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Abstract

Security issues play an important role in almost all modern communication and com-

puter networks. As Internet applications continue to grow dramatically, security

requirements have to be strengthened. Hyperelliptic curve cryptosystems (HECC)

allow for shorter operands at the same level of security than other public-key cryp-

tosystems, such as RSA or Diffie-Hellman. These shorter operands appear promising

for many applications.

Hyperelliptic curves are a generalization of elliptic curves and they can also be

used for building discrete logarithm public-key schemes. A major part of this work

is the development of computer architectures for the different algorithms needed for

HECC. The architectures are developed for a reconfigurable platform based on Field

Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility of software

solutions with the security of traditional hardware implementations. In particular, it

is possible to easily change all algorithm parameters such as curve coefficients and

underlying finite field.

In this work we first summarized the theoretical background of hyperelliptic

curve cryptosystems. In order to realize the operation addition and doubling on
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the Jacobian, we developed architectures for the composition and reduction step.

These in turn are based on architectures for arithmetic in the underlying field and for

arithmetic in the polynomial ring. The architectures are described in VHDL (VHSIC

Hardware Description Language) and the code was functionally verified. Some of the

arithmetic modules were also synthesized. We provide estimates for the clock cycle

count for a group operation in the Jacobian. The system targeted was HECC of genus

four over GF(241).
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Chapter 1

Introduction

1.1 Motivation

Security issues play an important role in almost all communication and computer net-

works today. As the Internet, and applications such as PDAs, cell phones etc. become

increasingly popular, security requirements have to be strengthened. Cryptography

is the art and science of keeping messages secure. Using different algorithms and

protocols we can ensure the integrity, authenticity, and non-repudiation of messages

and users. One group of cryptographic algorithms is based on the Discrete Logarithm

(DL) problem.

The Digital Signature Standard (DSA) and the Diffie-Hellman Key exchange,

1
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are two examples of protocols based on the DL problem. Traditionally, they have been

realized with the DL problem constructed in a finite field. More recently, variants

of these protocols based on the elliptic curve DL problem have become popular.

This thesis deals with a generalization of elliptic curve cryptosystems, namely with

schemes based on hyperelliptic curves. The reason why these variants exist is that

DL protocols only requires a finite Abelian group, with subgroup of sufficiently large

prime order. Such a group is potentially suited for cryptographic applications if the

DL problem is hard and the group operation is computationally easy to perform.

In 1989, Koblitz suggested for the first time at Crypto ’88 the use of hyperellip-

tic curves (HEC) for discrete log cryptosystems [Kob89a]. HEC are a special class of

algebraic curves and can be viewed as a generalization of elliptic curves. A hyperellip-

tic curve of genus g = 1 is an elliptic curve. Consequently, the theory of hyperelliptic

curves has received increased attention among the cryptography community in recent

years. HECC have the advantage that we can use shorter operand lengths compared

to RSA or traditional DL systems without compromising the security. In practice,

operand lengths between 50 – 80 bits (depending on the genus) can lead to cryptosys-

tems that withstand currently known attacks. In terms of implementation, there are

some publications [SS00, Eng99, SSI98, SS98, Kri97] that deal with the theoretical

analysis of the algorithms, and a few that describe actual software implementations

([SS00, Eng99, SSI98, SS98, Kri97]).
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We chose reconfigurable hardware technology to implement the cryptosystem

mentioned above. Such hardware devices can accommodate large digital designs with

performances suitable for many high speed applications. One reason why we can gain

high performance is that we specify the underlying field arithmetic by fixing the field

order and irreducible polynomial. FPGAs allow us instance-specific architectures.

Reconfigurable devices are attractive for cryptographic applications because

we can modify the algorithm. Virtually all parameters of the design can be altered.

In the case of HECC, parameters that could be varied include curve coefficients,

underlying finite field order and irreducible polynomial, genus, and algorithms used

in the group operation.

Hence, implementations based on reconfigurable hardware preserve much of

the flexibility of software solutions while providing much of the security, speed, com-

pactness, and affordability of a hardware solution. The most recent reconfigurable

computing ICs bring the possibility of full-size cryptographic implementations in real-

world applications.

The work in this thesis deals with architectures for a HECC. First we sum-

marized the theoretical background of hyperelliptic curve cryptosystems. In order

to realize the operation addition and doubling on the Jacobian, we developed ar-

chitectures for the composition and reduction step. These, in turn, are based on

architectures for arithmetic in the underlying field and for arithmetic in the polyno-
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mial ring. The architectures are described in VHDL (VHSIC Hardware Description

Language) and the code was functionally verified. Some of the arithmetic modules

were also synthesized. We provide estimates for the clock cycle count for a group

operation in the Jacobian. The system targeted was a HECC of genus four over

GF(241). At the time of writing we are not aware of any other documented effort in

this particular area.

