of the normal base:!12 = !8 + !4 + !2;!10 = !8 + !2;!9 = !8 + !4 + !;!6 = !4 + !2 + !;!5 = !4 + !;!3 = !8 + !2 + !:Hence, the coe�cient c3 is:c3 = f(a0; a1; a2; a3; b0; b1; b2; b3)= a2b3 + a3b2 + a1b3 + a3b1 + a3b0 + a0b3 + a2b2 + a0b1 + a1b0: (3.35)The sum of products in Equation (3.35) is the f-function which was to be determined.

Previous Architectures 26It is obvious that normal base multiplication for a given �eld order is determined bythe corresponding f-function. In turn, the complexity of the f-function determines theoverall complexity of the multiplier. The number of products, Cn, of the f-function isoften taken as a complexity measure. In the example above Cn = 9. Since the f-functionis determined by the selected �eld polynomial Q(y), the complexity of the NB multiplieris solely a function of the �eld polynomial Q(y) for a given �eld GF (2n). Similarly tothe situation for the standard base multiplier, we are now left with the choice of a �eldpolynomial that results in a low complexity multiplier.Mullin showed in [MOVW89] that the complexity is lower bounded by Cn � 2n � 1.NB with Cn = 2n � 1 are said to be optimum normal bases. In [Gei93a] NB for �eldsGF (2n), 2 � n � 60, are listed. In this reference, the smallest possible complexity wasdetermined for most �eld orders 2n. The complexity for a hardware realization of thef-function is: Cn AND + (Cn � 1)XOR:The overall gate count of a parallel realization of a NB multiplier is thus lower boundedby: #AND = nCn � 2n2 � n; (3.36)#XOR = (n� 1)Cn � 2n2 � 3n+ 1: (3.37)The complexities (3.36) and (3.37) of a parallel NB multiplier are approximately twiceas high as the complexities of the SB multiplier fromMastrovito, if they are compared withthe corresponding lower bounds (3.9) and (3.10). However, �nite �eld architectures basedon NB are still attractive, in particular for cryptographic schemes which are based on theassumed di�culty of the discrete logarithm problem [Odl84]. The basic operation to beperformed in these schemes is exponentiation in rather large �elds; typical are �elds with100 < n < 1000. NB architectures are inherently advantageous for squaring operations,because the cyclic shift which performs the squaring requires hardly any area in VLSIimplementations. Since most algorithms for fast exponentiation require repeated squar-ing and multiplication, a trade o� between the good squaring and costly multiplicationbehavior might be found, which suggests the use of NB architectures [GG90].3.2 Non Traditional MultipliersIn this section several �nite �eld architectures reported in technical literature are in-troduced, which are not \traditional" according to the classi�cation used in this thesis.Except the multiplier which will be introduced �rst, all architecture take advantage ofthe decomposition of Galois �elds into sub�elds.Two of the four architectures which will be mentioned hereafter are relevant to the the-sis, and will therefore be described in some detail. They are due to V. Afanasyev from the

Previous Architectures 27Institute for Problems of Information Transmission (IPPI), Moscow. The architectures aredescribed in two remarkable, though brief, publications [Afa90] [Afa91]. Unfortunately,it seems as though the architectures have not yet been recognized by the internationalscienti�c community as they deserve to be. Some of the subsequent chapters share someideas with Afanasyev's architectures, although they were developed independently. Inaddition to these two architectures, a method for e�cient table look-up and a normalbase multiplier, both of which apply arithmetic in sub�elds, will be brie
y described. Aninverter over extension �elds will be introduced in Subsection 3.3.3.3.2.1 Multiplication in GF (2k) using the Karatsuba-Ofman Al-gorithmIn [Afa90]1 a method is introduced which allows the application of the Karatsuba-OfmanAlgorithm (KOA) [KO63] [Knu81] to the multiplication of �nite �eld elements fromGF (2k). The elements are represented in standard base. The architecture optimizesthe polynomial multiplication, which is the major part in standard base Galois �eldmultiplication. The KOA allows polynomial multiplication with a reduced number ofmultiplications, while the number of additions is increased for short polynomials. Hence,multiplication must be more costly than addition. A straightforward application of theKOA requires log2 k iteration steps for polynomials of degree k � 1. For a detailed de-scription of the KOA, refer to Section 5.2.Since multiplication and addition are approximately both as costly in the �eld GF (2),the KOA can not be applied to multiplication of elements from GF (2k) in a straightfor-ward manner, since the elements are polynomials with coe�cients from GF (2). However,the method in [Afa91] suggests to apply only � < log2 k iteration steps of the KOA tothe �eld elements. As a consequence, the elementary operations are multiplication andaddition with polynomials of degree (m=2�)� 1. For the pure polynomial multiplication,this results in a complexity of:#AND = �34�� k2; (3.38)#XOR � k�[(m2�� � 1)2 + 8 k2�� � 2]� 8k + 2: (3.39)The second step which is required to perform SB multiplication is reduction modulothe �eld polynomial. The architecture uses the polynomials suggested by Mastrovito[Mas91] which can also be found in Table 3.1.The overall complexity of the architecture is considerably better than the complexitiesof the traditional multipliers introduced earlier. In particular, the gate count is for mostcases well below the k2 bound. However, the architectures developed in Chapter 5 and1The method is also described in the later reference [Afa91].

Previous Architectures 28Chapter 6, which apply the KOA for multiplication in composite �elds, perform somewhatbetter in terms of gate count.The architecture is also highly modular, since all arithmetic is performed with the twokind of modules. One type of module provides multiplication of polynomials of degree(m=2�)� 1, the other type provides addition with these polynomials.3.2.2 Multiplication in Tower FieldsIn reference [Afa91] a method for multiplication in �nite �elds is developed. The methodis based on �eld extensions of degree two.The elementary operation is the following. We consider a �eld GF (2q) with a �eldpolynomial of type P (x) = x2 + x+ p0 (see Theorem 11 for proof of existence.) Multipli-cation of two elements A;B 2 GF (2q) can be performed throughC(x) = A(x) �B(x) = (a1x+ a0)(b1x+ b0);= (a0b0 + p0a1b1) + x([a1 + a0][b1 + b0] + a0b0); (3.40)which requires 3 general multiplications, 4 additions and 1 constant multiplication withp0. All operations refer to arithmetic in the sub�eld GF (q).The basic idea of the method is to decompose the �eld GF (2k) of operation intosub�elds with (multiple) extensions of degree two. This means that for k = n2� , the �eldGF (2k) is decomposed into � sub�elds of the formGF (2k) �= GF ((� � � (((2n)2)2) � � �)2): (3.41)Fields of the form (3.41) are referred to as \tower �elds." For multiplication in tower�elds, Formula (3.40) can be applied recursively.The space complexity of this architecture is remarkably low. The table given in [Afa91]contains the gate count for di�erent decompositions of the �elds GF (28) and GF (216).For the �eld GF (28), the best result is achieved with � = 1; the gate count is 65 XOR /48 AND. For the �eld GF (216), the best �eld decomposition is found to be � = 2 whichyields a gate count of 234 XOR / 144 AND. To the author's knowledge, the latter gatecount is the lowest one for parallel �nite �eld multiplier reported in technical literature.Compared to the architectures in Chapter 6, the tower �eld multiplier has almost exactlythe same count for the �elds with k = 8; 16. This can be seen by considering Table 6.1and Table 6.2, respectively.Although the gate count is extremely low, the architecture is somewhat lacking themodularity which is inherent in the architectures which apply the KOA. Both types ofmultiplier architectures that use the KOA, the one given above in Section 3.2.1 andthe multipliers over composite �elds introduced in the subsequent chapters, require onlyarithmetic modules from one sub�eld. On the other hand, the tower �eld multiplierrequires arithmetic modules from � di�erent sub�elds, thus increasing the number ofdi�erent modules.

Previous Architectures 293.2.3 Other ArchitecturesIn this subsection references to two more schemes are provided which use sub�elds ofGalois �elds. Since the schemes are less relevant for the architectures to be developed inthe thesis, they will only brie
y be mentioned.The �rst architecture is by Pincin [Pin89]. It is a parallel normal base multiplier overGF (2k) which uses arithmetic in sub�elds. The architecture is suited for a decompositionin multiple sub�elds, which are named \descending chain" of �elds. For �elds GF (22s),the computational complexity of the architecture is of order O(m2:32).The second algorithm is by Hsu et al. [HTRG88]. It deals with the use of a sub�eldGF (2k=2) for performing a table lookup in the �eld GF (2k). Unlike the architecturedescribed previously, the algorithm uses table lookup for all operations in the sub�eld. Inone extensive example developed in the reference, a VLSI architecture for table lookupin the �eld GF (28) is given which occupies about half the area of a straightforwardimplementation.3.3 Inversion3.3.1 Direct Inversion over GF (2n)To the author's knowledge there are only a few schemes for parallel, or direct, inversionover Galois �elds GF (2n) reported in technical literature. The majority of the publi-cations deals with bit serial architectures (see e.g. [Fen89], [HWB92a], or [KRV93] forrecent references.) One recent bit parallel architecture was brie
y proposed in [Mas91]by Mastrovito. This architecture will be used for the inverter over composite �eld fromChapter 8. Another method for direct inversion was described in an early paper by Davida[Dav72]. It will also be described brie
y.The method introduced in the sequel is based on the inversion of the product matrixof the Mastrovito multiplier, introduced earlier. It is described in [Mas91, Section 9.2].From the matrix Equation (3.1), we can deriveZ�10BBBB@ a0a1...an�1 1CCCCA = 0BBBB@ 10...0 1CCCCA :Moreover, we know from Equation (3.2) that the �rst column of Z contains the co-e�cients of the element which generated the matrix. Obviously, this element is A�1 =(a00; a01; : : : ; a0n�1)T in the equation above. Hence the �rst column of Z�1 is �lled with thecoe�cients of A's inverse.In order to perform inversion in parallel, the general equations for the coe�cients ofthe �rst column of Z�1 must be derived. There are two method for matrix inversion

Previous Architectures 30available. The �rst one solves a system of linear equations, the second one is based onthe computation of adjoints. Both methods are computationally costly; the solution oflinear equations is of order O(n3), the computation of adjoints is of order O(n!).For the inverter over composite �eld to be developed in Chapter 8, fast parallel invert-ers in small sub�elds GF (2n) are required. Although matrix inversion based on adjointsis potentially more complex, we found it better suited for the computation with Mathe-matica, a program for symbolic computation [Wol88]. For each �eld GF (2n) we computeda set of n equations for the coe�cients a0i, i = 0; 1; : : : ; n� 1. We used the matrices Z asentries for the computation. The coe�cient a0i is obtained througha0i = adj0;i(Z)det(Z) :However, since the inverse of Z always exists, the expression det(Z) is always equal toone and needs not to be computed. The coe�cient a0i can thus be computed througha0i = adj0;i(Z):The adjoint is a determinant of order (n � 1) � (n � 1). Mathematica was able todetermine the equations for direct inversion for �elds up to n = 8. However, the equationsfor n = 8 were found to be too complex, so that Appendix A lists only equations for �eldsGF (2n), n � 7. The equations provided are in \raw" form, i.e. the contain redundanciesand should be further simpli�ed for actual implementations. The �eld polynomials usedare the same as listed in Table 3.1.In [Dav72] another method for direct inversion is introduced. It is also based onmatrix description. However, the resulting system of equation is of degree 2n � 1. Thecorresponding matrix is sparse. Unfortunately, the author does not comment on thecomputational complexity required for solving these equations. The only example givenis for the small �eld GF (2n).3.3.2 Inversion in Composite FieldsItoh and Tsujii proposed (brie
y) in [IT88, Section 6] a new method for the inversionof elements of composite �elds. Their approach assumes a normal base representation ofthe �eld elements. The basic idea is that inversion in the �eld GF ((2n)m) is replaced byinversion in the ground �eld GF (2n). For the latter one an approach based on Fermat'sTheorem is used.The algorithm will be described in detail in Chapter 8, where a parallel inverter forcomposite �eld elements in standard base is developed.3.3.3 Inversion in Tower FieldsThe following scheme also operates over multiple extension �elds of GF (2n). An e�cientparallel architecture for computing the multiplicative inverse of �nite �eld elements was

Previous Architectures 31�rst proposed in 1988 by Morii and Kasahara in [MK89]. The same algorithm was alsoproposed by Afanasyev in 1991 [Afa91], apparently unaware of the earlier publication.The method reduces the problem of inversion in the Galois �eld GF (2k) to inversionin the sub�eld GF (2k=2). The core part of the architecture is the following.Let us consider an element A from GF ((2k=2)2), represented in SB:A(x) = a0 + a1x; a0; a1 2 GF (2k=2):The �eld polynomial is of the form P (x) = x2 + x + p0, where p0 2 GF (2k=2). If theinverse of A is denoted as B = A�1, the equationA �B = (a0 + a1x)(b0 + b1x) mod P (x)= [a0b0 + p0a1b1] + [a0b1 + a1b0 + a1b1]x= 1; (3.42)must be satis�ed, which is equivalent to the set of two linear equations in b0; b1 overGF (2k=2): a0b0 + p0a1b1 = 1a1b0 + (a0 + a1)b1 = 0) : (3.43)The solution of (3.43) is b0 = a0+a1a0(a0+a1)+p0a21b1 = a1a0(a0+a1)+p0a21 9=; : (3.44)The variables b0; b1 are the coe�cients of A's inverse with respect to the sub�eld GF (2k=2).The computation of the two Equations (3.44) requires 1 inversion, 3 general multiplica-tions, 2 additions, 1 constant multiplication with p0 and 1 squaring. All these operationsare performed in GF (2k=2). The main advantage of this algorithm is that the inversionis now performed in the sub�eld, which is supposed to be considerably easier than in the�eld GF (2k). The overhead to be paid for this are the other arithmetic operations. Bothreferences recommend a recursive application of the algorithm, which leads to tower �eldsas introduced in Equation (3.41).Neither reference provides gate counts for inverters over certain �elds. However, in[Afa91] it is stated that the complexity is of order O(mlog2 3 logm) under certain conditionsregarding the coe�cient p0.

Chapter 4Parallel Constant Multipliers
4.1 Constant Multipliers over GF (2n)In this section an e�cient scheme for performing parallel multiplication of an arbitraryelement from the �eld GF (2n) with a �xed, i.e. constant, element is developed. Theresults to be obtained will be used in most of the subsequent chapters, in particular forthe general multipliers in Chapters 5 and 6, and for the inverter introduced in Chapter 8.Moreover, multiplication with a constant �eld element is extremely important for Reed-Solomon encoders, see e.g. [LC83]. The algorithm which will be introduced here can bedirectly applied to Reed-Solomon encoders over �elds GF (2n).First, two greedy algorithms will be developed. The algorithms minimize the numberof XOR gates which is required to implement constant multipliers. Results on the perfor-mance of the algorithms compared to a straightforward approach will be provided. In theappendix, complete lists of optimized complexities for multiplication with all elementsfrom the �elds GF (2n), n = 4; 5; : : : ; 8 are given, which can, for instance, be used inReed-Solomon encoders over �elds GF (2n).4.1.1 Two Suboptimal AlgorithmsThe general approach taken here is the application of the Mastrovito multiplier, intro-duced in Section 3.1.1, to constant multiplication. This approach was previously describedin [Mas91, Chapter 5.1.5]. However, the major concern of this section is the application ofa greedy, i.e. locally optimum, algorithm which optimizes the gate count of the constantmultipliers.Equation (3.1) is a matrix description of the general multiplication in a �eld GF (2n).The product matrix Z is a function of the (variable) element A and the �eld polynomialQ(y). If the element A is now chosen to be constant, a binary product matrix with �xedentries is obtained. The multiplication with the constant A is thus entirely described bythe binary matrix. We may explain the scheme through an Example.32

Constant Multipliers 33Example. Let Q(y) = y7 + y + 1 be the primitive polynomial generatingGF (27). The primitive element of the �eld is denoted !, where Q(!) = 0. Themultiplication of a variable �eld element B = (b0; b1; : : : ; b6) with the �xed elementA = !47 = (1111100) is described by:C = !47B = ZB (4.1)= 0BBBBBBBBBB@
1 0 0 1 1 1 11 1 0 1 0 0 01 1 1 0 1 0 01 1 1 1 0 1 01 1 1 1 1 0 10 1 1 1 1 1 00 0 1 1 1 1 1

1CCCCCCCCCCA0BBBB@ b0b1...b6 1CCCCA = 0BBBBBBBBBB@
b0 + b3 + b4 + b5 + b6b0 + b1 + b3b0 + b1 + b2 + b4b0 + b1 + b2 + b3 + b5b0 + b1 + b2 + b3 + b4 + b6b1 + b2 + b3 + b4 + b5b2 + b3 + b4 + b5 + b6

1CCCCCCCCCCA :
Each operation \+" in (4.1) denotes a mod 2 addition, i.e. a two input XOR.In the sequel we consider the space complexity of constant multiplication. As theexample from above shows, the only operation required for constant multiplication ismodulo 2 addition. Hence we de�ne the space complexity as the number of XOR gatesneeded for the multiplier.In [Mas91, Chapter 5.1.5] a formula for the average complexity for constant multipli-cation in the �eld GF (2n) is developed:Ccnst = n22 � n [XOR]: (4.2)This value is only an estimate which presumes product matrices Z, which have on averageexactly n2=2 entries. However, we determined the actual complexities for �elds n < 10and found the estimation accurate.Equation (4.2) is the average of the straightforward realizations of all 2n binary ma-trices of type (4.1). For instance, a straightforward realization of the constant multiplierin the example above requires 26 XOR gates, since there are 26 modulo 2 additions tobe performed. However, it is rather obvious that there are redundancies in the exampleabove, which allow a reduction of the number of XOR gates. For instance, a straightfor-ward realization of the matrix in (4.1) would compute the sum (b0 + b1) four times, sinceit appears in the rows 2,3,4, and 5. In the sequel, two greedy algorithm will be developedwhich �nds suboptimal solutions.The reduction of the number of XOR gates is a optimization problem on Booleanequations of form (4.1). The cost function of the optimization problem is the number ofmod 2 additions required to realize a set of n equations in n variables bi, i = 0; 1; : : : ; n�1,where each equation is a sum over certain bi. The greedy algorithms operate iteratively.The �rst algorithm computes in each iteration step the occurrence of all possible pairsbi + bj, i; j = 0; 1; : : : ; p, i 6= j. The most frequent occurring pair bopt1 + bopt2 can beprecomputed. Thus, a locally optimum solution is found. The pair is considered a new

Constant Multipliers 34lastcol := n-1;M := zmatrix;DO BEGINhmax := 0;FOR i := 0 TO lastcol-1 DO BEGINFOR j := i+1 TO lastcol DO BEGINcoli := GETCOLUMN(M,i);colj := GETCOLUMN(M,j);IF(HAMMINGWEIGHT(coli & colj) > hmax) BEGINhmax := HAMMINGWEIGHT(coli & colj);maxi := i;maxj := j;END;END;END;IF (hmax > 1) DO BEGINmxcoli := GETCOLUMN(M,maxi);mxcolj := GETCOLUMN(M,maxj);newcol := maxcoli & maxcolj;PUTCOLUMN(M,newcol,lastcol+1);PUTCOLUMN(M,!(newcol & maxcoli),i);PUTCOLUMN(M,!(newcol & maxcolj),j);lastcol := lastcol+1;END;WHILE (hmax > 1); Pseudo Code of the algorithm Greedy 1element b� = bopt1 + bopt2, and the matrix is extended such that it also contains the newelement. Again, in the next iteration step all possible pairs bi + bj, i; j = 0; 1; : : : ; p + 1,i 6= j are investigated, including the new element b�. The algorithm eventually terminateswhen all possible pairs occur only once. A more detailed explanation of the �rst greedyalgorithm is given by the pseudo code description.The pseudo code assumes the function GETCOLUMN(M,i), which returns the columni of the passed matrix M, the function PUTCOLUMN(M,col,i), which replaces the columni with the new column col, and the function HAMMINGWEIGHT(col), which returns theHamming weight of the passed column vector col. The operator & performs bitwiselogical AND, the operator ! computes the bitwise inverse of its argument. The algorithmin the pseudo code operates iteratively on the matrix M. In each iteration step one newcolumn is appended to the matrix. This new column refers to the sum bi + bj which canbe precomputed with one XOR gate. The new column has hmax entries. At the same

Constant Multipliers 35time, the columns maxcoli and maxcolj are updated through a logical AND with the newcolumn, thus eliminating 2 hmax entries. Each elimination refers to the saving of one XORgate. Hence, every iteration step saves 2 hmax � hmax � 1 = hmax � 1 XOR gates. Thenumber of entries is in each iteration step reduced by hmax. This property together withthe fact that the algorithms terminates if there are no column pairs with hmax > 1 left,assures convergence of the algorithm.To clarify the understanding of the algorithm, we apply the �rst greedy algorithm tothe matrix belonging to the example from above.Example. We reconsider multiplication with the element A = !47 = (1111100)from GF (27), with Q(y) = y7 + y + 1 being the �eld polynomial. In the exampleabove, a matrix description of the multiplication of A with the variable �eld elementB = (b0; b1; : : : ; b6) was developed:
C = !47B = 0BBBBBBBBBB@

b0 + b3 + b4 + b5 + b6b0 + b1 + b3b0 + b1 + b2 + b4b0 + b1 + b2 + b3 + b5b0 + b1 + b2 + b3 + b4 + b6b1 + b2 + b3 + b4 + b5b2 + b3 + b4 + b5 + b6
1CCCCCCCCCCA :

The straightforward implementation of the constant multiplication requires 26 ad-ditions. The summation from above can also be represented by the binary matrixZ, which is the initial matrix for the greedy algorithm.b0 b1 b2 b3 b4 b5 b61 0 0 1 1 1 11 1 0 1 0 0 01 1 1 0 1 0 01 1 1 1 0 1 01 1 1 1 1 0 10 1 1 1 1 1 00 0 1 1 1 1 1In the sequel the iterations of the greedy algorithm on the matrix are displayed.1. In the �rst iteration step it is found that the addition b0 + b1 is to be pre-computed. The value hmax equals 4, which is the Hamming weight of theANDed �rst and second column. The sum of both is considered a new elementb07 = b0 + b1. The columns 0 and 1 are updated and the new column is addedto the matrix.