1.2 Thesis Outline

In Chapter 2 we introduce the basic definitions and properties of hyperelliptic curves

(HEC). We also introduced divisors and different groups of divisors. After these

definitions we are able to define the Jacobian of the HEC. We conclude chapter 2 with

a polynomial representation of the equivalent classes and algorithms for addition and

doubling of two elements.

Chapter 3 summarizes the previous work on HECC and is divided into two

sections. The first section covers all publications dealing with implementations of

HECC and the second section deals with selected issues that are important for the

implementation of HECC in hardware.

Chapters 4, 5, and 6 deal with the architectures and algorithms of HECC in

hardware. Chapter 4 presents the way the field operations and polynomial opera-
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tions are implemented. Each subsection describes the algorithm and methods used to

implement the different modules of the design. Chapter 5 covers the design method-

ology including the design cycle, the target FPGA and the design tools, as well as the

generation of random divisors. Chapter 6 describes the implementation of group addi-

tion and doubling on the target FPGA. This chapter closes with the results achieved

in the implementation. The last chapter covers a discussion of further research and

conclusions.



Chapter 2

Mathematical Background:

Properties of Hyperelliptic Curves

relevant to Cryptography

The idea that Jacobians groups of hyperelliptic curves (HEC) are suitable for discrete

logarithm cryptosystems was first introduced at Crypto ‘88 by Neal Koblitz [Kob89a].

In this chapter we present an elementary introduction to some of the theory of hy-

perelliptic curves over finite fields of arbitrary characteristic, restricting attention to

material that has cryptographic relevance. Algorithms for adding (e.g., Cantor‘s al-

gorithm [Can87]) and doubling in the Jacobian of a hyperelliptic curve are presented.

Hyperelliptic curves are a special class of algebraic curves and can be viewed as gen-

6
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eralizations of elliptic curves. There are hyperelliptic curves of every genus g ≥ 1. A

hyperelliptic curve of genus g = 1 is the same as an elliptic curve.

Most of the proofs and details about HEC can be found in [Kob98, Kob89a,

Kob89b, BSS99]. For an introduction to algebraic geometry the reader should consult

[Ful69].

2.1 Definitions and Basic Properties

We will now give the main definitions and properties of hyperelliptic curves and their

Jacobians.

First we define the algebraic closure:

Definition 2.1.1 [Kob98] If a field F has the property that every polynomial with co-

efficients in F factors completely into linear factors, then we say that F is algebraically

closed. Equivalently, it suffices to require that every polynomial with coefficients in F

has a root in F . For instance, the field C of complex numbers is algebraically closed.

The smallest algebraically closed extension field of F is called the algebraic closure of

F . It is denoted F and is unique. For example, the algebraic closure of the field of

real numbers is the field of complex numbers.

Definition 2.1.2 [Kob98] Let F be a finite field, and let F be the algebraic closure
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of F . A hyperelliptic curve C of genus g over F (g ≥ 1) is the set of solutions

(u, v) ∈ F × F to an equation of the form

C : v2 + h(u)v = f(u) in F [u, v], (2.1)

where h(u) ∈ F is a polynomial of degree at most g, f(u) ∈ F [u] is a monic polynomial

of degree 2g + 1, and there are no pairs (u, v) ∈ F × F which simultaneously satisfy

the equation v2 + h(u)v = f(u) and the partial differential equations 2v + h(u) = 0

and h′(u)v − f ′(u) = 0.

A singular point on C is a pair (u, v) ∈ F × F which simultaneously satisfies

the equation v2 + h(u)v = f(u) and the partial differential equations 2y + h(u) = 0

and h′(u)y− f ′(u) = 0. From Definition 2.1.2 we see that hyperelliptic curves do not

have any singular point.

Lemma 2.1.3 [Kob98] Let C be a hyperelliptic curve over F defined by Equation 2.1.

1. If h(u) = 0 then char(F ) 6= 2.

2. If char(F ) 6= 2, then the change of variables u→ u, v → (v−h(u)/2) transforms

C to the form v2 = f(u) where degu f = 2g + 1

3. Let C be an equation of the form (2.1) with h(u) = 0 and char(F ) 6= 2. Then

C is a hyperelliptic curve if and only if f(u) has no repeated roots in F .
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Definition 2.1.4 [Kob98] Let K be an extension field of F . The set of K -rational

points on C, denoted C(K ), is the set of all points P = (x, y) ∈ K × K that satisfy

(2.1), together with a special point at infinity denoted ∞. The set of points C(F ) will

simply be denoted by C. The points in C other than ∞ are called finite points.

Definition 2.1.5 [Kob98] Let P = (x, y) be a finite point on a hyperelliptic curve C.

The opposite point of P is the point P ′ = (x,−y−h(x)). We also define the opposite

of ∞ to be ∞′ =∞ itself. If a finite point P satisfies P = P ′, then the point is said

to be special; otherwise, the point is said to be ordinary.

Figures 2.1 and 2.2 show two examples of hyperelliptic curves over the field

of real numbers. Both curve have genus g = 2 and h(u) = 0. They are defined as

C1 : v2 = u5 + u4 + 4u3 + 4u2 + 3u + 3 = (u + 1)(u2 + 1)(u2 + 3) and C2 : v2 =

u5−5u3 +4u+3 = u(u−1)(u+1)(u−2)(u+2). The graphs of the curves are plotted

over the real plane.

As a motivation for the group operation to be developed in the next section,

let us now attempt to “add” two points on a hyperelliptic curve including the point

of infinity using the same method which is used for elliptic curves. Suppose that

P,Q ∈ C, and let L be the line connecting P and Q. Bezout’s theorem [Ful69] says

that the intersection of L and C will consist of 2g+1 points (counted with appropriate
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Figure 2.1: Hyperelliptic curve C1 : v2 = u5 + u4 + 4u3 + 4u2 + 3u+ 3 over the reals

multiplicities), so

L ∩ C = {P,Q,R1, R2, ..., R2g−1}.

This fact can be demonstrated if we intersect C2 with a line L, as shown in Figure 2.3.

C2 has a genus g = 2, therefore we have 2g + 1 = 5 intersection points.

If g = 1, which is the case for an elliptic curve, we get a unique third point,

but when g ≥ 2, we obtain multiple points and there is no canonical way to pick a

particular one. It turns out that the solution is to use lists of points, rather than

single points. Abstractly, one considers sets of g points of C, {P1, P2, P3, ..., Pg}, and
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Figure 2.2: Hyperelliptic curve C2 : v2 = u5 − 5u3 + 4u+ 3 over the reals

defines a certain equivalence relation on these sets.

The following section will focus on this relation and will introduce the concept

of divisors which will allow the definition of an addition operation on the Jacobian.

2.2 Divisors

This section presents the basic properties of divisors.
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Figure 2.3: Intersection of Hyperelliptic curve C2 : v2 = u5− 5u3 + 4u+ 3 and Line L

Definition 2.2.1 [Kob98] A divisor is a finite formal sum of F -points, D =
∑
miPi.

Its degree is the sum of the coefficients
∑
mi. If K is an algebraic extension of F , we

say that D is defined over K if for every automorphism σ of F that fixes K one has∑
miP σ

i = D, where P σ denotes the point obtained by applying σ to the coordinates of

P (and ∞σ =∞). The order of D at P is the integer mP ; we write ordP (D) = mP .

Example: Assume we have a hyperelliptic curve C : v2 +uv = u5 +5u4 +

6u2 + u+ 3 over F 7, an example of a divisor is,

D = 2(2, 2) + 3(5, 3) + (1, 1) + (6, 4)
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and the degree of D is

∑
mi = 2 + 3 + 1 + 1 = 7.

The set of all divisors, denoted by D , forms an additive group under the addition

rule:

∑
P∈C

mPP +
∑
P∈C

nPP =
∑
P∈C

(mP + nP )P

Let D 0 denote the subgroup consisting of divisors of degree 0.

2.3 Principal Divisors

Before we are able to define the Jacobian, we have to define principal divisors. We

will only provide the definitions that are needed for our work. For more details e.g.

on rational functions consult [Kob98, Pages 159 -167] or [Ful69].

Definition 2.3.1 [Kob98] Given a polynomial G(u, v) ∈ F [u, v], we can consider

G(u, v) as a function on the curve (equivalently, as an element of the quotient ring

F [u, v]/(v2 + h(u)v − f(u))). From a practical viewpoint, we lower the power of v in

G(u, v) by means of the equation of the curve until we have an expression of the form

G(u, v) = a(u) − b(u)v. We let (G(u, v)) = (
∑
miPi) − (m∞)∞ ∈ D 0 (where the

coefficient m∞ is chosen so that the divisor has degree 0) denote the divisor of the
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polynomial function G(u, v). The coefficient mi is the “order of vanishing” of G(u,v)

at the point Pi.

Definition 2.3.2 [Kob98] A divisor of the form (G(u, v)) − (H(u, v)) is called a

principal divisor. That is, the divisor of the rational function G(u, v)/H(u, v).