Constant Multipliers 36b0 b1 b2 b3 b4 b5 b6 b071 0 0 1 1 1 1 00 0 0 1 0 0 0 10 0 1 0 1 0 0 10 0 1 1 0 1 0 10 0 1 1 1 0 1 10 1 1 1 1 1 0 00 0 1 1 1 1 1 02. The second iteration step determines the new element b08 = b2 + b3.b0 b1 b2 b3 b4 b5 b6 b07 b081 0 0 1 1 1 1 0 00 0 0 1 0 0 0 1 00 0 1 0 1 0 0 1 00 0 0 0 0 1 0 1 10 0 0 0 1 0 1 1 10 1 0 0 1 1 0 0 10 0 0 0 1 1 1 0 13. The third iteration step determines the new element b09 = b4 + b5.b0 b1 b2 b3 b4 b5 b6 b07 b08 b091 0 0 1 0 0 1 0 0 10 0 0 1 0 0 0 1 0 00 0 1 0 1 0 0 1 0 00 0 0 0 0 1 0 1 1 00 0 0 0 1 0 1 1 1 00 1 0 0 0 0 0 0 1 10 0 0 0 0 0 1 0 1 14. The forth iteration step determines the new element b010 = b4 + b07.b0 b1 b2 b3 b4 b5 b6 b07 b08 b09 b0101 0 0 1 0 0 1 0 0 1 00 0 0 1 0 0 0 1 0 0 00 0 1 0 0 0 0 0 0 0 10 0 0 0 0 1 0 1 1 0 00 0 0 0 0 0 1 0 1 0 10 1 0 0 0 0 0 0 1 1 00 0 0 0 0 0 1 0 1 1 05. The �fth iteration step determines the new element b011 = b6 + b08.

Constant Multipliers 37b0 b1 b2 b3 b4 b5 b6 b07 b08 b09 b010 b0111 0 0 1 0 0 1 0 0 1 0 00 0 0 1 0 0 0 1 0 0 0 00 0 1 0 0 0 0 0 0 0 1 00 0 0 0 0 1 0 1 1 0 0 00 0 0 0 0 0 0 0 0 0 1 10 1 0 0 0 0 0 0 1 1 0 00 0 0 0 0 0 0 0 0 1 0 1The updated matrix does not contain any column pairs with an ANDed Ham-ming weight that is greater one. Hence the algorithm terminates hereafter.If the elements (b07; b08; : : : ; b011) are precomputed in exactly this sequence, one obtainsthe following equations for the constant multiplication
C = !47B = 0BBBBBBBBBB@

b0 + b3 + (b4 + b5) + b6(b0 + b1) + b3((b0 + b1) + b4) + b2(b0 + b1) + (b2 + b3) + b5((b0 + b1) + b4) + ((b2 + b3) + b6)b1 + (b2 + b3) + (b4 + b5)((b2 + b3) + b6) + (b4 + b5)
1CCCCCCCCCCA ;

which can be computed with 16 modulo 2 additions. The greedy algorithm has thusreduced the number of XOR gates needed for a hardware implementation from 26to 16.The �nal complexity can be obtained from the matrix as follows. The entire Hammingweight, i.e. the number of all entries of the binary matrix after the last iteration step minusn, the number of rows, is the complexity of a pure matrix vector multiplication. In thecase above we have 18 � 7 = 11 additions. In order to get the exact overall complexity,the number of precomputed terms (5) must be added, which results in 11 + 5 = 16.The greedy algorithm has three properties which makes its application attractive:1. The algorithm is monotone, i.e. the cost function (# XOR) is reduced in everyiteration step.2. The algorithm always converges, as was stated above.3. The algorithm is fast. Running on an IBM PS2/486, the algorithm optimized thematrices for all elements from the �eld GF (215) in less than 2 hours, which is anaverage time per matrix of less than 220 msec.As the example above showed, relatively large improvements are possible for certain�eld elements. However, it must be emphasized that the algorithm is only locally op-timum and does not guarantee globally optimum solutions. Before the performance ofthe algorithm for actual Galois �elds GF (2n), n = 4; 5; : : : ; 16, is compared with thestraightforward approach, an improved version of the algorithm will be introduced.

Constant Multipliers 38One rather obvious improvement which can be implemented, is that the greedy al-gorithm checks all possible pairs of rows which possess a maximum hmax. For instance,in the example above, four pairs (b0 + b1); (b1 + b2); (b2 + b3); and(b2 + b4) were possiblecandidates for precomputing in the very �rst step, since all pairs had a hmax of four.Hence, a second algorithm was implemented, which checked all possible pairs that have amaximum hmax. The principal structure of the algorithm is the same as the one given inthe pseudo code description above. In order to add the new feature, the algorithm waschanged such that it works recursively.Example. Application of the second greedy algorithm to the optimizationproblem from above:
C = !47B = 0BBBBBBBBBB@

b0 + b3 + b4 + b5 + b6b0 + b1 + b3b0 + b1 + b2 + b4b0 + b1 + b2 + b3 + b5b0 + b1 + b2 + b3 + b4 + b6b1 + b2 + b3 + b4 + b5b2 + b3 + b4 + b5 + b6
1CCCCCCCCCCA ;

yields another sequence of precomputations. The best sequence found is:b07 = b0 + b1;b08 = b3 + b4;b09 = b2 + b5;b010 = b6 + b8;b011 = b2 + b07;b012 = b3 + b07:Application of the precomputations to the constant multiplication gives the opti-mized equations:
C = !47B = 0BBBBBBBBBB@

b0 + ((b3 + b4) + b6) + b5((b0 + b1) + b3)((b0 + b1) + b2) + b4((b0 + b1) + b3) + (b2 + b5)((b0 + b1) + b2) + ((b3 + b4) + b6)b1 + (b2 + b5) + (b3 + b4)(b2 + b5) + ((b3 + b4) + b6)
1CCCCCCCCCCA ;

which corresponds to a realization with 6+8 = 14 XOR gates. Hence the new algo-rithm gives an improvement of 2 XOR gates compared to the �rst greedy algorithmand an improvement of 12 XOR gates compared to the straightforward approach.

Constant Multipliers 39n Q(y) Ccnst Greedy 1 Greedy 2XOR XOR rel. impr. XOR rel. impr.4 4,1,0 4 3.3 17.5% 3.3 17.5%5 5,2,0 7 5.4 22.9% 5.3 24.3%6 6,1,0 12 8.1 32.5% 7.9 34.2%7 7,1,0 17 11.3 33.5% 11.0 35.3%8 8,5,3,2,0 24 14.9 37.9% 14.4 40.0%9 9,4,0 31 19.2 38.1% 18.5 40.3%10 10,3,0 40 23.8 40.5% 22.8 43.0%11 11,2,0 49 28.7 41.4%12 12,8,5,1,0 60 33.3 44.5%13 13,7,6,1,0 71 39.3 44.6%14 14,9,7,2,0 84 45.4 46.0%15 15,1,0 97 52.9 45.5%16 16,11,6,5,0 112 59.1 47.2%Table 4.1: Comparison of the average complexity of constant multiplication in the �eldsGF (2n): Straightforward vs. Optimized Solutions.4.1.2 Experimental ResultsIn this subsection some experimental results of practical relevance regarding optimizedconstant multiplication are given. First, a performance measure compares the two greedyalgorithms from the previous section with the complexity of the straightforward imple-mentation. Second, the appendix lists the optimized complexity of constant multiplicationwith all elements from the �elds GF (2n), n = 4; 5; : : : ; 8.The average number of XOR gates for constant multiplication in one �eld GF (2n)serves as a performance measure of the algorithms. The straightforward approach requires,according to Equation (4.2), an average of Ccnst = n2=2�n XOR gates per multiplier. Weapplied both algorithms introduced above, Greedy 1 and Greedy 2, to all elements of the�elds GF (2n), n = 4; 5; : : : ; 16, and computed the average number of modulo 2 additions.The results are given in Table 4.1. For the �elds n > 11, Greedy 2 was not fast enough tooptimize all elements, so that the �elds 11 < n � 16 were only optimized with Greedy 1.The table lists the �eld polynomial Q(y) next to the �eld exponent n. The columnheaded by Ccnst contains the average complexity of a straightforward realizations, com-puted with Equation (4.2). The columns headed by Greedy 1 and Greedy 2 contain theaverage optimized complexity (measured in XOR gates), and the improvement relative tothe straightforward approach.It can be seen that both greedy algorithms reduce the space complexity considerably.The algorithms gain more as n increases. This is due to the also increasing number ofentries in the n� n matrices, which results in a higher probability of redundancies.

Constant Multipliers 40The actual complexities of multiplication with the elements from the �elds GF (2n),n = 4; 5; : : : ; 8 can be found Appendix B. The lists in the appendix can, for instance,be used for the evaluation of the gate count of constant multipliers needed in an imple-mentation of a Reed-Solomon encoder. Moreover, the lists give some insight into thecomplexity behavior of di�erent �eld elements. For example, it can be seen that the �rstfew !; !2; : : : and the last few elements : : : ; !2n�3; !2n�2 (ordered by their exponents) ofeach �eld have a gate count which is signi�cantly lower than the average complexity. Adirect application for the optimized constant multipliers is given in the architectures ofmultipliers over composite �elds, introduced in the Chapters 5 and 6. It was found thata careful choice of �eld polynomials P (x), which have coe�cients that possess a smallconstant multiplication complexity, leads to a signi�cantly improved gate count for theoperation modP (x).4.2 Constant Multipliers over GF ((2n)m)This section develops a general architecture of constant multipliers in composite �eldsGF ((2n)m). We will focus on the development of an upper bound for the average com-plexity of the constant multiplication. Results from the previous section will be used forthis. The composite �elds considered are isomorphic to GF (2k), with k = nm. Everyelement A of the composite �eld can be represented as a polynomial with m coe�cientsfrom GF (2n):A(x) = am�1xm�1 + � � �+ a0 ; ai 2 GF (2n) ; A 2 GF ((2n)m): (4.3)Multiplication of two �eld elements C = A �B can be performed in standard base asC(x) = A(x)� B(x) mod P (x); (4.4)where P (x) is the �eld generator of degree m over GF (2n). In order to perform constantmultiplication we consider one element (polynomial) to be �xed. In the remainder of thissection we chose A as the �xed input element.We can separate the two steps required for the �eld multiplication, which are ordinarypolynomial multiplication (�) and reduction modulo the �eld polynomial (mod). Thesecond step, modulo reduction, will be treated thoroughly in Chapter 5, Section 5.4.We turn now to the �rst step, the multiplication of a polynomial A(x), with constantcoe�cient from GF (2n) with a polynomial B(x) with arbitrary coe�cients. Theorem 8states that a straightforward approach allows polynomial multiplication with m2 multi-plications and (m� 1)2 additions. All arithmetic operations are performed in the ground�eld GF (2n). Each multiplication involves one constant coe�cient ai from A, and onevariable coe�cient bi from B. Hence Equation 4.2 can be applied, which provides theaverage complexity Ccnst for one multiplication:
 = Ccnst = n22 � n [XOR]:

Constant Multipliers 41Every addition involves two products of the form ai � bj, which are also variable since allbi are variable. Therefore each addition is a general addition with a complexity of� = n [XOR]:Now an upper bound for the average complexity Cpol for the multiplication of twopolynomials over GF (2n), one with �xed and one with variable coe�cients, can be stated:Cpol = m2
+(m� 1)2 �= (nm)22 � 2nm + n [XOR] (4.5)= k22 � 2k + n [XOR]:The average complexity is of order O((nm)2). This is the same order as for theconstant multipliers in GF (2k), given in Equation (4.2). However, the complexity in(4.5) over GF ((2n)m) behaves slightly better than the constant multipliers over GF (2k),k = nm, since a comparison of the linear terms shows that�2k + n < �k;for all k and n.In order to evaluate the complexity of the entire constant multiplication, the reductionmodP (x) must be performed. This complexity depends heavily on the �eld polynomialchosen. Therefore we do not provide general expressions which would lead to complexitiesthat are much too high. However, in the column headed by \mod " of Table 5.1 are actualcomplexities for the modulo reduction with optimized �eld polynomials listed. The resultsfrom there can be immediately applied to the case of constant multiplication treated here.Finally it should be mentioned that for an actual element from GF ((2n)m) the com-plexity might be considerably smaller than the one in Equation (4.2). First, one shouldtry to apply one of the greedy algorithms from the previous section to the m2 individualconstant multiplications in GF (2n). Second, constant multiplication which applies theKaratsuba-Ofman algorithm, to be developed in Section 5.2, can lead to lower complex-ities. This is particularly likely for large values of n. Again, it is di�cult to providegeneral statements due to the strong dependency on the structure of the actual elementconsidered.

Chapter 5Multipliers over General CompositeFields GF ((2n)m)Parts of this chapter were presented in [Paa93b] and [Paa93a].5.1 PrincipalIn this chapter a parallel multiplier with low complexity in the composite �eld GF ((2n)m)will be developed. The �elds considered are of the form GF ((2n)2i), i integer. The ele-ments of the �eld may be represented in the standard (or canonical) basis as polynomialswith a maximum degree m� 1 over GF (q):A(x) = am�1xm�1 + � � �+ a0 ; ai 2 GF (q) ; A 2 GF (qm):The generator of the extension �eld is a primitive polynomial P (x) of degree m overGF (2n). Multiplication of two elements A and B of the extension �eld can be performedin the standard representation as:A(x)� B(x) mod P (x): (5.1)The �eld multiplication in (5.1) may be performed in two steps:1. Ordinary polynomial multiplication (�);2. Reduction modulo the generating polynomial (mod).We will treat both steps separately in the following sections. The basic arithmetic oper-ations, addition and multiplication, which are required for both steps are actually per-formed in the ground �eld GF (2n).The basic idea of the multiplier introduced here is the application of the Karatsuba-Ofman Algorithm (KOA) [KO63] for e�cient multiplication of polynomials over a �eldF to step 1. E�cient refers to the fact that the algorithm saves multiplications at the42

Multipliers over Composite Fields 43cost of extra additions. Hence, if the algorithm is expected to be an improvement incomplexity, multiplications must be more \costly" than additions. This condition isnaturally ful�lled for polynomials over �elds GF (2n). Addition in the ground �eld isperformed by n parallel mod 2 adders since the �eld characteristic is still 2. On the otherhand, the number of elementary gates required for a multiplier in standard representationin GF (2n) realized with traditional architectures is at least n2 � 1 mod 2 adders andn2 mod 2 multipliers, respectively. Our architecture applies the Mastrovito multiplier[Mas89] to the multiplication of the polynomial coe�cients.The outline of remainder of the chapter is as follows. Section 5.2 deals, after a briefdescription of some previous work, with a thorough investigation of the computationalcomplexity of the KOA and of the time complexity of its parallel implementation. Amatrix description of the algorithm, which can, for instance, be used for a VLSI descrip-tion, will be developed too. Section 5.3 shows the application of the KOA to polynomialsover �elds of characteristic 2. Section 5.4 describes how primitive polynomials with lowcomplexity with respect to modulo reduction can be determined. Section 5.5 shows thebest multipliers found for composite �elds up to GF (232). For each multiplier the ex-act complexities are given together with the composition nm and a comparison with thek2 complexity bound of traditional multipliers. As an example, for the important �eldGF (216) a multiplier is explained and a block diagram of the architecture given.5.2 The Karatsuba-Ofman Algorithm5.2.1 IntroductionThe Karatsuba-Ofman algorithm (KOA) is a recursive method for e�cient polynomialmultiplication or e�cient multiplication in positional number systems (which is actuallythe same task.) The algorithm was �rst described by Karatsuba and Ofman in 1962 in the\Doklady Akademii Nauk SSSR," the English translation was published in 1963 [KO63].The original paper aimed on the application of multiplication in positional number sys-tems. Knuth gives a compact version of the algorithm in the second volume of his \Artof Computer Programming" [Knu81]. In the treatment of the algorithm's history Knuthstates that it seems surprising that the KOA had not been discovered before 1962, de-spite its comparatively simplicity and its usefulness, e.g. for mental arithmetic. Sedgewick[Sed90] also provides a description of the KOA in a compact notation, though slightly dif-ferent from Knuth's. An investigation of the algorithm's computational complexity isgiven in [Fat74], where the KOA is referred to as \Split." However, this reference con-tains an error in the derivation of the additive complexity, leading to a somewhat incorrectformula1.The KOA is based on the \divide-and-conquer" principle [Sed90]. This principle isapplied to suitable algorithms with complexity greater O(n) by splitting the initial prob-1the error will be outlined in the following section

Multipliers over Composite Fields 44lem, solving the partial problems separately , and combining the solutions obtained. The\price" which must be paid for the computational gain is the splitting of the input andthe merging of the partial solutions. Typical examples for divide-and-conquer algorithmsare Quick-Sort [Sed90] for sorting or the Fast Fourier Transform (FFT) [Str86] with itswide applications, e.g. in signal processing [Bla85]. In the case of polynomial multipli-cation an algorithm is considered e�cient if it saves multiplication, often at the cost ofextra additions. As a consequence, multiplication must be more \costly" than additionif the algorithm is supposed to be an improvement. It should be noted that for the twogeneral methods for e�cient polynomial multiplication, KOA and FFT, the number ofextra additions is often higher than the number of multiplications saved. This situationis given in particular for short polynomials as will be shown later.5.2.2 Recursive Description and ComplexityFirst, the computational complexity of the \schoolbook" or straightforward method forpolynomial multiplication is given, in order to provide a measure for the algorithm to bedeveloped.Theorem 8 Two arbitrary polynomials in one variable of degree less or equal m� 1 withcoe�cients from a �eld F can be multiplied with not more than:#
 = m2 (5.2)#� = (m� 1)2 (5.3)multiplications and additions, respectively, in F .The proof can be readily obtained by induction over m.The KOA provides a recursive algorithm which reduces the multiplicative complexity(5.2) and | for large enough m | the additive complexity (5.3). We consider the mul-tiplication of two polynomials A(x) and B(x) with a maximum degree of m � 1 over a�eld F , i.e. each polynomial possesses at most m coe�cients from F . We are interestedin �nding the product C 0(x) = A(x)B(x) with deg(C 0(x)) � 2m � 2. The considerationhere is restricted to polynomials where m is a power of two: m = 2t, t integer. To applythe algorithm, both polynomials are split into a lower and an upper half:A = xm2 (xm2 �1am�1 + � � �+ am2) + (xm2 �1am2 �1 + � � �+ a0) = xm2 Ah + AlB = xm2 (xm2 �1bm�1 + � � �+ bm2) + (xm2 �1bm2 �1 + � � �+ b0) = xm2 Bh +Bl: (5.4)Using (5.4), a set of auxiliary polynomials D(1)(x) is de�ned:D(1)0 (x) = Al(x)Bl(x)D(1)1 (x) = [Al(x) + Ah(x)][Bl(x) +Bh(x)] (5.5)D(1)2 (x) = Ah(x)Bh(x):

Multipliers over Composite Fields 45The product polynomial C 0(x) = A(x)B(x) is achieved by:C 0(x) = D(1)0 (x) + xm2 [D(1)1 (x)�D(1)0 (x)�D(1)2 (x)] + xmD(1)2 (x): (5.6)Thus far the procedure has reduced the number of multiplications to 3=4m2 in (5.5)from m2 in (5.2). However, the algorithm becomes recursive if it is applied again tothe polynomial multiplications in (5.5). The next iteration step splits the polynomialsAl; Ah; and(Al + Ah) and their B counterparts again in half. With the newly halvedpolynomials another set of auxiliary polynomials D(2)i ; i = 0; : : : ; 8 is obtained. Thepolynomials D(1) can now be computed by means of the D(2)i :D(1)0 (x) = D(2)0 (x) + xm4 [D(2)1 (x)�D(2)0 (x)�D(2)2 (x)] + xm4 D(2)2 (x)D(1)1 (x) = D(2)3 (x) + xm4 [D(2)4 (x)�D(2)3 (x)�D(2)5 (x)] + xm4 D(2)5 (x) (5.7)D(1)2 (x) = D(2)6 (x) + xm4 [D(2)7 (x)�D(2)6 (x)�D(2)8 (x)] + xm4 D(2)8 (x)The algorithm eventually terminates after t steps. In the �nal step the polynomialsD(t)(x) are degenerated into single coe�cients, i.e. deg(D(t)(x)) = 0. Since every stepexactly halves the number of coe�cients, the algorithm terminates after t = log2m steps.The following two theorems provide expressions for the computational and the timecomplexity of the KOA for polynomials over �elds of characteristic 2 with respect to aparallel hardware implementation.Theorem 9 Two arbitrary polynomials in one variable of degree less or equalm�1, wherem is a power of two, with coe�cients in a �eld F of characteristic 2 can be multiplied bymeans of the Karatsuba-Ofman algorithm with:#
 = mlog2 3; (5.8)#� � 6mlog2 3 � 8m + 2; (5.9)multiplications and additions, respectively, in F .Theorem 10 A parallel realization of the Karatsuba-Ofman algorithm for the multipli-cation of two arbitrary polynomials in one variable of degree less or equal m � 1, wherem is a power of two, with coe�cients in a �eld F of characteristic 2 can be implementedwith a time complexity (or delay) of:T = T
 + 3 (log2m)T�; (5.10)where \T
" and \T�"denote the delay of one multiplier and one adder, respectively, inF .It should be noted that the subtractions in (5.6) are additions if F is of characteristic 2.For the proof of the theorems three stages of the algorithm will be distinguished:

Multipliers over Composite Fields 46Proof.1. In the �rst stage the mere splitting of the polynomials is considered.Since splitting itself takes no computation, only the two summations in5.5 are of interest. Taking into account that the number of polynomialstriples in each iteration step, whereas the length of the polynomials isreduced by half, one obtains:#�1 = log2 mXi=1 3i�12m2i = 2mlog2 3 � 2m: (5.11)Since all additions of one iteration can be performed in parallel in ahardware realization, the delay equals:T1 = T�log2m; (5.12)where \T�" denotes the delay for one adder in F .2. In the second stage the achieved 3log2m = mlog2 3 polynomials (each con-sisting of one coe�cient) are actually multiplied. This requires:#
2 = mlog2 3 (5.13)multiplications. The delay of a parallel implementation is:T2 = T
; (5.14)where \T
" denotes the delay caused by one multiplier in F .3. The third stage merges the polynomials according to Equation (5.6).There are two kinds of additions (or subtractions) involved: Subtractingthree polynomials with 2i� 1 coe�cients and 2i� 2 additions due to theoverlapping2 of three terms:#�3 = log2mXi=1 3log2 m�i[2(2i � 1) + (2i � 2)] = 4mlog2 3 � 6m+ 2: (5.15)The delay equals: T3 = 2 (log2m)T�: (5.16)�The overall complexities in the Theorems 9 and 10 are obtained by summation of thepartial complexities. However, the right hand side of the additive complexity (5.9) isan upper bound rather than an exact expression, because the recursive algorithm bears2Reference [Fat74] is here wrong by claiming that only 2i � 4 coe�cients overlap.

Multipliers over Composite Fields 47redundancies which can be eliminated in a parallel realization. For instance, for the valuem = 4, which is of great importance for the multiplier architectures to be developed, theupper bound in (5.9) can be reduced from 24 to 22 in a parallel implementation such assketched in Figure (5.1).A comparison of the computational complexities (5.8) and (5.9) of the KOA withthe corresponding expressions (5.2) and (5.3) of the straightforward approach shows animprovement for both, multiplication and addition. While the number of multiplicationsimproves for all m � 2, the additive complexity only improves for m � 64.Example. Figure 5.1 shows a block diagram of a parallel realization of theKOA over �elds with characteristic 2 for the case m = 4, i.e. the input polynomialshave degree 3. The three di�erent stages described above can be veri�ed easily fromthe �gure. The adders on the left hand side of the drawing refer to the two iterationsteps of stage one. There are 10 additions required (5.11), the corresponding delayis in accordance to Equation (5.12) equal to 2T�. The second stage corresponds tothe row of 9 multipliers, causing a delay of one T
. The third stage is given by theadders on the right hand side of Figure 5.1. As mentioned above, the number ofadditions could be reduced from 14 in (5.13) to 12 due to redundancies. The criticalpath of length 4T� for the third stage is achieved by Equation (5.16) if m = 4.5.2.3 A Matrix RepresentationWhile the previous section describes the KOA as a recursive algorithm, this section pro-vides a description based on binary matrices. The move from the recursive to a matrixrepresentation can be viewed as a time-space transformation. The motivation for it orig-inated in the need for a suitable description of the KOA for a VLSI synthesis, which willbe described in Chapter 7, of the multiplier to be developed. However, the matrix rep-resentation is also useful for an investigation of the algorithm's properties. For instance,one obtains information regarding the connectivity structure of a parallel realization im-mediately from the binary matrices, whereas this structure is somewhat hidden by therecursive description.The investigation is again restricted to polynomials over �elds of characteristic 2. Thestructure of the matrix representation is the following. The three di�erent stages of theKOA, introduced in section 5.2.2, are considered:1. Stage one takes care of the splitting of the input polynomials. The two inputsA(x); B(x) are represented by two vectors A0;B0, each consisting of m coe�cients.Every step from the recursion is represented by one matrix-vector multiplication.Hence, there are t = log2m such multiplications:step 1 2 : : : log2moperation: M1A0 = A1 ! M2A1 = A2 ! : : : ! MtAt�1 = Atoperation: M1B0 = B1 ! M2B1 = B2 ! : : : ! MtBt�1 = Bt

Multipliers over Composite Fields 48
v v

mv

v m

mm

mm

����

mm
m

mm
mm

m

m

����
����

����
����

����
����

����
����

mm
mm
mm v

v
v

v
v

v

v
v
v

v

@@��

@@��
@@��

��@@
��@@

��@@
@@��
@@��
@@��

m

c'6

a0b0a0a1b0b1a1b1a0a2b0b2
a1a3b1b3a2b2a2a3b2b3a3b3

c'2

c'0c'1

c'3
c'4

c'5
Figure 5.1: Block diagram of a parallel realization of the KOA for polynomials of degree3 over �elds with characteristic 2

Multipliers over Composite Fields 49The lengths of the vectors Ai;Bi increases in every step by the factor 3=2. Since theinitial vectors A0;B0 have m elements, the �nal vectors At;Bt have (3=2)log2 mm =3log2 m elements. The one entries of the matrices Mi are obtained by the followingalgorithm in pseudo Pascal:col0 := 0;row0 := 0;square := m 2^i;FOR cnt := 0 TO 3^(i-1) DO BEGINFOR diag := 0 TO m/2^i DO BEGINM[diag+row0][diag+col0]=1;M[diag+square+row0][diag+col0]=1;M[diag+square+row0][diag+square+col0]=1;M[diag+2*square+row0][diag+square+col0]=1;END;row0 := row0 + 3 m/2^i;col0 := col0 + m/2^(i-1);END;2. Stage two performs element wise multiplication of the vectors At;Bt:D0 = At �Bt3. Stage three builds the polynomial C 0(x) = A(x)B(x) from the product vector D0.Similar to stage one, the log2m steps of the recursion are represented by log2mvector-matrix multiplications.step 1 2 : : : log2moperation: N1D0 = D1 ! N2D1 = D2 ! : : : ! NtDt�1 = Dt = C 0The length of each vector Di is given by 3log2 m�i(2i+1� 1); i = 0; 1; : : : ; log2m. Theone entries of the matrices Ni are obtained by the following algorithm in pseudoPascal:FOR pset := 0 TO 3^log(m)-1 DO BEGINFOR cf := 0 TO 2^i-1 DO BEGINN[pset*(2^(i+1)-1)+cf][pset*(2^i-1)*3+cf]=1;N[pset*(2^(i+1)-1)+2^i+cf][pset*(2^i-1)*3+2*(2^i-1)+cf]=1;N[pset*(2^(i+1)-1)+2^(i-1)+cf][pset*(2^i-1)*3+2^i-1+cf]=1;N[pset*(2^(i+1)-1)+2^(i-1)+cf][pset*(2^i-1)*3+cf]=1;N[pset*(2^(i+1)-1)+2^(i-1)+cf][pset*(2^i-1)*3+2*(2^i-1)+cf]=1;ENDEND

Multipliers over Composite Fields 50In the sequel an instance of the matrix description is provided for polynomials withmaximum degree 3.Example. In the case m = 4, the initial vectors are A0 = (a0; a1; a2; a3) and theB0 counterpart. Stage one and three are described by t = log2 4 = 2 matrix-vectormultiplications. These are uniquely represented by the matrices M1;M2;N1;N2,which can be constructed by means of the two algorithms given above:
M1 = 0BBBBBBB@ 1 0 0 00 1 0 01 0 1 00 1 0 10 0 1 00 0 0 1

1CCCCCCCA ; M2 =
0BBBBBBBBBBBBBB@

1 0 0 0 0 01 1 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 1 1 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 1 10 0 0 0 0 1
1CCCCCCCCCCCCCCA

N1 =
0BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 01 1 1 0 0 0 0 0 00 0 1 0 0 0 0 0 00 0 0 1 0 0 0 0 00 0 0 1 1 1 0 0 00 0 0 0 0 1 0 0 00 0 0 0 0 0 1 0 00 0 0 0 0 0 1 1 10 0 0 0 0 0 0 0 1
1CCCCCCCCCCCCCCA ; N2 = 0BBBBBBBBBB@

1 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 01 0 1 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 1 0 10 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 1
1CCCCCCCCCCA :

5.3 E�cient Polynomial Multiplication in Finite FieldsIn this section the KOA is applied to e�cient multiplication of polynomials A(x); B(x)with maximum degree m� 1 over �elds GF (2n). This is the �rst and, with respect to thecomplexities, major step for performing the entire �eld multiplication (5.1) in GF ((2n)m).The goal is to minimize the number of elementary units, namely XOR- (mod 2 adder) andAND- (mod 2 multiplier) gates.The two operations required for the KOA, addition and multiplication, refer now toarithmetic with the coe�cients ai; bj in GF (2n). The module \GF (2n) adder" simplyconsists of n parallel mod 2 adders. For the module \GF (2n) multiplier" the multiplierfrom Mastrovito [Mas91] described in Section 3.1.1 is used. Assuming condition (3.6) forall generating polynomials Q(y) of the ground �eld, the overall complexity for polynomialmultiplication, measured in mod 2 adders/multipliers, results in:#AND = n2�log2 3 klog2 3 (5.17)#XOR � kn!log2 3 (n2 + 6n� 1)� 8k + 2n ; certain n (5.18)

Multipliers over Composite Fields 51with k = nm.Both formulas (5.17), (5.18) imply that the order of elementary gates increases asymp-totically only proportional to klog2 3 � k1:58 as k increases if n is kept small. However,given a �eld order 2k, the optimum value for the �eld partitioning GF ((2n)m) �= GF (2k)must be determined. Having k �xed, the optimum of Equation (5.17) is simply obtainedif n is chosen as small as possible. The optimum for the XOR complexity is achieved bycomputing the root of the �rst derivative of (5.18) with respect to n. The derivative isa polynomial with irrational exponents without a closed solution. For actual values ofk the solution can be obtained numerically. By using Wolfram's Mathematica [Wol88],the optimum value was found to be n = 8 for all �elds with k > 32. For k � 32 theoptimum n is between 5 (k = 8) and 7 (k = 32). However, this optimization does nottake into account that m has to be a power of two. Hence, for actual �eld size exponentsk a trade o� must be made between a possible parameter n, usually close to the optimumone described above, which results in a reasonably low XOR complexity, and a value forn which keeps the AND complexity low.Row six and seven of Table 5.1 in Section 5.5, headed by AND and XOR show thecomplexities (5.17) and (5.18), respectively, found for combinations of the form:k = nm where k = 4; 6; : : : ; 32 ; m = 2i:To achieve an expression for the time complexity, Equation (5.10) with appropriateexpressions for T� and T
 can be applied. As mentioned before, addition in GF (2n) has adelay of one XOR gate, i.e. T� = Txor. The delay for multiplication, T
, in the ground �eldGF (2n) is upper bounded by (3.11). Hence, the overall delay for parallel multiplicationof polynomials of degree m� 1 over GF (2n) can be upper bounded by:T � Txor(2dlog2 ne + 3 log2m) + Tand: (5.19)5.4 Reduction Modulo the Field PolynomialThis section describes the second step of (5.1), the operation \modP (x)." In order toperform this operation with low complexity, it is assumed that the �eld polynomial can bechosen arbitrarily. From a mathematical point of view this assumption is valid anyway,since there exists only one �eld of order 2nm [McE87]; di�erent representations of �eldsgenerated by di�erent �eld polynomials are always isomorphic. From a technical point ofview, a situation may arise where one architecture operating on a certain polynomial hasto be used in a system in which modules based on another �eld polynomial exist. In thiscase, merely an isomorphic mapping as described in Section 2.2 has to be implemented inorder to �t the di�erent representations.The pure polynomial multiplication of two polynomials A(x)B(x), both of degreem � 1, results in a product polynomial C 0(x) over GF (2n) with deg(C 0(x)) � 2m� 2.In order to perform a multiplication in GF ((2n)m), C 0(x) must be reduced modulo the

Multipliers over Composite Fields 52generator polynomial P (x). The modulo operation will result in a polynomial C(x) withdeg(C(x)) � m� 1 which represents the desired �eld element:C(x) = C 0(x) mod P (x) ; C(x) 2 GF ((2n)m)= c02m�2x2m�2 + � � �+ c00 modP (x)= cm�1xm�1 + � � �+ c0The reduction modulo P (x) can be viewed as a linear mapping of the 2m� 1 coe�cientsof C 0(x) into the m coe�cients of C(x). This mapping can be represented in a matrixnotation as follows:0BBBB@ c0c1...cm�1 1CCCCA = 0BBBB@ 1 0 � � � 0 r0;0 � � � r0;m�20 1 � � � 0 r1;0 � � � r1;m�2...0 0 � � � 1 rm�1;0 � � � rm�1;m�2 1CCCCA
0BBBBBBBBBB@

c00...c0m�1c0m...c02m�2
1CCCCCCCCCCA (5.20)

The matrix on the right hand side of (5.20) consists of a (m;m) identity matrix and a(m;m� 1) matrix R which we may name the reduction matrix. R is solely a functionof the chosen monic generating polynomial P (x) = xm + � � � + p0, i.e. to every P (x) areduction matrix is uniquely assigned. R's recursive dependency on P (x) is the following:rji = (pi ; j = 0; : : : ; m� 1 ; i = 0rj�1;i�1 + rm�1;i�1rj0 ; j = 0; : : : ; m� 1 ; i = 1; : : : ; m� 2 (5.21)where rj�1;i�1 = 0 if j = 0. From Equation (5.21) it follows directly that rji 2 GF (2n)since pi 2 GF (2n). It should be emphasized that (5.20) does not require any generalmultiplication but only additions and multiplications with a constant from GF (2n). Bothfunctions require only mod 2 adders as is shown in Section 4.1. Therefore the spacecomplexity of a realization of (5.20) can be measured by the total number of two inputmod 2 adders. In order to achieve a small complexity for the reduction modP (x), anexhaustive computer based search through all primitive polynomials overGF (2n) of degreem was conducted. The number of primitive polynomials Ip checked is given by [GT74]:Ip = 1m�(2mn � 1);where �(�) denotes the Euler function.The complexity of multiplication with each of the Ip reduction matrices was evaluatedas follows. For every matrix the number of additions and constant multiplications wascomputed. Redundancies within the rows of R, i.e. at least two elements are equal:rij = rik, were taken into account, thus reducing the number of constant multiplications.Each addition has a weight of n mod 2 adders, the weight for constant multiplication wasachieved by the optimization algorithm described in Section 4.1.

Multipliers over Composite Fields 53Example. The polynomial investigated is P (x) = x4+x3+x+! over GF (2n).The corresponding reduction matrix is:R = 0BBB@ ! ! 00 ! !1 1 !1 1 1 1CCCA :The operation (5.20) is for this instance:0BBB@ c0c1c2c3 1CCCA = 0BBB@ c00 + !(c04 + c05)c01 + !(c05 + c06)c02 + c04 + c05 + !c06c03 + c04 + c06 1CCCA ;which can be computed with 9 additions and 3 constant multiplications with !.These operations can be implemented with 9 � 4 + 3 � 1 = 39 XOR gates.The best polynomials Popt found during the search are only suboptimum. Redundan-cies between rows are not found by the algorithm implemented. For instance, reconsid-ering the example from above, the expression (c04 + c05) occurs twice, so that the moduloreduction can be realized with 8 �4+3 �1 = 35 XOR gates. However, the �nding of globallyoptimum expressions seems to be a problem which is di�cult and computational inten-sive. Hence, the determination of globally optimum solutions was not feasible for thisapplication where, due to the nature of the exhaustive search, a rather large number ofpolynomials have to be checked. Moreover, as the results in Section 5.5 show, the moduloreduction was found to be of minor importance in terms of complexity for the multiplier,since it is responsible for less than 10% of the overall gate count for the �elds investigated.The exhaustive search was implemented as follows. The search algorithm consists oftwo main parts: evaluation of the complexity as described above for every polynomialP (x) and, if the complexity is an improvement on the previously found ones, checkingwhether P (x) is actually primitive. The pseudo code below describes the structure ofalgorithm.p = x^m + 1;bestcmpl = maxvalue;FOR i=1 TO 2^(mn)-1 DO BEGINr = GET_REDUCTION_MATRIX(p);cmpl = GET_COMPLEXITY(r);IF (cmpl <= bestcmpl) BEGINIF (PRIME_TEST(p) = 1) BEGINpbest = p;bestcmpl = cmpl;END;END;

Multipliers over Composite Fields 54p = GET_NEXT_POLYNOMIAL(p);END;The function GET NEXT POLYNOMIAL() produces all 2nm � 1 possible monic polynomialsin a counter like way: P1(x) = xm + 1; P2(x) = xm + !; P3(x) = xm + !2; : : :. Thefunctions GET REDUCTION MATRIX() and GET COMPLEXITY() apply Formula (5.21) andthe evaluation procedure from above, respectively. The most sophisticated task, testing ifa passed polynomial is primitive, is performed by PRIME TEST(), the algorithm for whichwas developed in Section 2.2.5.5 Results5.5.1 Space and Time ComplexitiesIn this section the overall space and time complexity of multipliers in the composite�elds GF ((2n)m), where k = nm � 32, are provided. The best results achieved withvalues m = 4; 8 are listed. Although a choice of m = 2 is possible, in the next chapteranother architecture will be introduced which provides a lower complexity and which isalso simpler for this value.The complexities are achieved by summing the partial complexities of the polynomialmultiplication and of the modulo reduction, which were developed in the two previoussections. Table 5.1 gives a detailed insight in the space complexities and architecturesof the parallel multipliers. For each �eld a generating polynomial P (x) and a multiplierwith a minimum complexity is given. A description of the table's contents is given below.All columns are explained from left to right, where the columns are named after theirheading symbols.k; n;m: k denotes the �eld order 2k, where the parameters n and m determine the com-position GF ((2n)m) of the �eld. The binary generating polynomials Q(y) of theground �elds GF (2n) are listed in Table 3.1.P (x): Primitive polynomials over GF (2n) are given which possess minimum complexitywith respect to the operation \modP (x)." The character ! denotes a primitiveelement of the �eld GF (2n), such that Q(!) = 0.#
, #�: The number of multiplications/additions is given for the pure multiplicationof two polynomials of degree m�1 with the KOA. They refer to the formulas (5.17)and (5.18), respectively.AND, XOR: The space complexity for the pure multiplication of two polynomials over the�eld GF (2n) is given in multiples of elementary gates.mod: The space complexity for the operation modP (x) is given.

Multipliers over Composite Fields 55A(x)�B(x) mod A B mod Pk n m P (x) #
 #� AND XOR XOR AND XOR k28 2 4 111!! 9 22 36 71 20 36 91 6412 3 4 1001!6 9 22 81 138 21 81 159 14416 4 4 1110! 9 22 144 223 35 144 258 25620 5 4 100!! 9 22 225 326 34 225 360 40024 6 4 1!62 !61 !3 !2 9 22 324 447 60 324 507 5763 8 11111110!6 27 100 243 516 82 243 598 57628 7 4 100!126 !126 9 22 441 586 46 441 632 78432 4 8 10010010! 27 100 432 805 91 432 896 1024Table 5.1: Composite �elds GF ((2n)m) up to GF (232), their generating polynomials andthe space complexities for parallel multipliersAB mod P : The overall space complexity for a parallel multiplier inGF ((2n)m) is given inbold face letters. It is achieved by summing the complexities for the pure polynomialmultiplication and the modulo reduction.k2: The complexity of many traditional architectures is lower bounded by k2 � 1 XORgates and k2 AND gates. In order to allow comparison with other multipliers, weprovide the values k2.Table 5.2 contains the theoretical delays of the multipliers. The time complexities aregiven as multiples of AND gate delays and XOR gate delays, denoted Tand and Txor ,respectively. The structure is similar to Table 5.1. All columns will be described in thefollowing:k; n;m: k denotes the �eld order 2k, where the parameters n;m determines the composi-tion GF ((2n)m) of the �eld.A(x)�B(x): The delays for the pure polynomial multiplication with the KOA are listed.The entries in these columns are achieved through Equation (5.19), where T� = Txorand the actual delays for T
 were taken from Table 3.1.mod: This column contains the time complexity for the operation modP (x).A B mod P : The delay of the entire multiplier is shown in bold face letters. It is achievedby summing the time complexities for the pure polynomial multiplication and themodulo reduction.However, delays caused by routing or high fan outs which may occur in an actual VLSIimplementation are not considered.In the following an example for a multiplier in the �eld GF (216) is described.

Multipliers over Composite Fields 56A(x)�B(x) mod A B mod Pk n m Tand Txor Txor Tand Txor8 2 4 1 8 3 1 1112 3 4 1 9 2 1 1116 4 4 1 9 3 1 1220 5 4 1 11 3 1 1424 6 4 1 10 4 1 143 8 1 12 3 1 1528 7 4 1 10 3 1 1332 4 8 1 12 3 1 15Table 5.2: Theoretical time complexity of multipliers over composite �elds GF ((2n)m) upto GF (232)Example. The �eld considered is GF ((24)4). The generating polynomial ofthe ground �eld GF (24) is Q(y) = y4 + y + 1. The composite �eld is generated byP (x) = x4+x3+x2+!, whereQ(!) = 0. There are 3 multiplications and 4 additionsrequired for the pure polynomial multiplication. This corresponds to 144 mod 2multipliers and 223 mod 2 adders if the ground �eld multiplier from Table (3.1)with n = 4 is used. The operation modulo P (x) requires 35 mod 2 adders. Hence,the complexity for a parallel multiplier in the composite �eld results in 144 mod 2multipliers and 258 mod 2 adders. The delay of the multiplier is achieved in asimilar way. The Karatsuba algorithm causes a delay of 9 Txor plus one Tand .The circuit for the reduction modP (x) causes another delay of 3 Txor , resultingin an overall delay of 12 Txor and one Tand . Figure 5.2 provides a block diagram ofthe multiplier's architecture. The input variables are a0; : : : ; a3 and b0; : : : ; b3, theoutput variables are c0; : : : ; c3. Each set of variables represents a polynomial, whichis an element in GF ((24)4) in standard representation. Each variable is actuallya four bit wide bus, representing an element in the ground �eld. As intermediatevariables the coe�cients c0i are included, which are the output of the polynomialmultiplication module and the input of the module providing reduction mod P (x).The blocks having an \!" attached are multipliers with the constant element !.As will be described in Chapter 9, the multiplier was actually implemented on anFPGA XC3142 from Xilinx. The multiplier served as a coprocessor for a digitalsignal processor.5.5.2 DiscussionTable 5.1 shows that the introduction of composite �elds GF ((2n)m) �= GF (2k) leads tosigni�cantly improved parallel multipliers with respect to the number of mod 2 addersand multipliers if compared to traditional architectures such as introduced in Section 3.1or [HWB92b] [IT89]. Moreover, the multiplier has also a lower gate count for all �elds

Multipliers over Composite Fields 57

u

u

u
u

k
k

�
��

k
�
��

kk�
��
k uu

�
�� k
k
k

�
��

kk
k
k

k
k

kkk

k

kkk �
��

�
��
�
��

�
��
�
��
�
��
�
��

kk

kk
kk
kk u

u
u

uu
u u

u
uu
u

u @@��
��@@

��@@
@@��

@@��
@@��

��
u

@@

a0

��@@

��@@
@@��
@@��
@@��

c'2

c'0c'1

c'3
c'4
c'5c'6

w

w
w

c3
c2

c0
c1b3a3b3b2

a3a2b2a2
b3b1a3a1
b2b0a2a0
b1a1b1b0
a1a0b0

Figure 5.2: Block Diagram of a parallel multiplier in GF ((24)4)

Multipliers over Composite Fields 58considered than the architecture proposed in [Afa90], which applies the KOA to binarypolynomials and is described in the Subsection 3.2.1.The multiplication of two polynomials, which is the most costly step in standardbased Galois �eld multiplication, can be performed with an asymptotical complexity ofO(klog2 3). The number of mod 2 adders (XOR) is improved for all �elds. The number ofmod 2 multipliers (AND) is improved for most �elds considered. Asymptotically, the purepolynomial multiplication can be performed with klog2 3 XOR and AND gates.The complexity for the reduction modulo P (x) is much smaller than the one for polyno-mial multiplication. For all �elds considered in Table 5.1, the number of gates for moduloreduction takes less than 10% of the overall gate count for the entire �eld multiplication.The best �eld polynomials P (x) found have only a few coe�cients other than zero or one.All of these nontrivial coe�cients possess a relatively low multiplicative complexity. Inaccordance to the observation of the optimization algorithm for constant multiplication,these coe�cients are all among the �rst few or last few coe�cients of the ground �eldGF (2n). The time complexity of the modulo reduction for the �elds considered | givenin Table 5.2 in the column headed by \mod" | possesses the somewhat surprising prop-erty that it is almost independent of the �eld size for the cases m = 4; 8. The greatestdelay found for these values of m is 4 XOR delays, the smallest one 2 XOR delays.From a VLSI design point of view multiplication over composite �elds possesses acouple of natural advantages, namely hierarchy, modularity and | to some extent |regularity [WE92]. These properties become obvious by considering Figure 5.2. It isclear that the multiplier is divided into submodules thus assuring hierarchy. The majoradvantage is the high regularity, since one deals only with three types of identical mod-ules, performing addition, multiplication, and constant multiplication in the ground �eldGF (2n). Third, the architecture is highly modular, because there are only a relativelysmall number of modules with well de�ned functions and interfaces. Another requirementoften associated with regularity, a structure which allows a array implementation, is notnaturally ful�lled by the architecture. However, as the comparative VLSI syntheses inChapter 7 shows, the theoretical low gate count of the architecture can be used in actualgate array implementations.

Chapter 6Multipliers over Fields with CertainCompositionIn this chapter multiplier architectures for the two speci�c types of composite �eldsGF ((2n)2) and GF ((2n)4) are introduced. They di�er from the general architecture overGF ((2n)m) described in the previous chapter, in that they combine the two parts of thestandard base Galois �eld multiplication, polynomial multiplication and reduction mod-ulo P (x). For certain choices of n, in particular n � 7, the approach introduced in thischapter results in lower space and time complexities than with the general architecture.6.1 Multipliers over GF ((2n)2)Parts of this section were presented in [Paa93a] and [Paa93b].6.1.1 Architecture and Complexitygeneralization of the architecture to be proposed in this section for multiple extension �eldswas previously described by Afanasyev in [Afa91]. Section 3.2.2 of this thesis containsa description of Afanasyev's architecture. However, we will provide a complete table ofoptimized primitive polynomials for values n � 16, together with the expected space andtime complexities of multipliers in the �elds GF ((2n)2).The architecture is based on certain primitive polynomials of degree two, whose exis-tence is given by the following theorem:Theorem 11 Given a ground �eld GF (2n), there exists always a primitive polynomial ofthe form P (x) = x2 + x + p0 ; p0 2 GF (2n);which generates the composite �eld GF ((2n)2).59

Multipliers over Certain Composite Fields 60Proof. Considering a primitive root � and its conjugate �2n, both inGF ((2n)2), a primitive polynomial can be constructed by means of its twolinear factors:P (x) = (x+ �)(x+ �2n) = x2 + (� + �2n)x + �2n+1:Thus, the polynomial coe�cients are p1 = � + �2n and p0 = �2n+1. Now p1is the trace of � relative to GF (2n). It must be shown that there exists aprimitive element � such that p1 = � + �2n = 1. This problem is covered bya conjecture of Golomb [Gol84] which was later resolved in the a�rmative byMoreno [Mor89]. �In the sequel we apply the KOA but avoid its full implementation by using a polynomialas introduced above for the reduction modulo P (x).Each �eld element can be represented as a polynomial with degree � 1. Application ofthe KOA to the pure polynomial multiplication of two elements A(x); B(x) 2 GF ((2n)2)results in: C 0(x) = (a1x + a0)(b1x + b0)= a0b0 + x([a1 + a0][b1 + b0] + a0b0 + a1b1) + x2a1b1: (6.1)The result from the reduction C 0(x) mod P (x) is the product �eld element C(x) =A(x)B(x) mod P (x). Since x2 = x + p0, if a �eld polynomial as introduced in Theo-rem 11 is chosen, C(x) is given by:C(x) = C 0(x) mod P (x)= (a0b0 + p0a1b1) + x([a1 + a0][b1 + b0] + a0b0): (6.2)The computational complexity of (6.2) is:#
 = 3;#� = 4;#
p0 = 1;where
p0 denotes constant multiplication by p0. All operations refer to arithmetic inGF (2n). Figure 6.1 shows a schematic of a hardware realization of Equation (6.2).Again, we apply the Mastrovito multiplier to the ground �eld multiplication. Assum-ing a complexity of n2 AND / (n2� 1) XOR gates of the ground �eld multiplier, the spacecomplexity of the multiplier in the composite �eld is:#AND = 34k2; (6.3)#XOR = 34k2 + 2k � 3 + C
p0 ; certain n; (6.4)

Multipliers over Certain Composite Fields 61

mm m����
m���� v

����
��@@����

@@p0����@@
��@@a0b0a0a1b0b1a1b1

c1

c0
Figure 6.1: Block diagram of a parallel multiplier in GF ((2n)2)where C
p0 denotes the complexity (in XOR gates) of constant multiplication with thecoe�cient p0 of the �eld polynomial P (x). It should be noted that the XOR complexityin (6.4) is higher than stated, if the ground �eld multiplier requires more than (n2 � 1)XOR gates.Expressions for the time complexity are achieved by considering the critical path inFigure 6.1. The maximal delay is composed of the delays for one general multiplicationa1b1, one constant multiplication p0(a1b1), and one addition (p0a1b1) + (a0b0). Using theupper bound from Equation (3.8) as the delay of the general multiplication, we obtain:#Tand = 1; (6.5)#Txor = 2dlog2 ne + 1 + T
p0 ; (6.6)where T
p0 denotes the delay caused by the multiplication with p0.6.1.2 ResultsAs the Formulas (6.3) and (6.4) imply, the space complexity for a given �eld GF (2k) (i.e.k is �xed) depends solely on the coe�cient p0. Hence we performed an exhaustive searchfor primitive polynomials of the form P (x) = x2 + x + p0. The polynomials with thelowest complexity for constant multiplication with p0 are considered optimum ones.

Multipliers over Certain Composite Fields 62C
p0 AB mod P AB mod Pk n P (x) XOR AND XOR k2 Tand Txor4 2 11!2 1 12 18 16 1 46 3 11!6 1 27 37 36 1 58 4 11!14 1 48 62 64 1 510 5 11!3 3 75 95 100 1 712 6 11!62 1 108 130 144 1 614 7 11!124 3 147 175 196 1 816 8 11!217 8 192 292 256 1 918 9 11!5 5 243 281 324 1 820 10 11!7 7 300 344 400 1 822 11 11!2036 11 363 415 484 1 1224 12 11!4094 3 432 672 576 1 926 13 11!8188 7 507 665 676 1 1028 14 11!5 12 588 833 784 1 1030 15 11!32766 1 675 733 900 1 732 16 11!16948 16 768 923 1024 1 9Table 6.1: Space and time complexities for multipliers in GF ((2n)2)Table 6.1 provides information regarding the space and time complexity of multipliersin the �elds GF ((2n)2), n = 2; 3; : : : ; 16. The two leftmost columns list the �eld orderexponents n and k, where k = 2n. For the ground �eld, the Mastrovito multiplier withthe actual complexities and �eld polynomials Q(y) as listed in Table 3.1 is assumed. Thecolumn headed by P (x) contains the best primitive polynomials found by the exhaustivesearch. As throughout this thesis, the primitive root of the ground �eld polynomial Q(y)is denoted as !, such that Q(!) = 0. The symbol C
p0 heads the column containing thecomplexities for multiplication with the coe�cient p0. The complexities were optimizedwith the greedy algorithm described in Section 4.1.1. The next two columns contain (inbold face letters) the overall gate count of the proposed multipliers. They refer to theFormulas (6.3) and (6.4), respectively. In order to compare the complexities with thelower bound of traditional architectures, the values k2 are listed in the next two columns.The two rightmost columns contain the time complexities in multiples of AND and XORgate delays.In the sequel an example for a multiplier in the important �eld GF (28) is given.Example. As can be seen in Figure 6.1, a multiplier in the �eld GF (28) iscomposed of 3 multipliers, 4 adders, and 1 multiplier with the constant !14 fromthe ground �eld. All arithmetic is done in the �eld GF (24), thus all connectionsare actually 4 bit wide busses. Multiplication with !14 is described by the product

Multipliers over Certain Composite Fields 63matrix: 0BBB@ 1 1 0 00 0 1 00 0 0 11 0 0 0 1CCCAand can be realized with one XOR gate. Addition in GF (24) requires 4 XOR gates.Since the Mastrovito multiplier in GF (24) can be implemented with 16 AND and15 XOR gates, the space complexity of the multiplier in GF (28) is 3 � 16 = 48 ANDgates and 3 � 15 + 4 � 4 + 1 = 62 XOR gates. The time complexity is achieved bysummation of the delays along the critical path: one adder (1 Txor), one multiplier(1 Tand + 3 Txor), and one constant multiplication (1 Txor). Hence, the overalldelay equals 1 Tand + 5 Txor .6.1.3 EvaluationThe number of AND gates is for all �elds (3=4) k2 and thus 25% lower than the lowercomplexity bound of traditional architectures. The XOR complexity is in all cases higherthan the AND complexity, although the number of XOR gates is for most �elds consideredbelow k2. As a matter of fact, the number of XOR gates is considerably higher than k2only for the values k = 16; 24; 28. This e�ect is due to the rather high gate count of thecorresponding ground �eld multipliers for values n = 8; 12; 14. However, for the valuesk � 14 the multiplier performs best in terms of space complexity compared to the otherarchitectures proposed in this thesis. To the author's knowledge, the gate count for theimportant �eld GF ((24)2) �= GF (28) of 48 AND / 62 XOR gates is the best one reportedin technical literature. For values k � 16 with 4jk, the architecture operating on generalcomposite �elds GF ((2n)m) as proposed in Chapter 5 has lower gate counts. However,for all �elds with k even but 4 6 j k, the composition GF ((2n)2) �= GF (2k) is the onlypossible one under the condition that k = n2i, i integer. Moreover, the routing requiredfor this architecture is less than the one for multipliers with parameters m � 4, such thatin actual VLSI implementations a �eld composition GF ((2n)2) might be of advantage,even for �elds with k � 16.The general advantage of multipliers over composite �elds |modularity and regularity| as described in Section 5.5.2 are valid for this architecture too.

Multipliers over Certain Composite Fields 646.2 Multipliers over GF ((2n)4)Parts of the results of this section were presented in [Paa94].This section introduces parallel multipliers over �elds GF ((2n)4). As the architecturein the previous section, the approach here also combines the KOA with the reductionmodulo the �eld polynomial P (x). However, the multiplier here will reveal more clearlythe principal behind both architectures. This is that a clever choice of P (x) leads inconjunction with the KOA to expressions that take advantage of the fact that the �eldcharacteristic is two, i.e. we obtain expressions of the form a+ a which are zero and havethus not to be computed (and implemented.)6.2.1 Architecture and ComplexityThe elements A(x); B(x) of the composite �elds GF ((2n)4) are represented by polyno-mials with degree � 3. First, we reconsider the KOA applied to the pure polynomialmultiplication A(x)B(x) = C 0(x), as shown in Figure 5.1. We denote the outputs of thenine multipliers with d0; d1; : : : ; d8, with d0 being the top one, as can be seen in Figure 6.2.These newly introduced intermediate variables di 2 GF (2n) are produced by the �rstand the second stage of the KOA. They are obtained from the inputs through:d0 = a0b0d1 = (a0 + a1)(b0 + b1)d2 = a1b1d3 = (a0 + a2)(b0 + b2)d4 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3) (6.7)d5 = (a1 + a3)(b1 + b3)d6 = a2b2d7 = (a2 + a3)(b2 + b3)d8 = a3b3:The third stage of the KOA constructs the product polynomial C 0(x) of degree � 6 fromthe variables di through the following set of equations:c00 = d0c01 = d0 + d1 + d2c02 = d0 + d2 + d3 + d6c03 = d0 + d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8 (6.8)c04 = d2 + d5 + d6 + d8c05 = d6 + d7 + d8c06 = d8:

Multipliers over Certain Composite Fields 65

l

ll

����

����
����

����
����

����
����
����
����

ll
ll
ll
v

v
v
v

@@��

@@��
@@��

��@@
��@@

��@@
@@��
@@��
@@��

l

b3

d0d1d2d3
d4
d5d6d7d8

a0b0a0a1b0b1
a0a2b1a1b0b2
a1a3b1b3a2b2a2a3b2b3a3

Figure 6.2: Block diagram of the �rst two stages of the KOA for polynomials of degree 3

Multipliers over Certain Composite Fields 66In order to perform �nite �eld multiplication, the polynomial C 0(x) has to be reducedmodulo the �eld polynomial: C(x) = C 0(x) mod P (x). In Section 5.4 it was shown thatthe coe�cients ci are linear combinations of the coe�cients c0i. The linear combination isuniquely determined by the �eld polynomial P (x) (Equation (5.21).) Since the coe�cientsc0i are sums of the multiplier outputs di (Equations (6.7) above,) the coe�cients ci arealso linear combinations of the di. Moreover, since the characteristic of the ground �eldGF (2n) is two, the sum of two identical variables is zero:di + di = 0; for i = 0; 1; : : : ; 8: (6.9)The key idea of the architecture is to �nd �eld polynomials which lead to (many)expressions of the form (6.9), thus reducing the number of additions required and improv-ing the delay. It will be shown that the following two types of polynomials possess thisproperty:De�nition 15 Irreducible polynomials over GF (2n) of degree four (which generate the�elds GF ((2n)4)) of the following form:PI(x) = x4 + x3 + p0 and PII(x) = x4 + x3 + x2 + p0are called Type I and Type II polynomials1, respectively.Although we can not provide a general proof of existence for these polynomials, theexistence of Type I polynomials for certain ground �elds GF (2n) is provided by thefollowing lemma.Lemma 1 (Irreducible) Type I polynomials exist for all ground �elds GF (2n) with n odd.Proof. We show that the speci�c polynomial P (x) = x4 + x3 + 1 isirreducible over all �elds GF (2n) where n is odd. P is certainly irreducibleover GF (2) (see e.g. [LN83, Table C].) Corollary 1.3.12 in [Jun93, page 23]states that P remains irreducible over an extension �eld GF (2n) of GF (2)if and only if gcd(n; deg(P)) = gcd(n; 4) = 1. Obviously, this condition isful�lled by all odd n. �Using Type I or Type II polynomials as �eld generators results in the following partialcomplexities of multipliers in GF ((2n)4):1These polynomials should not be confused with type I and type II normal bases introduced by Mullinet al. in [MOVW89]. They are not related whatsoever.

Multipliers over Certain Composite Fields 67Theorem 12 If there exists a polynomial P (x) of Type I or Type II, the third step of theKOA for polynomials of degree three and the reduction modP (x) can be implemented inparallel with the following space and time complexities, respectively:CI(II) = 14(15)� +3C
p0 ; (6.10)TI(II) = 3T� + T
p0 ; (6.11)where C
p0 denotes the complexity of constant multiplication with p0 and the numbers inparenthesis the complexities for Type II polynomials.Proof. The operation modP (x):C(x) = C 0(x) mod P (x) ; C(x) 2 GF ((2n)4)can be viewed as the linear mapping of the seven coe�cients c0i into the fourcoe�cients ci. The actual equations for the mapping with PI and PII polyno-mials are:c0 = d0 + p0(d2 + d5 + d7 + d8) c0 = d0 + p0(d2 + d5 + d7)c1 = d0 + d1 + d2 + p0(d6 + d7) c1 = d0 + d1 + d2 + p0(d6 + d7)c2 = d0 + d2 + d3 + d6 + p0d8 c2 = d0 + d3 + d5 + d6 + d7 + p0d8c3 = d0 + d1 + d3 + d4 + d6 c3 = d0 + d1 + d3 + d4 + d7 + d8(6.12)Certain simpli�cations have applied since all arithmetic is done in GF (2n)with characteristic 2, i.e. di + di = 0. If the terms (d0 + d1), (d3 + d6) and(d0+ d1), (d6+ d7) are precomputed, the two set of Equations (6.12) have thespace and time complexities stated in Theorem 12. �We are now able to state the overall complexities of multipliers based on Type I andType II polynomials. Since the complexities in Theorem 12 refer to the third stage ofthe KOA and the modulo reduction, the overall complexity is obtained by summing thesecomplexities and the complexities for the �rst and second step of the KOA, developedin Section 5.2.2. The KOA complexities are given by Equation (5.11) through (5.14) ifm = 4, or can easily be obtained from Figure 6.2. The summation results in:CI(II) = 24(25)� +9
 +3
p0; (6.13)TI(II) = 5T� + 1T
 + T
p0 : (6.14)Again, to the ground �eld multiplication the architecture of Mastrovito is applied. As-suming a complexity of n2 AND / (n2 � 1) XOR gates for the multiplier, we obtain:#AND = 916k2 (6.15)#XOR = 916k2 + 24(25)k4 � 9 + 3C
p0 ; certain n (6.16)Tand = 1 (6.17)Txor � 5 + 2dlog2 ne+ T
p0 : (6.18)

Multipliers over Certain Composite Fields 68C
p0 AB mod P AB mod Pk n P (x) type XOR AND XOR k2 Tand Txor8 2 1110!2 II 1 36 80 64 1 812 3 1100! I 1 81 147 144 1 916 4 1110! II 1 144 238 256 1 920 5 1100!30 I 1 225 339 400 1 1124 6 1110!58 II 5 324 480 576 1 1128 7 1100! I 1 441 602 784 1 1032 8 1110!13 II 14 576 998 1024 1 12Table 6.2: Space and time complexities for multipliers in GF ((2n)4)6.2.2 ResultsWe determined primitive Type I or II polynomials for the ground �elds GF (2n), n =2; 3; : : : ; 8 through an exhaustive search. Type I polynomials were preferred due to theirsmaller implementational complexity (6.10). The search determined the polynomialswhich have the lowest complexity C
p0 for multiplication with the coe�cient p0.Table 6.2 lists the space and time complexities of parallel multipliers in GF ((2n)4).For the ground �eld multipliers the actual complexities of the Mastrovito architecture,given in Table 3.1, were used. The table is to be interpreted as follows.The column headed by P (x) contains the best primitive Type I and Type II poly-nomials found. The next column denotes the type of the best polynomial found, i. e.either Type I or II. The column headed by C
p0 contains the complexity for multipli-cation with the constant p0. The overall space complexity is given in bold face lettersin the two columns headed by AB mod P . The column k2 allows comparison with thelower complexity bound of traditional architectures. The two rightmost columns provideexpressions for the time complexity in multiples of AND and XOR gate delays.6.2.3 EvaluationThe multiplier introduced here has a gate count of 9=16k2 AND gates and is thus 7=16 =44% better than the lower bound of traditional architectures. The XOR complexity ishigher than the AND complexity, although for most �elds considered still below the k2bound. Only for the �eld GF (28) the number of XOR gates is with 80 considerably higherthan k2 = 64.For the values k = 16; 20; 24; 28 the architecture proposed in this section possessesthe lowest gate count among the architectures proposed in this thesis. If the architectureis compared to the general architecture over composite �elds GF ((2n)m) with m = 4described in Chapter 5, we �nd that the number of XOR gates has improved between 5and 11 %, while the number of AND gates remains the same. However, it seems as though

Multipliers over Certain Composite Fields 69the major advantage of the architecture lies in its low time complexity. Compared tothe general architecture with m = 4, the architecture here reduces the number of XORgate delays by three for the �elds k = 16; 20; 24; 28. This corresponds to an improvementbetween 20 and 25 %. For instance, the multiplier over GF (216) introduced here containsin its critical path only 9 XOR gates, whereas the multiplier from Table 5.1 contains 12XOR gates.However, for the �nite �eld GF (232) the general architecture allows the compositionGF ((24)8) which results in a better gate count. For even larger values of k, i. e. k = 64, thegeneral architecture will further improve because of its better asymptotical complexity.The general architecture has a complexity of order O(klog2 3) for the pure polynomialmultiplication compared to O(k2) for the architecture over GF ((2n)4) introduced in thischapter.In [Afa91], a multiplier over tower �elds together with two examples for the �eldsGF (28) and GF (216) was introduced (see Subsection 3.2.2 for a description.) In bothcases, the XOR complexity is slightly better than ours (2 and 4 gates, respectively,)when the AND complexity is the same. However, due to the �eld decomposition used,GF (((22)2)2) and GF (((24)2)2), respectively, the modularity of the architectures seems tobe somewhat worse.

Chapter 7A Comparitive Gate Array Synthesisof Multipliers
7.1 MotivationIn this chapter a VLSI synthesis of four di�erent parallel Galois �eld multipliers isdescribed1. The architectures were mapped to the library of the gate-array family TC 160Gfrom Toshiba. The result was a netlist for each architecture and �eld order. The synthe-sis was performed in order to clarify the following questions regarding parallel �nite �eldmultipliers with respect to a gate-array implementation:� What is the number of gate equivalences (or netto gates) of multipliers over com-posite �elds compared to those of traditional architectures?� What is the estimated time behavior of architectures over composite �elds relativeto traditional architectures?� Is the theoretical gate count (in XOR/AND gates) a valid measure for the number ofnetto gates?� Which maximum clock frequency can be achieved in a given, e.g. commercial, ap-plication?We also try to contribute to closing the gap which exists between many theoreticalpublications describing di�erent approaches to VLSI suitable Galois �eld multipliers (seee.g. the reference list) on the one hand, and the rather few reports available comparingarchitectures from a technical point of view on the other hand. To the author's knowledgethere are only two papers with a strong comparative character: Hsu et al. compare in1The synthesis was a joint project with the Institut f�ur angewandte Mikroelektronik (IAM), Braun-schweig. The design entry and the running of the design tools was performed by the IAM. Special thanksto Niko Lange. 70

Gate Array Synthesis 71[HTDR88] three di�erent multipliers in dual, normal, and standard base, respectively.The architectures considered are bit serial. Their approach, which is restricted to �eldsGF (28), results in actual implementations in NMOS technology. One of the paper'sconclusions is that the dual base multiplier performs best with respect to area requirement.The second, more recent, paper is by Jeong and Burleson [JB92] and compares variousmultipliers from a high level description point of view. The VLSI synthesis is based onDependency and Signal Flow Graphs [Kun88], focusing on systolic array architectures.Due to the abstract character of the description, the comparison is more general than theone in [HTDR88]. One of their results is that standard and dual base serial multipliershave a similar space complexity, whereas normal base multipliers require more area.In addition to the two articles mentioned above, Geiselmann and Gollmann comparein [GG90] bit serial architectures for exponentiation. The comparison assumes a fullcustom design VLSI chip. The two architectures compared use standard and normalbase representation of the �eld elements, respectively. The major conclusion is thatexponentiation in normal base does not necessarily results in a lower complexity thanstandard base exponentiation. It is recommended that normal base architectures are onlyused in situations where the exponentiation requires relatively few general multiplications.Unlike the articles from above, we will consider bit parallel architectures. Moreover, wewill try to provide absolute and relative values regarding the area and time performanceof di�erent multipliers with respect to an implementation on a gate-array.7.2 Architectures Compared and MethodsFor the comparison of implementations of parallel Galois �eld multipliers on one speci�cgate-array we studied the VLSI synthesis of four di�erent architectures. The �eld orders2k considered range from k = 4 to k = 32, thus being consistent with the architecturestreated in this thesis. Assuming that �elds whose elements can be represented by multiplesof 8 bit are most interesting for applications, we considered, besides k = 4, the �eldsk = 8; 16; 24 and 32. The architectures compared are:1. Standard base multipliers over composite �elds (SB/comp. �elds) as proposed inthis thesis,2. Standard base (SB) multipliers as proposed in [Mas91],3. Dual base (DB) multipliers as described in Section 3.1.2,4. Normal base (NB) multipliers as described in Section 3.1.3.In order to provide comparable conditions, the �eld polynomials of all multipliers werechosen to be primitive. The following polynomials were selected:1. For the multipliers over composite �eld the architectures from Section 6.1 were usedfor the �eld orders k = 4; 8. For the larger �elds the architectures from Section 6.2was chosen.

Gate Array Synthesis 722. For the multipliers [Mas91] the polynomials given in Table 3.1 were used for �eldorders k = 4; 8; 16. For the two large �elds investigated the polynomials Q(y) =y24 + y4 + y3 + y2 + y + 1 and Q(y) = y32 + y7 + y5 + y3 + y2 + y + 1 were used,respectively.3. We used the following primitive polynomials for the normal base multiplier:Q(y) = y4 + y3 + 1Q(y) = y8 + y7 + y5 + y3 + 1Q(y) = y16 + y15 + y13 + y12 + y11 + y10 + y8 + y7 + y5 + y3 + y2 + y + 1Q(y) = y24 + y23 + y22 + y21 + y19 + y17 + y15 + y14 + y13 + y11 + y10 + y8 +y6 + y4 + y3 + y + 1Q(y) = y32 + y31 + y29 + y28 + y27 + y26 + y23 + y22 + y20 + y18 + y16 + y15 +y14 + y13 + y12 + y10 + y8 + y5 + 1The �rst polynomial was chosen as suggested in [Mas91]. The polynomials fork = 8; 16; 32 were taken from [Gei93a] and they are optimal with respect to thetheoretical gate count. The polynomial for k = 24 was provided by W. Geiselmann[Gei93b]. It is the best primitive polynomial with respect to multiplier complexity.However, the multiplier over GF (232) was found to be too large for the VLSI toolsused, so that it could not be synthesized.4. For the dual base multiplier primitive polynomials with the lowest possible coef-�cient weight were chosen. Since primitive trinomials does not exist if 8jk, thepolynomials have (3 + 2i), i integer, coe�cients for k = 8; 16; 24; 32:Q(y) = y4 + y + 1Q(y) = y8 + y4 + y3 + y2 + 1Q(y) = y16 + y5 + y3 + y2 + 1Q(y) = y24 + y4 + y3 + y + 1Q(y) = y32 + y7 + y5 + y3 + y2 + y + 1The target hardware of the comparative synthesis was the TC 160G, which is a mod-ern and often applied family of gate-arrays from Toshiba. The TC 160G's are sea-of-gateschips realized in 0:8�m CMOS technology. All architectures were entered in Verilog-HDL(hardware description language) into the computer. The mappings onto the gate-arraylibrary was performed automatically by the synthesis tool Synopsys, resulting in corre-sponding netlists. This approach is of great practical importance, since the application ofa highly automated design process leads to a shortened development time (faster \time-to-market") and in turn to reduced development costs. However, the automatic technologymapping does not guarantee optimal results.

Gate Array Synthesis 73Each synthesis resulted in an absolute measure for the netto gate consumption whichis the number of gate equivalences (g.e.). The value is an approximate measure of thechip area needed in an actual implementation of the architecture. Second, each synthesisprovided a measure of the time complexity, or delay, of each multiplier. Although the delayis given in absolute units (nanoseconds, ns,) the time behavior of an actual implementationdepends heavily on the surrounding circuitry and the chip size. These parameters in
uencethe interconnection delay. Therefore, the delay values are only a rough estimate of thespeed of the multipliers in hardware implementations. However, all delay times given inthis study are valid relative measures, with which the speed of di�erent multipliers canbe compared. In order to underline the limited relevance of the absolute delay values, allnumbers denoting multiples of nanoseconds and values derived from those, are given inparenthesis in all tables below.All syntheses were performed twice, once with each of the two compiler options \small-est" or \fastest." When the \smallest" option is set, Synopsys tries to realize the archi-tecture with the smallest number of gate equivalences. The \fastest" option leads toarchitecture mappings which possess a minimized critical path. Generally speaking, itwas found that the gate complexity increases only by 10{20% when the \smallest" ar-chitectures were compared to the corresponding \fastest" ones. On the other hand, thedelay was reduced up to 50%, depending on the architecture and the �eld order, whenthe compiler option was switched from \smallest" to \fastest".7.3 Results7.3.1 Comparison of the Gate ConsumptionThis section shows a comparison of the number of gate equivalences, required for themultiplier architectures. In order to achieve architectures with a minimized number ofnetto gates, the compiler option was set to \smallest." Table 7.1 shows the complexityas absolute values in gate equivalences. In addition, these number were normalized withrespect to the best multiplier for each �eld order 2k, thus providing a relative measurefor comparing the di�erent architectures. The two measures are both printed in bold facenumbers. The table also provides the delays as computed by Synopsys. As describedabove, these values are most useful for comparing the di�erent architectures. Since theirusefulness as absolute values is limited, they are given in parenthesis.The table shows that the composite �eld multiplier performs best in terms of gateconsumption for all �elds except for the smallest �eld GF (24). The Mastrovito multiplierrequires between 26 and 42% more gate equivalences than the composite �eld multiplier.The dual base multiplier shows a similar behavior; it requires between 27 and 34% moregate equivalences. The normal base multiplier requires by far the most gates. Relative tothe multiplier over composite �elds, it takes between 160{582% more gate equivalences.With respect to the time performance, the di�erent architecture are not as easy toclassify. For the �elds with k = 8; 16 the composite �eld multiplier is somewhat faster

Gate Array Synthesis 74SB/comp. �elds SB NB DBgates delay gates delay gates delay gates delayabs. rel. abs. abs. rel. abs. abs. rel. abs. abs. rel. abs.k [g.e.] [ns] [g.e.] [ns] [g.e.] [ns] [g.e.] [ns]4 69 1.11 (3.00) 62 1.00 (2.30) 103 1.66 (2.86) 62 1.00 (2.30)8 243 1.00 (3.81) 307 1.26 (4.49) 508 2.09 (4.30) 322 1.33 (5.31)16 885 1.00 (6.26) 1290 1.46 (6.61) 3709 4.19 (14.84) 1120 1.27 (6.88)24 1819 1.00 (10.09) 2576 1.42 (8.09) 10581 5.82 (13.17) 2445 1.34 (6.09)32 3554 1.00 (11.36) 4650 1.31 (10.37) 4536 1.28 (8.73)Table 7.1: Comparison of the netto gate consumption of parallel �nite �eld multipliersover GF (2k) on the gate-array TC 160G (compiler option set to \smallest")SB/comp. �elds SB NB DBdelay gates delay gates delay gates delay gatesabs. rel. abs. abs. rel. abs. abs. rel. abs. abs. rel. abs.k [ns] [g.e.] [ns] [g.e.] [ns] [g.e.] [ns] [g.e.]4 (1.84) 1.18 95 (1.60) 1.03 85 (1.94) 1.24 169 (1.56) 1.00 998 (2.74) 1.00 322 (3.04) 1.11 395 (2.96) 1.08 654 (3.77) 1.38 39216 (4.50) 1.09 1009 (4.31) 1.05 1498 (4.11) 1.00 4929 (4.27) 1.04 127724 (7.13) 1.58 1920 (4.73) 1.05 3125 (5.25) 1.16 14173 (4.52) 1.00 282932 (8.24) 1.52 3976 (6.08) 1.12 5332 (5.43) 1.00 5189Table 7.2: Comparison of the estimated delay of parallel �nite �eld multipliers overGF (2k) on the gate-array TC 160G (compiler option set to \fastest")than the other architectures, for the �eld with k = 4 the SB and the DB architectureperform best, and for k = 24; 32 the DB is clearly the fastest. The NB multiplier has forthe values k = 16; 24 a considerably longer delay than all other architectures.7.3.2 Comparison of the Time BehaviorsThis section compares the delays of the synthesized parallel multipliers. In order to achieveminimal delays, the compiler option was set to \fastest." Table 7.2 provides absolute andrelative measures for the delays. The absolute values, measured in nanoseconds andprinted in bold face numbers, were computed by the synthesis tool Synopsys. Since theabsolute values are not exact measures of the physical delays in actual implementations,but rather estimations, they are given in parenthesis. For each �eld order parameter k,the speed of all multipliers was normalized with respect to the fastest one. These relativevalues are also given in bold face numbers. The third parameter for each architecture and�eld order is the absolute number of gate equivalences.The table shows that certain architectures perform best for certain �eld orders. In

Gate Array Synthesis 75compiler option: \fastest" \smallest"delay o tp delay o tpk [ns] [Mop/s] [Gbit/s] [ns] [Mop/s] [Gbit/s]4 (1.84) (543) (2.17) (3.00) (333) (1.33)8 (2.74) (365) (2.92) (3.81) (262) (2.10)16 (4.50) (222) (3.65) (6.26) (160) (2.56)24 (7.13) (140) (3.37) (10.09) (99) (2.38)32 (8.24) (121) (3.88) (11.36) (88) (2.82)Table 7.3: Estimated speed and data throughput of parallel multiplier modules overcomposite �elds on the gate-array TC 160Gthis respect the behavior is di�erent from the comparison of the gate complexity, wherethe composite �eld architectures possess the lowest gate count for almost all �elds. Thedual base multiplier achieves the smallest delays for k = 4; 24; 32. For k = 16 the normalbase multiplier is the fastest, and for k = 8 the one over composite �elds. However, thearchitecture from Mastrovito is for all �elds only slightly slower than the best ones. For�elds with k = 24; 32 the multiplier over composite �elds is considerably slower than theother architectures.The relative netto gate requirements are similar to the situation where the compileroption was set to \smallest." The SB and DB multipliers show a very similar behavior,while the NB multiplier needs considerably more gate equivalences. The multiplier overcomposite �elds performs again best for all �elds but for k = 4.7.3.3 Estimation of the Theoretical Throughput of Multipliersover Composite FieldsIn this section an estimation of the maximal achievable operational speed and the corre-sponding data throughput for the multiplier architectures over composite �elds is providedin Table 7.3. The maximum operational speed, measured in operations per second [op/s],is also the maximum clock frequency, measured in clocks per second [Hz]. This is due tothe fact that the architectures only contain combinatorial logic but do not possess anyregisters. The approach here is based on the assumption that the clock frequency is thereciprocal of the absolute delays estimated by Synopsys. It should be emphasized that theinvestigation is restricted to the consideration of the theoretical clock frequency of a singlemultiplier module. Issues such as the time behavior of entire systems, e.g. Reed-Solomondecoders, and delays caused by data I/O are not considered.We compared each architecture compiled with both options, \smallest" and \fastest."The time complexity, in nanoseconds, obtained this way are given in the two columnsheaded by \delay." If the delay values are denoted with t, the number of operations per

Gate Array Synthesis 76second o is achieved by: o = 1t [op/s]:The values calculated are given in Mop/s. In the rightmost columns we compare thetheoretical data throughput of the multiplier modules. We de�ne the data throughput asthe number of bits per seconds which can be obtained from the multiplier output whenthe architecture is clocked with its maximal speed. Since a multiplier produces exactly kbits of output per operation, the data throughput tp is:tp = k o = kt [bit/s]:The values achieved are given in the table in Gbit/s.As expected, the maximal clock frequency decreases as the �eld order increases. Forthe architectures compiled with the \fastest" option set, the maximal frequency rangesfrom 543 down to 121 MHz. The corresponding values for architectures compiled withthe \smallest" option range from 333 down to 88 MHz. However the data throughputincreases as k grows. This indicates that the maximal clock frequency, which behavesreciprocal to the length of the critical path, decreases slower than the logarithm of the�eld order: log2(2k) = k.7.4 ConclusionsWe investigated the synthesis of di�erent parallel multiplier architectures with respect tothe gate-array family TC 160G. The comparison included three traditional multipliers andarchitectures over composite �elds. The results from this comparison supports the majorachievement of this thesis, which is the development of parallel Galois �eld multiplierswith a low gate count. In particular it is shown that the theoretically low gate count canbe transformed to the netto gate count of gate-arrays under the given conditions whichare:� the target hardware is the sea-of-gate chip family TC 160G, i.e. semi-custom chips,� the architectures are entered in HDL and the synthesis is performed automaticallyusing the general purpose tool Synopsys.In particular, the use of a general purpose synthesis tool does not take into account mostof the structural properties of the di�erent architectures.It was found that the SB and DB multipliers show a very similar behavior with re-spect to both, time and gate requirements. The NB architecture requires signi�cantlymore gates than all other multipliers. Hence it is doubtful if a parallel NB architectureis well suited for large �eld orders, where k � 16. The results regarding the netto gaterequirements support the conclusions drawn for serial architectures in [JB92], where it

Gate Array Synthesis 77was also found that SB and DB possess a similar performance, while the NB performsworse. However, it should be noted that our comparison did not evaluate the base trans-formation necessary for the DB multiplier. In order to perform the base transformation,computations are required. A pure permutation is not possible, since this requires theexistence of irreducible trinomials (see Section 3.1.2), which do not exist if 8jk [Gol67].Another set of syntheses aimed on fast multipliers. It was found that the architecturesare approximately equally fast for �elds with k = 4; 8; 16, if delay optimized architectureswere synthesized. For larger �elds the composite �eld multiplier was found to be consid-erably slower under the given conditions. However, comparing the \fastest" composite�eld architectures with the corresponding \smallest" traditional architectures shows thatthe �rst one outperforms the traditional multipliers with respect to both, gate and timecomplexity. The only exception is the �eld GF (224), where the \smallest" DB multiplieris somewhat faster than the \fastest" composite �eld multiplier. As a conclusion, it seemsas though the traditional multipliers compiled with the \smallest" option are not the bestchoices under the given conditions.An estimation of the maximal data throughput for the composite �eld multiplier re-sulted in values between 1.33 and 3.88 Gbit/sec. These values correspond to clock fre-quencies from 333 down to 121 MHz. Due to the achievable high data throughput, thearchitectures seem to be attractive for many high speed applications, such as fast specialpurpose Reed-Solomon decoder chips or dedicated arithmetic units for general purposeprocessors.

Chapter 8Parallel Inverters over CompositeFields
8.1 IntroductionThis chapter introduces an architecture for parallel inversion over composite �elds whichis based on an idea of Itoh and Tsujii [IT88, Section 6]. The original algorithm was appliedto composite �elds GF ((2n)m) represented in normal base. However, we will investigatethe algorithm's application to composite �elds in standard base representation. Unlikethe original algorithm, we propose that inversion in the sub�eld is performed by a directmethod rather than by Fermat's Theorem. It will be shown that the signi�cantly lowercomplexity of the algorithm compared to other architectures allows the implementationof parallel inverters. Moreover, we will show that the basic algorithm proposed by Moriiand Kasahara [MK89] is a special case of the algorithm explained hereafter.For the complexity of the algorithm, the following measures will be used.�
n and
nm denote general multiplication in the �elds GF (2n) and GF ((2n)m),respectively.�
cnstn and
cnstnm denote constant multiplication in the �elds GF (2n) and GF ((2n)m),respectively.�
�1n denotes inversion in the �eld GF (2n).� �n denotes addition in the �eld GF (2n).The goal is the determination of the inverse of A 2 GF ((2n)m), A 6= 0. A is given asA(x) = am�1xm�1 + � � �+ a1x+ a0; ai 2 GF (2n):As do many other architectures, we also apply Fermat's Theorem which is in the notationsused here A2nm�1 = 1; 8A 2 GF ((2n)m) n f0g: (8.1)78

Parallel Inverters 79Equation (8.1) is equivalent to AA2nm�2 = 1;from which it follows that A�1 = A2nm�2: (8.2)Equation (8.2) shows that computing the inverse of a �eld element A can be accomplishedby raising it to the power of 2nm�2 = 2+22+23+� � �+2nm�1. A straightforward applicationof the well known \binary method" [Knu81] of repeated squaring and multiplying resultsin a computational complexity of nm � 1 squarings and nm � 2 multiplications. Theseoperations refer to arithmetic in the �eld GF ((2n)m). However, the binary method doesnot produce optimum results. In [IT88, Section 4, Theorem 2] an improved method isproposed, which reduces the number of multiplications toblog2(nm� 1)c +Hw(nm� 1)� 1 � 2blog2(nm� 1)c; (8.3)where Hw(�) denotes the Hamming weight of the operand's binary representation.The outline of the remainder of this chapter is as follows. The next section develops thealgorithm given in [IT88] in our notation. After the algorithm is introduced, expressionsfor the computational complexity with respect to a composite �eld representation instandard base will be derived. In Section 8.4 it will be shown that the algorithm resultsin the architecture [MK89] if we choose m = 2. In the last section, two examples forparallel inversion in the important �elds GF (28) and GF (216) will be given.8.2 Itoh and Tsujii's Algorithm for Inversion in Com-posite FieldsThe basic property of the algorithm explained in this section is that inversion inGF ((2n)m)is reduced to inversion in the sub�eld GF (2n). Itoh and Tsujii's algorithm will be devel-oped with a di�erent notation, starting with the following lemma.Lemma 2 The multiplicative inverse of an element A of the composite �eld GF ((2n)m)can be computed by A�1 = (Ar)�1Ar�1;where Ar 2 GF (2n).Proof. First, the auxiliary parameter1 r is de�ned asr = 2nm � 12n � 1 :1r corresponds to the parameter a in the original paper.

Parallel Inverters 80An important property of r is that [LN83] :Ar 2 GF (2n); 8A 2 GF ((2n)m); (8.4)from which Lemma 2 follows directly. �We are also able to establish a relationship between the inversion formula given aboveand the inversion based on Fermat's Theorem. The exponent 2nm � 2, needed for theinversion according to Equation (8.2), can be expressed in terms of r:2nm � 2 = 2nm � 12n � 1 (2n � 1)� 1 = r(2n � 1)� 1 = r(2n � 2) + r � 1:Inserting the new expressions into Equation (8.2) yieldsA�1 = Ar(2n�2)+r�1 = Ar(2n�2)Ar�1 = (Ar)�1Ar�1;where for the �nal step property (8.4) was used.Lemma 2 implies a new method for computing the multiplicative inverse for a com-posite �eld element. The method will be divided into four steps:Step 1 Compute Ar�1 (Exponentiation in GF ((2n)m).)Step 2 Compute Ar�1A = Ar (Multiplication in GF ((2n)m), where the product is anelement of GF (2n).)Step 3 Compute (Ar)�1 = A�r (Inversion in GF (2n).)Step 4 Compute A�rAr�1 = A�1 (Multiplication of an element from GF (2n) with anelement from GF ((2n)m).)For the remainder of the chapter, a parallel implementation of the correspondingarchitecture will be investigated. Figure 8.1 shows a block diagram of a parallel realizationof the architecture. It is assumed that all blocks work bit parallel.8.3 Analysis of the Complexity of a Parallel Realiza-tionIn this section the complexity of the algorithm's four steps are analyzed. We will use thecomplexity measures which were given in the introduction.

Parallel Inverters 81

Figure 8.1: Block diagram of an inverter over composite �elds8.3.1 Complexity of Step 1Step 1 of the algorithm above is the following operationAr�1; A 2 GF ((2n)m);where r is de�ned in Lemma 2. The operation is clearly an exponentiation in the �eldGF ((2n)m). The special structure of r, together with the fact that A is element of acomposite �eld, will lead to an e�cient method.The parameter r can be expressed as a sum of powers:r � 1 = 2nm � 12n � 1 � 1 = 2n + 22n + 23n + � � �+ 2(m�1)n:This representation is similar to the binary representation of the number 2nm � 2 =2+22+23+ � � �+2nm�1. Hence the optimized method from [IT88] with the computationalcomplexity given in Equation (8.3) can be applied. The method requires blog2(m �1)c + Hw(m � 1) � 1 general multiplications and m � 1 exponentiations to the powerof 2n, with both types of operations performed in GF ((2n)m). E�cient structures forgeneral multiplication are studied in detail in Chapters 5 and 6. In the following theexponentiation will be studied.Let B and C be elements of GF ((2n)m). We wish to perform the exponentiation ofC(x) = B2n , where B(x) = Pm�1i=0 bixi. This can be performed as follows (the proof isbased on [McE87, Lemma 5.12]:)C(x) = m�1Xi=0 cixi = m�1Xi=0 bixi!2n = m�1Xi=0 b2ni xi2n = m�1Xi=0 bixi2n ; bi 2 GF (2n): (8.5)

Parallel Inverters 82In order to achieve general expressions for the complexity, we assume 2n > m� 1. Withthis assumption, there are m � 1 powers of x which must be reduced modulo the �eldpolynomial P (x), namely the powers xi2n , i = 1; 2; : : : ; m � 1. We use the followingnotation for the representation of these powers in the residue classes modulo P (x):xi2n = s0;i + s1;ix+ � � �+ sm�1;ixm�1 mod P (x); i = 1; 2; : : : ; m� 1:Using the coe�cients sj;i, the exponentiations in Equation (8.5) can be expressed in matrixform as 0BBBB@ c0c1...cm�1 1CCCCA = 0BBBB@ 1 s0;1 s0;2 � � � s0;m�10 s1;1 s1;2 � � � s1;m�1...0 sm�1;1 sm�1;2 � � � sm�1;m�1 1CCCCA0BBBB@ b0b1...bm�1 1CCCCA :Since all sj;i are (constant) elements from GF (2n), the complexity of one exponentiationis (m�1)m constant multiplications (
cnstn) and m(m�2)+1 = (m�1)2 additions (�n).The complexity of the �rst step is thereforeC1 = (m� 1)[(m� 1)m
cnstn + (m� 1)2�n] + [blog2(m� 1)c+Hw(m� 1)� 1]
nm= (m� 1)2m
cnstn + (m� 1)3�n + [blog2(m� 1)c+Hw(m� 1)� 1]
nm: (8.6)8.3.2 Complexity of Step 2Step 2 performs the operation Ar = Ar�1A; (8.7)where Ar 2 GF (2n), and the two operands are elements in GF ((2n)m). The operandAr�1 is the result of the computations of Step 1. One possibility for computing (8.7) isto apply a general multiplier over GF ((2n)m), such as suggested in [IT88]. In this case,the complexity of Step 2 is C 02 =
nm:However, it is possible to take advantage of the �a priori knowledge that Ar is anelement of the sub�eld. For small values of m, this leads to a reduced complexity. In thesequel, complexity expressions for this approach will be developed.In order to provide general expressions, we consider the multiplication of B � C =D mod P (x), with B;C 2 GF ((2n)m) and D 2 GF (2n). First, we consider the purepolynomial multiplication of B and C:D0(x) = B(x)C(x) = m�1Xi=0 bixi! m�1Xi=0 cixi!= m�2Xi=0 dixi! : (8.8)

Parallel Inverters 83We know that D0(x) = d0 mod P (x), i.e. that all but the zero coe�cient vanish afterreduction modulo P (x). If the matrix representation from Chapter 5, introduced inEquation (5.20), is used for the modulo reduction, the coe�cient d0 can be expressed asD = d0 = d00 + r0;0c0m + r0;1c0m+1 + � � �+ r0;m�2c02m�2= d00 + 2m�2Xi=0 r0;id0m+i mod P (x): (8.9)The coe�cients r0;i are the entries of the uppermost row of the reduction matrix Rin Equation (5.20). There are m � 1 constant multiplications with the coe�cients r0;iinvolved. Equation (8.9) reveals that the computation of D only requires the coe�cientsd0i, i = m;m + 1; : : : ; 2m � 2 and d00. Application of the straightforward method forpolynomial multiplication to the computation of these coe�cient results in an overallcomplexity for Step 2 of:C 002 � m(m� 1) + 22
n + m(m� 1)2 �n + (m� 1)
cnstn : (8.10)For small values of m, the complexity (8.10) is lower than the complexity of a generalmultiplier over GF ((2n)m). Let's consider m = 4 as an example. In this case, a generalmultiplier based on the KOA, such as described in Chapter 5, requires 9
n and 22 �n (ifthe modulo reduction is neglected.) According to Equation (8.10), the improved methodrequires only 7
n and 6 �n (if the constant multiplications are neglected.)For a given polynomial P (x), further improvements are possible. These improvementsstem from the speci�c structure of the associated reduction matrix together with the �apriori knowledge that all di except d0 will be zero. We will explain the approach with anexample.Example. We consider a composite �eld GF ((2n)4), generated by a Type IIpolynomial as introduced in De�nition 15. The reduction modulo P (x) = x4+x3+x2 + p0 after the polynomial multiplication can be expressed as0BBB@ d0d1d2d3 1CCCA = 0BBB@ 1 0 0 0 p0 p0 00 1 0 0 0 p0 p00 0 1 0 1 1 p00 0 0 1 1 0 1 1CCCA0BBBB@ d00d01...d06 1CCCCA ;where d1 = d2 = d3 = 0. The product D could be computed through D = d0 =d00 + p0(d04 + d05), which would take 6
n, 5�n, and 1
cnstn . This is already animprovement of the complexity of Equation (8.10). However, using the relationsd2 = d02 + d04 + d05 + p0d06 = 0;d04 + d05 = d02 + p0d06;d0 = d00 + p0(d04 + d05) = d00 + p0d02 + p20d06; (8.11)it becomes possible to compute D = d00 with 5
n, 4�n, and 2
cnstn .

Parallel Inverters 848.3.3 Complexity of Step 3The operation of Step 3 is (Ar)�1;which is inversion in the sub�eld GF (2n) because of Lemma 2. Since our goal is thedevelopment of a parallel architecture, inversion in the ground �eld must also be performedbit parallel. For inversion in small sub�elds the direct method based on matrix inversion,which is described in Subsection 3.3.1, is suited. In particular, for values n � 6 directinversion has a lower gate count than a parallel implementation of the architectures basedon Fermat's Theorem, such as proposed in [IT88]. Formulas for direct inversion in the�eld GF (2n), with n � 7 are listed in Appendix A. It should be noted that the formulaslisted are not optimized. For instance, the inversion formulas for GF (24) require 23 XORand 22 AND gates if implemented in a straightforward manner. On the other hand, in[Mas91, Section 9.2] optimized formulas for this case are given, which have an estimatedgate count of 25, involving XOR, AND, and binary inverters.The complexity of Step 3 is in our notation:C3 =
�1n :8.3.4 Complexity of Step 4Step 4 requires the operation A�r � Ar�1 = A�1;where A�r 2 GF (2n)and Ar�1 2 GF ((2n)m). In order to determine the complexity of thisstep, we denote B = b0 2 GF (2n)and C(x) = Pm�1i=0 cixi 2 GF ((2n)m). The operationB � C = D mod P (X) is:D = B � C = b0 m�1Xi=0 cixi = m�1Xi=0 b0cixi: (8.12)= m�1Xi=0 dixi:Equation (8.12) has a complexity of m multiplications in the ground �eld. There is noreduction modulo P (x) required. Hence the complexity of Step 4 equals:C4 = m
n:8.3.5 Overall ComplexityThe overall complexity is achieved by summation of the four partial complexities:C = C1 + C 02 + C3 + C4= [blog2(m� 1)c+Hw(m� 1)]
nm+
�1n +m
n + (m� 1)3�n + (m� 1)2m
cnstn ; (8.13)

Parallel Inverters 85where the non-optimized complexity of Step 2 was assumed.In terms of complexity, the most important steps are the �rst and the third ones.The major gain of the new method is that the exponent of A is reduced from 2nm � 2 tor�1 = (2nm�1)=(2n�1)�1 in Step 1. In Subsection 8.3.1 it was shown that the numberof operations in GF ((2n)m), required for Step 1, is of order O(log2m), whereas it wasstated in Equation (8.2) that raising A to the power of 2nm � 2 is of order O(log2(nm)).The \price" which must be paid for the gain is Steps 2, 3 and 4, of which Step 3 is the mostcritical one. However, as can be seen in Appendix A, the direct inversion GF (2n) requiredby Step 3 can be implemented with a relatively small number of gates if n is kept small.Generally speaking, we must �nd a trade o� between the two parameters n and m of thecomposite �eld GF ((2n)m). The �rst one determines the complexity of the inversion in thesub�eld, while the latter one determines the number of multiplications in the composite�eld GF ((2n)m). Section 8.5 will give two examples for the decomposition of the �eldsGF (28) and GF (216), which leads to parallel inverters with moderate complexity.8.4 A Relationship with Morii and Kasahara's In-verterThis section establishes a relationship between Itoh and Tsujii's algorithm for inversion inGF ((2n)m) in standard base, and the core algorithm of Morii and Kasahara's architecturefor inversion over tower �elds. The �rst one is described in the previous section, the latterone in Subsection 3.3.3. It will be shown that the core algorithm of the architecture isthe same as Itoh and Tsujii's method for the case m = 2.Morii and Kasahara's architecture is based on consecutive �eld extensions of degree 2.However, the core algorithm is based on one �eld extension. In order to establish therelation, the composite �elds considered are GF ((2n)2). The �eld polynomial is P (x) =x2 + x + p0. An arbitrary �eld element is represented by A(x) = a1x + a0, its inverse Bby B := A�1 = b1x+ b0. Let's recall the core algorithm of the inverter proposed by Moriiand Kasahara, given in Equation (3.44):b0 = a0+a1a0(a0+a1)+p0a21b1 = a1a0(a0+a1)+p0a21 9=; :It was stated that there are 1 inversion, 3 general multiplications, 2 additions, 1 constantmultiplication with p0 and 1 squaring required to compute the inverse from the equationsabove.In the sequel, we investigate the algorithm from Section 8.2 for the case m = 2 withthe �eld polynomial P (x). The parameter r is now r = (22n�1)=(2n�1) = 2n+1. Step 1of the algorithm is:Ar�1 = (a1x+ a0)r�1 = a1xr�1 + a0 = [a1s1;1]x + [a1s0;1 + a0]: (8.14)

Parallel Inverters 86The computation in Step 2 is:Ar = Ar�1A = [a0a1s1;1 + a21s0;1 + a0a1 + a21s1;1]x + [a0a1s0;1 + a20 + a21s1;1p0]: (8.15)However, Ar is an element of the sub�eld and therefore its coe�cient at x is zero. Usingthis, a relation between the coe�cients can be established:0 = a0a1s1;1 + a21s0;1 + a0a1 + a21s1;1, 0 = a0s1;1 + a1s0;1 + a0 + a1s1;1, a1s0;1 + a0 = (a0 + a1)s1;1 (8.16)Inserting the auxiliary relation (8.16) into the Equations (8.14) and (8.15) results in newexpressions for Step 1 and Step 2, respectivelyAr�1 = s1;1(a1x+ [a1 + a0]);andAr = s1;1[a0(a1 + a0) + a21p0]: (8.17)Step 3 is the inversion of Ar:(Ar)�1 = s�11;1 [a0(a1 + a0) + a21p0]�1:The result in Step 4 is computed as B = Ar�1(Ar)�1:B(x) = b1x+ b0= Ar�1(Ar)�1 = a1x + (a1 + a0)a0(a1 + a0) + a21p0 : (8.18)Equation (8.18) is exactly the same as the resulting Equations (3.44) of the corealgorithm of Morii and Kasahara. If only one �eld extension is used for the tower inverter,its architecture is the same as the architecture of Itoh and Tsujii's inverter in standardbase in the �eld GF ((2n)2). Moreover, the architecture described in the previous sectioncan be viewed as a generalization of Morii and Kasahara's core algorithm. However, itis not true that it is a generalization of Morii and Kasahara's architecture, since this isbased on tower �elds, i.e. multiple �eld extensions of degree two.8.5 Two ExamplesIn this section the space complexity of parallel inverters in the technically important �eldsGF (28) and GF (216) will be investigated. The measure which will be used is the numberof modulo 2 adders (XOR) and multipliers (AND). It will be shown that the same �elddecomposition which was used for the multiplier architectures in the previous chapterscan be applied. Hence these multipliers can be used as modules within the inverterarchitecture.

Parallel Inverters 878.5.1 A Parallel Inverter over GF (28)For inversion in the �eldGF (28) we choose a decomposition intoGF ((24)2). The primitive�eld polynomial for the ground �eld is Q(y) = y4 + y + 1, and the extension �eld isgenerated by P (x) = x2 + x + !14. The choice of Q(y) allows the application of theMastrovito multiplier for the ground �eld, which has a complexity of 15 XOR/16 ANDgates. The coe�cient p0 = !14 of P (x) has a complexity of 1 XOR gate for constantmultiplication, as can be seen from the �rst table in Appendix B.As Section 8.4 showed, the optimized equations of the tower inverter can be used forthis composite �eld. The inverse, B, of an element A = a1x + a0 can be computed fromEquation (8.18): B(x) = b1x+ b0= Ar�1(Ar)�1 = a1x + (a1 + a0)a0(a1 + a0) + a21p0 :In this case, all arithmetic operations are performed in the ground �eld GF (24). Theoperations required are 1 inversion, 3 general multiplications, 2 additions, 1 constantmultiplication with p0 and 1 squaring. Next, the gate count of the arithmetic operationsin a parallel hardware implementation will be determined.� For computing the inverse in GF (24), the direct method described in Section 3.3.1 isdeveloped. Appendix A lists formulas for direct inversion. For the ground �eld con-sidered here, a straightforward realization of the formulas would require 23 XOR/22AND gates. This is certainly an upper bound, because redundancies in the formulashave not been used to improve the gate count.� For the three general multiplications, the Mastrovito multiplier from Subsection 3.1.1is used. This results in a gate count of 3(15XOR+ 16AND) = 45XOR+ 48AND.� The two additions in GF (24) require 2 � 4 = 8 XOR gates.� Constant multiplication with p0 = !14 requires 1 XOR gate.� Squaring of an element c = P3i=0 ciyi in GF (24) involves the following operation:c2 = c3y6 + c2y4 + c1y2 + c0 = c3y3 + (c3 + c1)y2 + c2y + (c2 + c0);where y6 = y3 + y2 mod Q(y) and y4 = y + 1 mod Q(y). The complexity of theoperation is 2 XOR.The overall complexity for parallel inversion in GF ((24)2) is obtained by summation ofthe partial complexities. By denoting the complexity with C24 we get:C24 < (23 + 45 + 8 + 1 + 2)XOR+ (22 + 48)AND = 79XOR+ 70AND

Parallel Inverters 88This complexity is remarkably low. It is interesting to compare this complexity withstandard base multiplication. The Mastrovito multiplier, which is one of the best standardbase architectures, has a gate count of 84 XOR/64 AND (see Table 3.1.) We conclude thatinversion in GF (28) can be performed with almost the same gate count as multiplication,if composite �elds are introduced.8.5.2 A Parallel Inverter over GF (216)For inversion in the �eld GF (216) we choose a decomposition into GF ((24)4). A decom-position into GF ((28)2) is not advisable, because this would require direct inversion inGF (28) which is already very costly if direct inversion is applied.The primitive �eld polynomials chosen are Q(y) = y4+y+1 and P (x) = x4+x3+x2+p0. Again we can apply the Mastrovito architecture to the ground �eld multiplication.For multiplication in GF ((24)4), the architecture developed in Chapter 6 will be used.Table 6.2 shows that the complexity of the multiplier is 144 XOR and 238 AND gates.We apply the inversion algorithm described in Section 8.2. The parameter for thedecomposition is m = 4. In the sequel, the gate counts of the four steps of the algorithmare evaluated.� According to Equation (8.6), there are 36 constant multiplications, 9 additions and3 general multiplications required for Step 1. The general multiplications refer toarithmetic in the composite �eld GF ((24)4), the two �rst types of operation toarithmetic in the ground �eld GF (24). In order to �nd a measure for the constantmultiplication, we use the optimized average complexity given in Table 4.1. For thisground �eld, it is 3.3 XOR gates per constant multiplication. Using this estimation,we obtain a complexity for Step 1 of 36�3:6+9�4+3�144 = 658 XOR and 3�238 = 714AND.� For Step 2, the optimized complexity developed in the example in Subsection 8.3.2is valid. It is 5 multiplications, 4 additions and 2 constant multiplications. Allarithmetic is performed in the ground �eld. Hence the complexity equals 5 � 15+ 4 �4 + 2 � 3:3 = 98 XOR and 5 � 16 = 80 AND.� As in the previous example, an upper estimate for one inversion in the ground �eld,required for Step 3, is 23 XOR and 22 AND.� The four ground �eld multiplications required by Step 4 have a complexity of 4�15 =60 XOR and 4 � 16 = 64 AND.The overall gate count is obtained by summation of the partial complexities. By denotingthe complexity with C216 we get:C216 < 839XOR+ 880AND:

Parallel Inverters 89As expected, the complexity has increased dramatically if compared to the inverterover GF (28). However, the complexity is still in the range of the complexities of themultipliers which were synthesized in Chapter 7. As matter of fact, the multiplier overGF ((28)4), which was synthesized, has a theoretical gate count 576 XOR and 998 AND.This complexity is comparable to the gate count of the inverter. Since the synthesisresulted in an actual gate consumption of 3554 gate equivalences, we can expect that theinverter will have a similar area complexity. This rough estimation implies that parallelimplementations of inverters over GF (216) are still possible.

Chapter 9An Application: A DSP BasedReed-Solomon Decoder withExternal Arithmetic UnitParts of this chapter were presented in [PH94].9.1 MotivationIn this chapter the implementation of a Reed-Solomon decoder) (RS decoder) on a digitalsignal processor (DSP) is discussed. The DSP has an external, �eld programmable gatearray (FPGA) attached, containing the parallel �nite �eld multiplier over GF ((24)4) whichwas developed in Chapter 5. We will show that the external FPGA enables the processorto perform Galois �eld multiplication more than one magnitude faster than in software.The major goals which were pursued by the implementation can be described as fol-lows:� Development and veri�cation of a new concept for systems involving �nite �eldoperations, consisting of a general purpose processor and a dedicated external �nite�eld arithmetic unit.� Veri�cation of the architectures for parallel multiplication over composite �elds de-veloped in this thesis.� Development of an RS code operating with symbols longer than 8 bits and shortblock length.� Implementation of a reasonably fast (� 1 Mbps) RS decoder which is reprogrammableand whose code parameters are thus alterable.
90

A DSP Based Reed-Solomon Decoder 919.2 IntroductionReed-Solomon codes are error control codes, belonging to the important class of cycliccodes [LC83] [Bla83]. They are a special case of BCH (Bose-Chaudhury-Hocquenghem)codes. RS codes are, in addition to cryptography and signal processing, one of the mostimportant technical areas where �nite �elds are applied. Over the last twenty years theyhave gained widespread application, ranging from space communication [LL84] [WHPH87][PRM90] to error correction on compact discs [Pee85] [SI91]. RS codes perform arithmeticin Galois �elds of the form GF (2k), where each �eld element is represented by k binarybits. The vast majority of applications so far has operated over �elds with k � 8 [SI91][Mes91]; RS codes over GF (28) were actually standardized as part of a concatenatedcoding scheme of the ESA (European Space Agency) and NASA [Kum83]. On the otherhand, today's digital systems tend to possess binary word lengths that are longer than 8bits. Typical are 16 or 32 bits, while an extension to 64 or more bits is expected in thenear future. RS codes which operate over Galois �elds with �eld order exponents k equalto 16 or 32 are therefore certainly attractive for many applications.Another advantage of an increased symbol length matching the bus width of today'sprocessors is, that faster software implementations of RS decoders and RS encoders be-come possible. Although the use of a multi purpose processor as a decoder limits thepossible data throughput to one or two magnitudes of a VLSI solution [PD90] [Mes91],a DSP inhibits several advantages. In addition to the shortened development time andcosts, programmable decoders o�er much more
exibility if changes in the coding schemebecome necessary. An impressive example of the drawbacks of �xed coding schemes isgiven by the Galileo spacecraft's
ight to the planet Jupiter, and the problems caused byits non-unfolding antenna [CDD+93].9.3 Implementational Aspects9.3.1 Code Speci�cation and Decoding AlgorithmThe parameters of the implemented code are as follows:� RS-code characteristics:n = 10 : number of symbols per RS codewordk = 8 : number of information symbols per RS codewordt = 1 : number of symbol errors that can be corrected per RS codewordcode rate : 0.8� The generator polynomial of the the RS-code is:g(X) = (X � �0)(X � �1) = (X � 1)(X � �); (9.1)with � being a primitive element of GF ((24)4). The pair of consecutive roots f1, �gof this generator polynomial were taken as suggested in [Ber82]. They indeed proved

A DSP Based Reed-Solomon Decoder 92to be optimal with respect to the encoder complexity (gate count) after an exhaus-tive search through all possible pairs of roots.� Arithmetic is performed in the composite �eld GF ((24)4), with Q(y) = y4 + y + 1and P (x) = x4+x3+x2+! being the �eld polynomials of the ground and extension�eld, respectively.Standard RS-codes over a �eld GF (q) have a code word length n that is equal ton = q � 1 [Bla83], [LC83]. Using a �eld GF (216) would result in a code word length of(216�1)�16bit = 131 kByte. This kind of block size is extremely di�cult to handle withrespect to the required memory and introduced delay. Therefore the approach taken hereuses a shortened RS-code.In the case of a shortened RS-code only n < q � 1 symbols of the code word are usedto carry information; the others are considered to be zero symbols. If a systematic codeis used, the decoder has the �a priori information about which of the information symbolsare in fact the zero symbols. These symbols carry no information and can therefore beneglected in decoding algorithms.Shortened RS-codes are, just like standard RS-codes, Maximum Distance Separable(MDS) Codes, because they meet the Singleton bound with equality: dmin = n � k + 1[Bla83]. With a symbol error probability equal to ps and using the weight distributionof MDS-codes [ML85], the undetected error probability for a (n,k) (shortened) RS-codesover GF (q) is upperbounded by :PU(E) = nXi=0 ni ! (q � 1)1�i i�dXj=0(�1)j i� 1j ! qi�d�jpis(1� ps)n�i;In order to keep the introduced decoding delay low, we constructed a code with arelatively short block length of 10 symbols and dmin = n � k + 1 = 3. To avoid thetime consuming solving of the key equations by means of Euclid's or Massey/Berlekamp'salgorithm, a design parameter of t = 1 was chosen. Using a code with t = 1 results ina pair of syndromes (9.2) and (9.3), which allow the determination of error location anderror magnitude by a direct method.Code words are multiples of the generator polynomial (9.1). At the decoder we receivewords r(X), which can be considered code words c(X) with possible error words e(X)added to them: r(X) = c(X) + eiX i; 0 � i � 9:Evaluation of this received word at the roots of the generator polynomial g(X), givesthe syndromes: Y := r(1) = c(1) + ei1i = ei = S1= r9 + r8 + � � �+ r1 + r0 = P9i=0 ri (9.2)and Y X := r(�) = c(�) + ei�i = ei�i = S2= (� � � (r9� + r8)� � � �+ r1)�+ r0; (9.3)

A DSP Based Reed-Solomon Decoder 93with Y := ei (, ei 2 GF (216)) being the error value and X := �i indicating an error atposition i [Bla83].With the calculation of S1, which takes 9 additions (i.e. bitwise XOR,) the value Yof the error is known. Furthermore, when this value is zero, we assume that no errorhas occurred. For the calculation of S2 in (9.3), which is actually the evaluation of apolynomial with known powers xj and variable coe�cients rj, Horner's rule [Knu81] iswell suited. In this particular case it has a complexity of 9 additions and 9 multiplications.In the second decoding step the error position X can be found by systematicallytrying which one of the possible values of X satis�es S2 = Y X, with S2 and Y given.The complexity of this method is in the worst case, i.e. an error at position i = 7, eightmultiplications. When none of the possible X satisfy the equation, an uncorrectable error(i.e. more than two symbol errors) is detected. Using this kind of systematic search weavoid the inversion of Y, (i.e. X = S2 � Y �1) which would take 15 multiplications and 16squaring operations if the standard binary method for exponentiation is applied [Knu81].9.3.2 The Hardware ConceptAs mentioned in the introduction, the decoder was implemented on a DSP TMS320 C25from Texas Instruments which has internally and externally a 16 bit wide bus. TheTMS320 C25 is an enhanced version of the TMS320 20 with an instruction cycle of 100nswhen running at full speed (40 MHz.) In the �eld GF (216), addition is simply performedby a bitwise XOR of the two operands which takes only one instruction cycle. In orderto overcome the bottleneck imposed by slow �nite �eld multiplication in software, anexternal multiplier was attached. A block diagram of the decoder is shown in Figure 9.1.From the available methods for �nite �eld multiplication { table look-up, calculationin software, serial hardware multiplication and parallel hardware multiplication { onlythe last one is suited for this application. The frequently applied table look-up [TM90],[YACD89] would easily exceed the memory available on chip for the �eld size used. Ex-ternal memory would not only be penalized by a higher access time, but will not even besu�cient if the proposed system design is generalized for processors with longer word size.For instance, if TI's third of forth generation DSPs with 32 bit are applied. In general,the memory size required for a table look up in GF (2k) is of O(2k), where k is also theprocessor's word size.We used the multiplier architecture proposed in Chapter 5 which has a gate count of144 AND / 258 XOR and which could easily be implemented on a XC3142 FPGA fromXilinx. The multiplier chip is located on a printed circuit board which can be accessedby the DSP via its regular I/O ports through fast interface logic. However, the accesstime of the DSP I/O ports by assembler instructions is rather long (both read and writeneed 2 machine cycles, i.e. 200ns), such that the overall time for performing an entiremultiplication adds up to 700ns when using indexed addressing, or even 1000ns whenmultiplying two numbers that were not previously in registers.

A DSP Based Reed-Solomon Decoder 94

Figure 9.1: Block diagram of the DSP based RS decoder with external �nite �eld multiplier

A DSP Based Reed-Solomon Decoder 95Hardware SoftwareC-library MAPLEpure TMS320C25 IBM 80486DX2 TMS320C25 IBMFPGA + FPGA RS6000/580 66 MHz (estimated) RS6000/58080ns 700 ns 4.8 �s 6.1 �s 12 �s 2.6 msTable 9.1: Speed comparison of various methods for general multiplication in the �nite�eld GF (216)9.4 Results and ComparisonTable 9.1 shows a comparison of hardware/software solutions for general multiplicationin GF (216). For reasons stated above, we assume that table look-up is not feasible andtherefore all methods given in the table calculate the result of the multiplication. Thesoftware methods are based on a self written C-library with an especially optimized mul-tiplication routine and the multi purpose program MAPLE for algebraic computation.For a generalization of the results for larger �elds it should be noted that the speed of thelibrary function increases at least proportionally with the logarithm of the �eld order 2k.For instance, multiplication in GF (232) would at least double the multiplication time.The maximum data rate of the decoder is limited by the time required for the decodingalgorithm plus some overhead for the interrupt handling. For the system implemented, aCD based signal was used which results in a clock speed of 10=8�1:41Mbps = 1:76Mbps.This correspondents to 91 �s for the receiving of an entire block of 160 bits. The DSPneeds 68 �s for input, output, and decoding in a worst case situation, which is 75 % of theavailable 91 �s. Therefore the data rate can be increased theoretically up to 1.9 Mbps.The DSP I/O and decoding process cause a delay of two blocks or 320 bits, which is equalto approximately 0.2 milliseconds.Table 9.2 shows a comparison of our system with the two DSP-based RS-decodersproposed in [TM90] and [YACD89]. These decoders apply table look-up for multiplicationin the �elds GF (28) and GF (24), respectively. The coding schemes implemented arestandard, i.e. non-shortened, RS-codes. We are aware of the fact that it is di�cult toprovide a fair comparison due to progress in processor technology and due to di�erentcode parameters used. However, the signi�cantly increased data rate of our approachcompared to those in [TM90], [YACD89] seems to prove the success of the new systemdesign, using dedicated external arithmetic units that allow arithmetic in �elds whichmatch the processor's bus structure.A complete version of the system, including an FPGA encoder and a simulated channelwhich corrupts digital data from a compact disc player at a speed of 1.76 Mbps, wasexhibited in the research section of the CeBIT computer fair, held in March 1994 inHannover, Germany.

A DSP Based Reed-Solomon Decoder 96System DSP Coding Scheme Code Maximum Delay Decodingrate data rate algorithmProposed Texas Inst. (10,8) over 0.80 1.9 Mbps 0.2 ms DirectTMS320C25 GF (216) solution[TM90] NEC (255,223) over 0.87 275 kbps 14.5 ms Euclid1990 �PD77220 GF (28)[YACD89] Texas Inst. (15,k) over 0.67 - 16 - 4.4 - Massey-1989 TMS32010 GF (24) 0.93 80 kbps 0.9 ms BerlekampTable 9.2: Comparison of DSP based RS decoders9.5 OutlookOur approach looks promising for an extension of the error correction capability to t > 1.For this, in addition to the multiplier, a fast external �nite �eld divider/inverter such asproposed in Chapter 3.3 should be attached to the DSP. This would make more generaland more powerful DSP based decoders possible. The inverter would allow a fast solutionof the key equations either through Euclid's algorithm, Massey-Berlekamp's algorithm oran extended version of the direct methods such as the algorithms proposed in [DZ85]. Afurther improvement can be made if the access time of the external hardware is accelerated.We used the standard I/O ports of the DSP, but a sophisticated DMA-based access schememay result in faster multiplication/inversion.

Chapter 10Discussion
10.1 Summary and ConclusionsThis thesis describes various bit parallel VLSI architectures for computation in Galois�elds of characteristic two. The arithmetic functions considered are: multiplication witha constant, general multiplication and inversion. The architectures make extensive useof a decomposition of �elds GF (2k) into a sub�eld GF (2n), together with an extensionof degree m, where nm = k. These �elds are referred to as \composite �elds." Thearchitectures are based on algorithms which lead to small theoretical gate counts.The architectures use a polynomial representation of composite �elds elements. Thismeans, the elements are represented by polynomials with a maximum degree of m � 1and coe�cients of GF (2n). Thus, computation in GF ((2n)m) is performed by applyingarithmetic modules from GF (2n). This setup possesses several natural advantages forVLSI implementations:� The architectures are modular, with modules performing GF (2n) arithmetic withwell de�ned functions and interfaces.� Since multiplication is considerably more \costly" than addition in GF (2n) in termsof gate count and delay, e�cient algorithms known from integer arithmetic can beapplied to arithmetic in GF ((2n)m). This may result in an improved gate count.� Since the complexity of inversion in �nite �elds GF (2k) increases dramatically withthe �eld order, algorithms over composite �eld which reduce inversion in GF ((2n)m)to inversion in GF (2n) are potentially very e�cient.There are two e�cient algorithms described which can be used as tools for the prac-tical application of composite �eld architectures. The �rst algorithm describes a linearmapping between a binary (traditional) �eld representation and a composite �eld repre-sentation, such that the architectures introduced here can be used together with otherarchitectures. The second algorithm performs a test in order to determine whether a97

Discussion 98polynomial over GF (2n) is primitive. Polynomials which pass the test can be used forconstructing composite �elds. The latter algorithm seems to be especially useful, sincetables of these polynomials are very rare in literature. The tables available usually containirreducible polynomials over GF (2) or polynomials over other prime �elds; one of the fewexceptions is reference [GT74].After the introduction of a locally optimum algorithm for gate optimization of constantmultipliers, di�erent architectures for multiplication of two arbitrary elements in compos-ite �elds are developed. A general architecture can be applied to �elds GF ((2n)m), wherem is a power of two. The architecture is based on the Karatsuba-Ofman algorithm, whoseapplication to the multiplication of polynomials over �elds GF (2n) is studied in detail.It is shown that the computational complexity of this operation is of order O((nm)log2 3),and the theoretical delay of order O(log2(nm)). Applying an exhaustive search results inprimitive polynomials which perform modulo reduction in �elds up to GF (232) with lowcomplexity. For two types of composite �elds, those with the �xed compositionsGF ((2n)2)and GF ((2n)4), improved architectures are provided. For all �eld orders, architectureswere found that are below the 2k2�1 lower complexity bound of traditional architectures.Moreover, the complexities are also below the complexities of an architecture that appliesthe Karatsuba-Ofman algorithm to elements in a binary �eld representation [Afa90]. Themultiplier over GF (28), introduced in Section 6.1, has the lowest gate count reported intechnical literature. For larger �elds, the architectures perform slightly worse than thoseover tower �elds, but possess the advantage of a higher modularity.A VLSI synthesis compares three traditional multipliers, which uses standard, dual,and normal base representation, respectively, with composite �eld multipliers. The syn-thesis performs an automatic mapping of the architectures to a sea-of-gates chip. Themajor result is that the theoretically improved gate count of the composite �eld multi-plier can be transformed to actual gate array implementations under the given conditions.We conclude that the proposed multiplier architectures are of great interest for technicalapplications.An algorithm of Itoh and Tsujii for inversion in composite �elds is applied to elementsin standard base representation. The algorithm reduces inversion in GF ((2n)m) to in-version in the ground �eld GF (2n). The algorithms is divided into four steps, each ofwhich are investigated with respect to space complexity. It is proposed that inversion inGF (2n) is performed by a direct method. Two examples show that parallel inversion withelements in standard base is possible with a surprisingly low gate count.A new concept for systems involving �nite �eld arithmetic is proposed. The concept isbased on a general purpose processor together with dedicated hardware for computationin �nite �elds. As an application for the parallel architectures over relatively large �eldsdeveloped in this thesis, a fast Reed-Solomon (RS) decoder with 16 bit symbols wasimplemented on a digital signal processor. The processor has an external �nite �eldmultiplier over GF (216) attached. It is shown that a shortened (10,8) RS code allows adecoding speed of up to 1.9 MHz/sec.

Discussion 9910.2 Recommendations for Further ResearchIt has been demonstrated in this thesis that it is advantageous to apply composite �eldsto bit parallel VLSI architectures. During the research, several questions regarding thearchitectures presented arose which are as yet unanswered. Moreover, some extensions ofthe results can be suggested.1. Chapter 5 develops a general architecture for multiplication overGF ((2n)m). Whereasit was possible to provide general expression for the complexity of the multiplicationof two polynomials over GF (2n), �eld polynomials P (x) which perform the opera-tion modP (x) with low complexity were determined through an exhaustive search.It would be interesting to provide general expression for modulo reduction with lowcomplexity as well. A possible approach would be to investigate the existence of�eld polynomials over GF (2n) with low coe�cient weight.2. In Chapter 6, only the existence of Type I polynomials over GF (2n), n odd, couldbe proved. We could not �nd a similar proof of existence for Type II polynomialsover GF (2n), n even. Since the �elds GF ((2n)4), n even, are especially interestingfor technical applications, it would be helpful to provide such a proof.3. It seems interesting that Type I polynomials do not exist over �elds GF (2n) whenn = 2; 4; 6; 8. These observations suggest a further study of the question \Do Type Ipolynomials exist only over �elds GF (2n) with n odd"? An answer to this questionwould extend Lemma 1 on page 66. A more generalized question is: \Do primitivetrinomials of degree four exist over �elds GF (2n) with n even?" In order to answerthis question it might be helpful to study [Gol67], where the non-existence of binarytrinomials of degree 8i, i integer, is stated.4. Both types of architectures in Chapter 6, over �elds GF ((2n)2) and GF ((2n)4),improve the general architecture of Chapter 5 over GF ((2n)m) by combining thethird stage of the Karatsuba-Ofman Algorithm and the modulo reduction. Anextension of this approach to composite �elds with m = 8; 16; : : : seems promising.5. Up to which �eld order the parallel multiplier developed in Chapter 5 can realis-tically be implemented in VLSI should be investigated. For instance, is parallelmultiplication in �elds of order � 2500 possible?6. A locally optimum algorithm for optimized constant multiplication over GF (2n) wasintroduced in Chapter 4. In order to obtain solutions which are globally better, itmight be worth while to apply the principle of simulated annealing [AK89] to thealgorithm.7. In [Mas91, Chapter 6] hybrid multipliers were introduced. These multipliers arearchitectures based on composite �elds which perform the ground �eld multiplica-tion in parallel, but perform the extension �eld algorithm in a serial manner. In

Discussion 100particular, hybrid architectures seem to be attractive for arithmetic in Galois �eldsof very higher order, such as needed for some applications in cryptography. Withthe material provided in this thesis, the construction of hybrid multipliers over largeGalois �elds should be possible: The algorithm of Section 2.3 can be used for thedetermination of suitable �eld polynomials; the results of the gate array synthesisdescribed in Chapter 7 can be used for an estimation of the time performance.8. As stated in Section 9.5, a programmable RS decoder should be implemented which,in addition to a �nite �eld multiplier, has also a parallel hardware inverter attached.What is the achievable speed of the hybrid software/hardware decoder?

Appendix ADirect Inversion in GF (2n)The following formulas describe direct inversion in the �elds GF (2n), n = 3; 4; 5; 6; 7. Thenotation of the variables refers toB = (bn�1; : : : ; b1; b0) = A�1 = (an�1; : : : ; a1; a0)�1;where A;B 2 GF (2n). The formulas are not optimized, i.e. they contain redundancies.For an implementation, a gate optimization is recommended. The �eld polynomials aregiven in Table 3.1.1. Equations for inversion in GF (23):b0 = a0 + a1 + a2 + a1a2b1 = a0a1 + a2b2 = a1 + a2 + a0a22. Equations for inversion in GF (24):b0 = a0 + a1 + a2 + a0a2 + a1a2 + a0a1a2 + a3 + a1a2a3b1 = a0a1 + a0a2 + a1a2 + a3 + a1a3 + a0a1a3b2 = a0a1 + a2 + a0a2 + a3 + a0a3 + a0a2a3b3 = a1 + a2 + a3 + a0a3 + a1a3 + a2a3 + a1a2a33. Equations for inversion in GF (25):b0 = a0 + a1 + a2 + a1a2 + a3 + a1a3 + a0a2a3 + a1a2a3 + a4 + a0a1a4 + a2a4 +a1a2a4 + a3a4 + a1a3a4 + a2a3a4 + a1a2a3a4b1 = a0a1 + a0a2 + a1a2 + a0a1a2 + a0a1a3 + a2a3 + a0a1a2a3 + a4 + a1a4 + a0a1a4+a1a2a4 + a0a3a4b2 = a0a1 + a1a2 + a3 + a0a3 + a0a1a3 + a4 + a0a4 + a1a4 + a0a1a4 + a2a4 + a0a2a4+a1a2a4 + a0a1a2a4 + a0a3a4 + a1a3a4 + a2a3a4101

Direct Inversion in GF (2n) 102b3 = a0a1 + a2 + a3 + a0a3 + a1a3 + a0a1a3 + a0a2a3 + a1a2a3 + a4 + a0a4 + a1a4+a0a2a4 + a3a4 + a0a3a4 + a1a3a4 + a0a1a3a4b4 = a1 + a2 + a0a2 + a0a1a2 + a3 + a0a3 + a2a3 + a0a2a3 + a4 + a0a4 + a2a4+a0a2a4 + a1a3a4 + a2a3a4 + a0a2a3a44. Equations for inversion in GF (26):b0 = a0 + a1 + a2 + a0a2 + a1a2 + a0a1a2 + a3 + a0a3 + a0a2a3 + a4 + a1a4+a0a1a4 + a0a2a4 + a1a2a4 + a0a1a2a4 + a3a4 + a1a3a4 + a0a1a3a4 +a2a3a4 + a0a2a3a4 + a1a2a3a4 + a0a1a2a3a4 + a5 + a1a5 + a0a1a5 + a0a2a5 +a1a2a5 + a3a5 + a1a3a5 + a2a3a5 + a0a4a5 + a1a4a5 + a2a4a5 + a3a4a5 +a0a3a4a5 + a1a3a4a5 + a2a3a4a5 + a1a2a3a4a5b1 = a0a1 + a0a2 + a1a2 + a0a1a2 + a0a1a3 + a2a3 + a1a2a3 + a0a1a2a3 + a0a4+a1a4 + a2a4 + a0a1a2a4 + a3a4 + a0a3a4 + a0a1a3a4 + a5 + a2a5 + a0a2a5+a3a5 + a0a3a5 + a0a1a3a5 + a2a3a5 + a0a2a3a5 + a1a2a3a5 + a0a1a2a3a5+a1a4a5 + a3a4a5 + a0a3a4a5 + a1a3a4a5 + a2a3a4a5b2 = a0a1 + a1a2 + a0a1a2 + a0a3 + a1a3 + a2a3 + a4 + a1a4 + a2a4 + a1a2a4+a0a1a2a4 + a0a3a4 + a2a3a4 + a0a2a3a4 + a1a2a3a4 + a5 + a0a5 + a1a5+a0a1a5 + a2a5 + a0a2a5 + a0a1a2a5 + a1a3a5 + a0a1a3a5 + a0a2a3a5+a1a4a5 + a0a2a4a5 + a1a2a4a5 + a0a1a2a4a5 + a3a4a5b3 = a0a1 + a0a2 + a1a2 + a3 + a0a3 + a1a3 + a0a1a3 + a1a2a3 + a0a1a2a3 + a4+a0a4 + a1a4 + a0a2a4 + a0a3a4 + a0a1a3a4 + a2a3a4 + a5 + a0a5 + a0a1a5+a3a5 + a0a1a3a5 + a2a3a5 + a4a5 + a0a4a5 + a0a1a4a5 + a0a2a4a5+a1a2a4a5 + a3a4a5 + a1a3a4a5 + a0a1a3a4a5b4 = a0a1 + a2 + a0a2 + a0a1a2 + a3 + a0a3 + a1a2a3 + a4 + a2a4 + a1a2a4 + a3a4+a0a1a3a4 + a2a3a4 + a0a2a3a4 + a5 + a0a5 + a2a5 + a0a2a5 + a0a1a2a5+a1a3a5 + a0a2a3a5 + a0a4a5 + a2a4a5 + a0a2a4a5 + a0a3a4a5 + a0a2a3a4a5b5 = a1 + a2 + a0a1a2 + a3 + a1a3 + a0a1a3 + a2a3 + a1a2a3 + a4 + a1a4 + a0a2a4+a1a3a4 + a5 + a0a5 + a0a1a5 + a2a5 + a1a2a5 + a1a3a5 + a2a3a5 + a0a2a3a5+a1a2a3a5 + a4a5 + a0a1a4a5 + a2a4a5 + a1a2a4a5 + a3a4a5 + a1a3a4a5+a2a3a4a5 + a1a2a3a4a55. Equations for inversion in GF (27):b0 = a0 + a1 + a2 + a1a2 + a3 + a1a3 + a0a1a2a3 + a4 + a1a4 + a2a4 + a1a2a4+a3a4 + a0a3a4 + a2a3a4 + a0a2a3a4 + a1a2a3a4 + a5 + a0a5 + a0a1a5+a2a5 + a0a2a5 + a1a2a5 + a0a1a2a5 + a0a3a5 + a1a3a5 + a0a1a3a5

Direct Inversion in GF (2n) 103+a2a3a5 + a0a1a4a5 + a0a2a4a5 + a1a2a4a5 + a0a2a3a4a5 + a1a2a3a4a5+a6 + a0a1a6 + a2a6 + a3a6 + a0a3a6 + a2a3a6 + a0a2a4a6 + a1a2a4a6+a3a4a6 + a1a3a4a6 + a0a1a3a4a6 + a1a2a3a4a6 + a5a6 + a0a5a6+a0a1a5a6 + a1a2a5a6 + a0a1a2a5a6 + a3a5a6 + a0a3a5a6 + a2a3a5a6+a1a2a3a5a6 + a4a5a6 + a1a4a5a6 + a1a2a4a5a6 + a3a4a5a6 + a1a3a4a5a6+a2a3a4a5a6 + a1a2a3a4a5a6b1 = a0a1 + a0a2 + a1a2 + a0a3 + a0a1a3 + a2a3 + a1a2a3 + a0a1a4 + a2a4+a0a2a4 + a3a4 + a0a3a4 + a0a1a3a4 + a2a3a4 + a0a2a3a4 + a1a2a3a4+a0a1a2a3a4 + a0a5 + a1a5 + a0a1a5 + a0a2a5 + a0a1a2a5 + a0a3a5+a1a3a5 + a0a2a3a5 + a0a1a2a3a5 + a4a5 + a2a4a5 + a0a2a4a5+a0a1a2a4a5 + a3a4a5 + a0a3a4a5 + a0a1a3a4a5 + a2a3a4a5+a0a1a2a3a4a5 + a6 + a1a6 + a0a1a6 + a1a2a6 + a0a1a2a6 + a0a3a6+a1a3a6 + a0a4a6 + a1a4a6 + a0a1a4a6 + a2a4a6 + a1a2a4a6 + a0a3a4a6+a1a3a4a6 + a0a1a3a4a6 + a1a2a3a4a6 + a0a1a5a6 + a2a5a6 + a1a2a5a6+a0a1a2a5a6 + a3a5a6 + a0a3a5a6 + a2a3a5a6 + a0a2a3a5a6 + a4a5a6+a0a4a5a6 + a1a4a5a6 + a0a1a4a5a6 + a2a4a5a6b2 = a0a1 + a1a2 + a0a1a2 + a1a3 + a2a3 + a1a2a3 + a0a1a2a3 + a0a4 + a0a2a4+a3a4 + a1a3a4 + a2a3a4 + a1a2a3a4 + a5 + a0a5 + a0a1a5 + a0a2a5 + a0a3a5+a1a3a5 + a0a1a3a5 + a0a2a3a5 + a0a1a2a3a5 + a1a4a5 + a0a1a4a5 + a2a4a5+a1a2a4a5 + a3a4a5 + a0a3a4a5 + a1a3a4a5 + a6 + a0a6 + a0a2a6 + a1a2a6+a3a6 + a0a3a6 + a1a3a6 + a0a2a3a6 + a1a2a3a6 + a0a1a2a3a6 + a4a6+a0a4a6 + a0a1a4a6 + a0a1a2a4a6 + a0a1a3a4a6 + a0a2a3a4a6 + a1a2a3a4a6+a0a1a2a3a4a6 + a0a5a6 + a0a1a5a6 + a3a5a6 + a0a3a5a6 + a1a3a5a6+a2a3a5a6 + a0a2a3a5a6 + a1a2a3a5a6 + a4a5a6 + a0a4a5a6 + a0a1a4a5a6+a2a4a5a6 + a1a2a4a5a6 + a3a4a5a6 + a0a3a4a5a6b3 = a0a1 + a0a2 + a1a2 + a0a1a2 + a2a3 + a0a2a3 + a1a2a3 + a0a1a2a3 + a4+a0a2a4 + a0a3a4 + a1a3a4 + a0a1a3a4 + a2a3a4 + a0a2a3a4 + a5 + a0a1a5+a2a5 + a0a2a5 + a0a1a2a5 + a3a5 + a0a1a2a3a5 + a2a4a5 + a0a2a4a5+a1a2a4a5 + a0a1a2a4a5 + a3a4a5 + a1a3a4a5 + a0a1a3a4a5 + a2a3a4a5+a6 + a0a6 + a0a1a6 + a2a6 + a0a1a2a6 + a3a6 + a1a3a6 + a2a3a6+a1a2a3a6 + a0a4a6 + a1a4a6 + a2a4a6 + a0a2a4a6 + a0a1a2a4a6+a0a3a4a6 + a1a3a4a6 + a5a6 + a1a2a5a6 + a0a1a2a5a6 + a0a3a5a6+a1a3a5a6 + a0a1a3a5a6 + a2a3a5a6 + a0a2a3a5a6 + a1a2a3a5a6+a0a1a2a3a5a6 + a0a4a5a6 + a0a3a4a5a6 + a1a3a4a5a6 + a2a3a4a5a6b4 = a0a1 + a1a2 + a0a1a2 + a3 + a0a2a3 + a1a2a3 + a4 + a1a4 + a2a4 + a1a3a4

Direct Inversion in GF (2n) 104+a0a1a3a4 + a2a3a4 + a0a2a3a4 + a1a2a3a4 + a5 + a1a5 + a2a5 + a0a2a5+a1a2a5 + a0a1a2a5 + a0a3a5 + a1a3a5 + a0a2a3a5 + a4a5 + a0a1a4a5+a0a2a4a5 + a1a2a4a5 + a0a1a2a4a5 + a0a2a3a4a5 + a1a2a3a4a5+a6 + a0a6 + a1a6 + a0a1a6 + a1a2a6 + a0a1a2a6 + a1a3a6 + a2a3a6+a0a2a3a6 + a1a2a3a6 + a4a6 + a0a4a6 + a0a1a4a6 + a1a2a4a6+a0a1a2a4a6 + a1a3a4a6 + a0a1a3a4a6 + a0a2a3a4a6 + a0a5a6+a1a5a6 + a0a1a5a6 + a2a5a6 + a1a2a5a6 + a0a1a3a5a6 + a0a1a4a5a6+a2a4a5a6 + a0a2a4a5a6 + a1a2a4a5a6 + a0a1a2a4a5a6 + a3a4a5a6b5 = a0a1 + a2 + a0a1a2 + a3 + a0a3 + a1a3 + a0a2a3 + a1a2a3 + a0a1a2a3+a4 + a0a4 + a1a4 + a0a1a4 + a0a2a4 + a3a4 + a0a1a3a4 + a0a1a2a3a4+a5 + a0a5 + a0a1a5 + a0a2a5 + a1a2a5 + a0a1a2a5 + a3a5 + a0a1a3a5+a0a2a3a5 + a0a4a5 + a1a4a5 + a0a1a4a5 + a1a3a4a5 + a0a1a3a4a5+a2a3a4a5 + a6 + a0a6 + a0a1a6 + a3a6 + a0a2a3a6 + a4a6 + a1a4a6+a0a1a4a6 + a1a2a4a6 + a3a4a6 + a0a3a4a6 + a1a3a4a6 + a0a1a3a4a6+a5a6 + a0a5a6 + a0a1a5a6 + a2a5a6 + a0a3a5a6 + a0a1a3a5a6+a0a2a3a5a6 + a1a2a3a5a6 + a4a5a6 + a0a4a5a6 + a1a4a5a6 + a2a4a5a6+a0a2a4a5a6 + a3a4a5a6 + a0a3a4a5a6 + a1a3a4a5a6 + a0a1a3a4a5a6b6 = a1 + a2 + a0a2 + a0a1a2 + a3 + a0a3 + a2a3 + a4 + a0a1a4 + a2a4 + a0a3a4+a0a2a3a4 + a1a2a3a4 + a5 + a2a5 + a3a5 + a0a3a5 + a0a1a3a5 + a2a3a5+a0a2a3a5 + a4a5 + a1a4a5 + a0a1a2a4a5 + a3a4a5 + a0a3a4a5+a1a3a4a5 + a2a3a4a5 + a0a2a3a4a5 + a6 + a0a6 + a1a6 + a0a1a6+a1a2a6 + a0a1a2a6 + a3a6 + a0a3a6 + a1a3a6 + a2a3a6 + a0a2a3a6+a1a2a3a6 + a0a1a2a3a6 + a0a4a6 + a1a4a6 + a0a1a4a6 + a2a4a6+a0a2a4a6 + a1a2a4a6 + a3a4a6 + a0a3a4a6 + a0a2a3a4a6 + a0a5a6+a1a2a5a6 + a0a3a5a6 + a1a3a5a6 + a2a3a5a6 + a0a2a3a5a6 + a0a4a5a6+a0a2a4a5a6 + a1a3a4a5a6 + a2a3a4a5a6 + a0a2a3a4a5a6

Appendix BComplexities of Constant MultipliersThis appendix contains complete tables of the complexities for constant multiplicationwith elements from GF (2n), n = 4; 5; 6; 7; 8. The complexities are measured in XORgates. The complexities were optimized with the second greedy algorithm described inChapter 4. Due to the nature of the algorithm, the complexities are suboptimum. Theaverage complexity for each �eld is given in Table 4.1 in the text.!i XOR !i XOR !i XOR !i XOR !i XOR!1 1 !4 4 !7 4 !10 6 !13 2!2 2 !5 5 !8 4 !11 5 !14 1!3 3 !6 4 !9 5 !12 3Table B.1: Space complexities for multiplication with elements of GF (24) generated byQ(y) = y4 + y + 1, where Q(!) = 0!i XOR !i XOR !i XOR !i XOR !i XOR !i XOR!1 1 !6 6 !11 7 !16 5 !21 8 !26 5!2 2 !7 7 !12 8 !17 5 !22 8 !27 4!3 3 !8 7 !13 7 !18 6 !23 8 !28 3!4 4 !9 7 !14 7 !19 7 !24 7 !29 2!5 5 !10 7 !15 5 !20 7 !25 6 !30 1Table B.2: Space complexities for multiplication with elements of GF (25) generated byQ(y) = y5 + y2 + 1, where Q(!) = 0
105

Complexities of Constant Multipliers 106

!i XOR !i XOR !i XOR !i XOR !i XOR !i XOR!1 1 !12 8 !23 9 !33 7 !43 9 !53 9!2 2 !13 9 !24 8 !34 8 !44 9 !54 10!3 3 !14 9 !25 9 !35 9 !45 10 !55 10!4 4 !15 10 !26 10 !36 10 !46 11 !56 10!5 5 !16 11 !27 10 !37 12 !47 11 !57 9!6 6 !17 12 !28 8 !38 11 !48 9 !58 5!7 7 !18 12 !29 8 !39 10 !49 8 !59 4!8 7 !19 10 !30 7 !40 11 !50 8 !60 3!9 7 !20 10 !31 6 !41 10 !51 8 !61 2!10 7 !21 10 !32 6 !42 10 !52 8 !62 1!11 7 !22 9Table B.3: Space complexities for multiplication with elements of GF (26) generated byQ(y) = y6 + y + 1, where Q(!) = 0

Complexities of Constant Multipliers 107

!i XOR !i XOR !i XOR !i XOR !i XOR !i XOR!1 1 !22 13 !43 14 !64 7 !85 13 !106 13!2 2 !23 12 !44 15 !65 8 !86 12 !107 12!3 3 !24 12 !45 16 !66 9 !87 12 !108 12!4 4 !25 11 !46 15 !67 10 !88 13 !109 12!5 5 !26 10 !47 14 !68 11 !89 13 !110 11!6 6 !27 10 !48 13 !69 13 !90 12 !111 10!7 7 !28 11 !49 12 !70 14 !91 11 !112 9!8 8 !29 12 !50 12 !71 14 !92 12 !113 9!9 8 !30 13 !51 11 !72 13 !93 13 !114 10!10 8 !31 14 !52 11 !73 12 !94 14 !115 11!11 8 !32 14 !53 10 !74 12 !95 15 !116 12!12 8 !33 14 !54 10 !75 13 !96 15 !117 12!13 8 !34 14 !55 11 !76 14 !97 14 !118 12!14 9 !35 15 !56 12 !77 13 !98 14 !119 12!15 10 !36 15 !57 11 !78 13 !99 14 !120 11!16 10 !37 14 !58 11 !79 15 !100 13 !121 6!17 11 !38 13 !59 10 !80 16 !101 13 !122 5!18 12 !39 14 !60 10 !81 15 !102 12 !123 4!19 13 !40 13 !61 9 !82 14 !103 11 !124 3!20 14 !41 13 !62 8 !83 13 !104 11 !125 2!21 14 !42 13 !63 7 !84 13 !105 12 !126 1Table B.4: Space complexities for multiplication with elements of GF (27) generated byQ(y) = y7 + y + 1, where Q(!) = 0

Complexities of Constant Multipliers 108!i XOR !i XOR !i XOR !i XOR !i XOR !i XOR!1 3 !44 15 !87 16 !129 17 !171 17 !213 19!2 5 !45 13 !88 18 !130 16 !172 16 !214 17!3 8 !46 12 !89 15 !131 14 !173 16 !215 16!4 10 !47 11 !90 16 !132 14 !174 16 !216 16!5 12 !48 10 !91 15 !133 14 !175 16 !217 13!6 14 !49 10 !92 15 !134 13 !176 16 !218 11!7 15 !50 10 !93 15 !135 14 !177 16 !219 10!8 16 !51 11 !94 15 !136 13 !178 16 !220 10!9 15 !52 12 !95 14 !137 12 !179 15 !221 11!10 15 !53 14 !96 13 !138 12 !180 14 !222 13!11 15 !54 15 !97 12 !139 14 !181 15 !223 11!12 15 !55 16 !98 12 !140 14 !182 16 !224 12!13 15 !56 17 !99 12 !141 14 !183 16 !225 13!14 14 !57 17 !100 12 !142 14 !184 17 !226 15!15 15 !58 17 !101 13 !143 13 !185 17 !227 15!16 16 !59 17 !102 14 !144 14 !186 17 !228 17!17 18 !60 16 !103 15 !145 14 !187 16 !229 15!18 17 !61 17 !104 17 !146 14 !188 14 !230 13!19 16 !62 17 !105 17 !147 14 !189 14 !231 13!20 15 !63 16 !106 18 !148 15 !190 13 !232 13!21 14 !64 16 !107 16 !149 16 !191 13 !233 14!22 12 !65 16 !108 16 !150 16 !192 14 !234 12!23 10 !66 16 !109 16 !151 17 !193 14 !235 13!24 9 !67 16 !110 17 !152 16 !194 13 !236 14!25 10 !68 15 !111 17 !153 15 !195 13 !237 16!26 11 !69 15 !112 16 !154 15 !196 13 !238 15!27 12 !70 15 !113 17 !155 15 !197 14 !239 17!28 12 !71 15 !114 17 !156 15 !198 14 !240 17!29 12 !72 16 !115 17 !157 15 !199 16 !241 17!30 12 !73 15 !116 16 !158 14 !200 15 !242 18!31 11 !74 16 !117 14 !159 15 !201 14 !243 17!32 11 !75 18 !118 14 !160 16 !202 12 !244 16!33 11 !76 18 !119 14 !161 17 !203 11 !245 17!34 11 !77 19 !120 14 !162 17 !204 11 !246 17!35 11 !78 19 !121 14 !163 17 !205 10 !247 17!36 11 !79 17 !122 14 !164 16 !206 10 !248 16!37 12 !80 18 !123 14 !165 17 !207 10 !249 14!38 14 !81 19 !124 15 !166 18 !208 12 !250 12!39 16 !82 17 !125 17 !167 19 !209 13 !251 10!40 16 !83 16 !126 17 !168 18 !210 15 !252 8!41 18 !84 15 !127 17 !169 17 !211 15 !253 5!42 17 !85 16 !128 17 !170 17 !212 17 !254 3!43 15 !86 15Table B.5: Space complexities for multiplication with elements of GF (28) generated byQ(y) = y8 + y5 + y3 + y2 + 1, where Q(!) = 0

Bibliography[Afa90] V.B. Afanasyev. Complexity of VLSI implementation of �nite �eld arith-metic. In II. Intern. Workshop on Algebraic and Combinatorial Coding The-ory, pages 6{7, Leningrad, USSR, September 1990.[Afa91] V.B. Afanasyev. On the complexity of �nite �eld arithmetic. In 5thJoint Soviet-Swedish Intern. Workshop on Information Theory, pages 9{12,Moscow, USSR, January 1991.[AK64] J.D. Alanen and D.E. Knuth. Tables of �nite �elds. Sankhy�a, the IndianJournal of Statistics, Series A, 26(part 4):1964, Dezember 1964.[AK89] E. Aarst and J. Korst. Simulated Annealing and Boltzmann Machines. Wiley& Sons Inc., 1989.[Ber68] E.R. Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968.[Ber82] E.R. Berlekamp. Bit-serial Reed-Solomon encoders. IEEE Transactions onInformation Theory, IT-28(6):869{874, November 1982.[BGM+93] Blake, Gao, Mullin, Vanstone, and Yaghgoobin. Applications of Finite Fields.Kluwer Academic Publisher, 1993.[Bla83] R.E. Blahut. Theory and Practice of Error Control Codes. Addison-Wesley,Reading, Massachusetts, 1983.[Bla85] R.E. Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley,Reading, Massachusetts, 1985.[BS63] T.C. Bartee and D.I. Schneider. Computation with �nite �elds. Informationand Control, 6:79{98, 1963.[CDD+93] K. Cheung, D. Divsalar, S. Dolinar, I. Onyszchuk, F. Pollara, and L. Swanson.Changing the coding system on a spacecraft in
ight. In Proceedings of the1993 IEEE International Symposium on Information Theory, page 381, SanAntonio, TX, USA, January 1993.109

Complexities of Constant Multipliers 110[Dav72] G.I. Davida. Inverse of elements of a Galois �eld. Electronic Letters,8(21):518{520, October 1972.[DH76] W. Di�e and M.E. Hellman. New directions in cryptography. IEEE Trans-actions on Information Theory, IT-22:644{654, 1976.[DZ85] S.M. Dodunekov and V. Zinoviev. On fast decoding of Reed-Solomon codesover GF (2m) correcting t � 4 errors. Technical Report LiTH-ISY-I-0750,Dept. of Electrical Engineering, Link�oping University, S-58183 Link�oping,Sweden, 1985.[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme based on dis-crete logarithms. IEEE Transactions on Information Theory, IT-31(4):469{472, 1985.[Fat74] R.J. Fateman. Polynomial multiplication, powers and asymptotic analysis:Some comments. SIAM J. Comput., 7(3):196{21, September 1974.[Fen89] G.L. Feng. A VLSI architecture for fast inversion in GF (2m). IEEE Trans-actions on Computers, C-38(9):1989, Oct 1989.[Gei93a] W. Geiselmann. Algebraische Algorithmenentwicklung am Beispiel der Arith-metik in Endlichen K�orpern. PhD thesis, Universit�at Karlsruhe, Fakult�atf�ur Informatik, Institut f�ur Algorithmen und Kognitive Systeme, Karlsruhe,Germany, 1993.[Gei93b] W. Geiselmann. Primitive normal bases with low complexity for the �eldGF (224). Personal correspondence, November 1993.[GG90] W. Geiselmann and D. Gollmann. VLSI design for exponentiation inGF (2n).In J. Seberry and J. Pieprzyk, editors, Lecture Notes in Computer Science453: Advances in Cryptology | AUSCRYPT '90, pages 398{405, Sydney,Australia, January 1990. Springer-Verlag, Berlin.[GG93] W. Geiselmann and D. Gollmann. Self-dual bases in Fqn . Designs, Codesand Cryptography, 3:333{345, 1993.[Gol67] S.W. Golomb. Shift Register Sequences. Holden-Day, San Francisco, 1967.[Gol84] S.W. Golomb. Algebraic construction for costas arrays. J. Comb. Theory, A37:13{21, 1984.[GSB91] T.A. Gulliver, M. Serra, and V.K. Bhargava. The generation of primitivepolynomials in GF (q) with independent roots and their application for powerresidue codes, VLSI testing and �nite �eld multipliers using normal bases.Int. J. electronics, 71(4):559{576, 1991.

Complexities of Constant Multipliers 111[GT74] D.H. Green and I.S. Taylor. Irreducible polynomials over composite Galois�elds and their applications in coding techniques. Proc. IEE, 121(9):935{939,September 1974.[HTDR88] I.S. Hsu, T.K. Truong, L.J. Deutsch, and I.S. Reed. A comparison of VLSIarchitecture of �nite �eld multipliers using dual-, normal-, or standard bases.IEEE Transactions on Computers, 37(6):735{739, June 1988.[HTRG88] I.S. Hsu, T.K. Truong, I.S. Reed, and N. Glover. A VLSI architecture forperforming �nite �eld arithmetic with reduced table lookup. Linear Algebraand its Applications, 98:249{262, 1988.[HWB92a] M.A. Hasan, M. Wang, and V.K. Bhargava. Division and bit-serial multi-plication over GF (qm). IEEE Transactions on Computers, 41(8):972{980,August 1992.[HWB92b] M.A. Hasan, M. Wang, and V.K. Bhargava. Modular construction of lowcomplexity parallel multipliers for a class of �nite �elds GF (2m). IEEETransactions on Computers, 41(8):962{971, August 1992.[IT88] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inversesin GF (2m) using normal bases. Information and Computation, 78:171{177,1988.[IT89] T. Itoh and S. Tsujii. Structure of parallel multipliers for a class of �eldsGF (2k). Inform. and Comp., 83:21{40, 1989.[JB92] Y. Jeong and W. Burleson. Choosing VLSI algorithms for �nite �eld arith-metic. In IEEE Symposium on Circuits and Systems, ISCAS 92, 1992.[Jun93] D. Jungnickel. Finite Fields. B.I.-Wissenschaftsverlag, Mannheim, Leipzig,Wien, Z�urich, 1993.[Knu81] D.E. Knuth. The Art of Computer Programming. Volume 2: SeminumericalAlgorithms. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981.[KO63] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on au-tomata. Sov. Phys.-Dokl. (Engl. transl.), 7(7):595{596, 1963.[Kol94] G. Kolata. The assault on 114; 381; : : :. In New York Times, page C1, March22, 1994.[KRV93] M. Kovac, N. Ranganathan, and M. Varanasi. SIGMA: A VLSI systolicarray implementation of a Galois �eld GF (2m) based on multiplication anddivision algorithm. IEEE Transactions on VLSI Systems, 1(1):1993, March1993.

Complexities of Constant Multipliers 112[Kum83] H. Kummer. Recommendation for space data system standards: Telemetrychannel coding: Issue-1. Consult. Comm. Space Data Syst., September 1983.[Kun88] S.Y. Kung. VLSI Array Processing. Prentice-Hall, 1988.[LC83] S. Lin and D.J. Costello. Error Control Coding: Fundamentals and Applica-tions. Prentice-Hall, Englewood Cli�s, NJ, 1983.[LL84] K. Liu and J. Lee. Recent results on the use of concatenated Reed-Solomon/ Viterbi channel coding and data compression for space communication.IEEE Transactions on Communication, COM-32:518{523, May 1984.[LN83] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia ofMathematics and its Applications. Addison-Wesley, Reading, Massachusetts,1983.[Mas89] E.D. Mastrovito. VLSI design for multiplication over �nite �elds GF (2m).In Lecture Notes in Computer Science 357, pages 297{309. Springer-Verlag,Berlin, March 1989.[Mas91] E.D. Mastrovito. VLSI Architectures for Computation in Galois Fields. PhDthesis, Link�oping University, Dept. Electr. Eng., Link�oping, Sweden, 1991.[McC79] J.H. McClellan. Number Theory in Digital Signal Processing. Prentice-Hall,Englewood Cli�s, 1979.[McE87] R.J. McEliece. Finite Fields for Computer Scientists and Engineers. KluwerAcademic Publishers, 1987.[Mes91] R. Mester. Reed Solomon Encoder/Decoder Chip Set. BTS GmbH, Darm-stadt, Germany, November 1991.[MK89] M. Morii and M. Kasahara. E�cient construction of gate circuit for com-puting multiplicative inverses over GF (2m). Transactions of the IEICE, E72(1):37{42, January 1989.[ML85] A.M. Michelson and A.H. Levesque. Error-Control Techniques for DigitalCommunication. Wiley & Sons Inc., 1985.[MO84] J.L. Massey and J.K. Omura. Apparatus for �nite �eld computation. USPatent Application, pages 21{40, 1984.[Mor89] O. Moreno. On the existence of a primitive quadratic of trace 1 over GF (pm).J. Comb. Theory, A 51:104{110, 1989.

Complexities of Constant Multipliers 113[MOVW89] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson. Optimal nor-mal bases in GF (pn). Discrete Applied Mathematics, North Holland, 22:149{161, 1988/89.[Odl84] A.M. Odlyzko. Discrete logarithms in �nite �elds and their cryptographicsigni�cance. In Lecture Notes in Computer Science 209, pages 224{316.Springer-Verlag, Berlin, 1984.[Paa93a] C. Paar. Fast �nite �eld arithmetic for VLSI design. In 3rd Benelux-JapanWorkshop on Coding and Information Theory, page 7, Institute for Experi-mental Mathematics, University of Essen, Germany, August 30 1993.[Paa93b] C. Paar. A parallel Galois �eld multiplier with low complexity based oncomposite �elds. In 6th Joint Swedish-Russian Workshop on InformationTheory, pages 320{324, M�olle, Sweden, August 22{27 1993.[Paa94] C. Paar. Low complexity parallel multipliers for Galois �elds GF ((2n)4)based on special types of primitive polynomials. In 1994 IEEE InternationalSymposium on Information Theory, Trondheim, Norway, June 27 { July 11994.[PD90] J. Politano and D. Deprey. A 30 Mbits/s (255,223) Reed-Solomon decoder. InEurocode '90, International Symposium on Coding Theory and Applications,pages 385{392, Udine, Italy, November 1990.[Pee85] J.B.H. Peek. Communication aspects of the compact disc digital audio sys-tem. IEEE Commun. Magaz., 23(2):7{15, February 1985.[PH94] C. Paar and O. Hooijen. Implementation of a reprogrammable Reed-Solomondecoder over GF (216) on a digital signal processor with external arithmeticunit. In Fourth International ESA Workshop on Digital Signal ProcessingTechniques Applied to Space Communications, page 3.11, King's College,London, September 26{28 1994.[Pin89] A. Pincin. A new algorithm for multiplication in �nite �elds. IEEE Trans-actions on Computers, 38(7):1045{1049, July 1989.[PRM90] E.C. Posner, L.L. Rauch, and B.D. Madsen. Voyager mission telecommuni-cation �rst. IEEE Commun. Magaz., 28(9):22{27, September 1990.[PW72] W.W. Peterson and E.J. Weldon. Error-Correcting Codes. MIT Press, Cam-bridge, Massachusetts, 1972.[Rie85] H. Riesel. Prime Numbers and Computer Methods for Factorization.Birkh�auser, Boston, Basel, Stuttgart, 1985.

Complexities of Constant Multipliers 114[Sch93] B. Schneier. Applied Cryptography. Wiley & Sons, 1993.[Sed90] R. Sedgewick. Algorithms in C. Addison-Wesley, Reading, Massachusetts,1990.[SI91] K.A. Schouhamer-Immink. Coding Techniques for Digital Recorders.Prentice-Hall, Englewood Cli�s, NJ, 1991.[Str86] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,Wellesley, Massachusetts, 1986.[TM90] T. Todoroki and S. Miura. Design of a Reed-Solomon decoder using a DSP.In SBT/IEEE International Telecommunication Symposium ITS, SymposiumRecord, pages 443{445, Rio de Janeiro, Brazil, September 1990.[vT88] H.C.A. van Tilborg. An Introduction to Cryptology. Kluwer Academic Pub-lishers, 1988.[WE92] N.H.E. Weste and K. Eshraghian. Principles of CMOS VLSI Design, ASystems Perspective. Addison-Wesley Publishing Company, second edition,1992.[WHPH87] W.W. Wu, D. Haccoun, R. Peile, and Y. Hirata. Coding for satellite com-munication. IEEE Jour. Selec. Ar. Commun., SAC-5(4):1987, May 1987.[Wol88] S. Wolfram. Mathematica, A System for Doing Mathematics by Computer.Addison-Wesley Publishing Company, 1988.[WP90] C.C. Wang and D. Pei. A VLSI design for computing exponentiation inGF (2m) and its application to generate pseudorandom number sequences.IEEE Transactions on Computers, C-39(2):258{262, February 1990.[WTS+85] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S.Reed. VLSI architectures for computing multiplications and inverses inGF (2m). IEEE Transactions on Computers, C-34:709{717, August 1985.[YACD89] M.D. Y�ucel, F. Atmaca, S. Can, and T. Do~gan. Implementation of a real timeReed-Solomon encoder and decoder using TMS32010. In IEEE Paci�c RimConference on Communications, Computers and Signal Processing, Confer-ence Proceedings, pages 341{344, Victoria, BC, Canada, June 1989.