The principal divisor (G(u, v))− (H(u, v)) is supported on the zeros and poles

of the function G(u, v)/H(u, v), where the zeros are assigned positive coefficients and

the poles are assigned negative coefficient. The set of all rational divisors is denoted

as P . P is a subgroup of D 0, because the degree vanishes.

Example: In order to get a better understanding of Definition 2.3.2, let’s

take an example where we assume that the curve C = R as denoted in

Figure 2.4.

0 1 2 3-1-2-3

"point of
infinity"

P(-2,0)
Q(-1,0) R(1,0) S(3,0)

Figure 2.4: Example for principal divisor where C = R

Let G(x) = (x− 1)(x+ 2)2 and H(x) = (x+ 1)(x− 3)4. That means that

our divisor D = (f(x)) = (G(x))−(H(x)) = 2P −Q+R−4S+2∞ where

f(x) = (x−1)(x+2)2

(x+1)(x−3)4 . It can be seen that ordQ(D) = −1 and ordS(D) = −4,
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where Q and S are poles of f(x) and therefore they have negative sign.

Whereas the points P with ordP (D) = 2 and R with ordR(D) = 1 are

zeros and therefore have positive sign.

2.4 The Jacobian J

Using D 0 and P we can define the Jacobian.

Definition 2.4.1 [Kob98] Let J (more precisely, J(K ), where K is a field containing

F ) denote the quotient of the group D 0 of divisors of degree zero defined over K by

the subgroup P of principal divisors coming from G,H ∈ K [u, v]. J = D 0/P is called

the Jacobian of the curve. If D1, D2 ∈ D 0 then write D1 ∼ D2 if D1 −D2 ∈ P ; D1

and D2 are said to be equivalent divisors.

Hence, the Jacobian is a finite quotient group of one infinite group by another

infinite group. Every element on the Jacobian is an equivalence class of divisors.

In order to set up computations on J one needs a unique and “easy” way to

describe equivalence classes of D 0 modulo P ; i.e. we need a convenient set of coset

representatives. In the case of hyperelliptic curves, every element of J can be uniquely

represented. We also need a way to add two elements of J. In the next section we

take a closer look at the unique representation of elements in the Jacobian group.
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The addition rules are stated in Section 2.6.

2.5 Element Representation of the Jacobian

Our first goal is it to find a unique and “easy” representation of the equivalence classes

of J.

Let us consider a divisor of degree 0. This divisor can be written as D =∑
miPi −

(∑
mi

)
∞, with Pi = (xi, yi) and Pi 6= Pj where i 6= j.

Definition 2.5.1 [Kob98] Let D =
∑
miPi be a divisor. The support of D is the set

supp(D) = {Pi ∈ C | mi 6= 0}

Definition 2.5.2 [Kob98] A semi-reduced divisor is a divisor of the formD =
∑
miPi−

(
∑
mi) ∞ where each mi ≥ 0 and the Pi’s are finite points such that when Pi ∈

supp(D) then P ′i /∈ supp(D), unless Pi = P ′i , in which case mi = 1

The following lemma shows that each element D in D 0 there exists a semi-

reduced divisor D1 equivalent to D:

Lemma 2.5.3 [Kob98] For each divisor D ∈ D 0 there exists a semi-reduced divisor

D1 ∈ D 0 such that D ∼ D1.
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Note that semi-reduced divisors are not unique in their equivalence class. In

the case of hyperelliptic curves, one can show (either using the Rieman-Roch theorem,

see [Ful69], or in a more elementary way as in the Appendix of [Kob98]) that every

element of J can be uniquely represented by a so-called reduced divisor. The reduced

divisors are defined as follows.

Definition 2.5.4 [Kob98] Let D =
∑
miPi − (

∑
mi)∞ be a semi-reduced divisor.

If
∑
mi ≤ g (g is the genus of C) then D is called a reduced divisor.

Hence, a divisor D =
∑
miPi − (

∑
mi)∞ ∈ D 0 is said to be reduced if:

1. All of the mi are non-negative, and mi ≤ 1 if Pi is equal to its opposite.

2. If Pi 6= P ′i , then Pi and P ′i do not both occur in the sum.

3.
∑
mi ≤ g.

Now we have a unique representation of all elements in the Jacobian group.

From an implementation point of view it is not very easy to work with divisors.

Therefore the remainder of this section shows an alternative representation of the

divisors.

Semi-reduced divisors can be described as a pair of polynomials as in the

following theorem:
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Theorem 2.5.5 Let D =
∑
miPi− (

∑
mi)∞ be a semi-reduced divisor, where Pi =

(xi, yi). Let a(u) =
∏

(u − xi)mi. There exists a unique polynomial b(u) satisfying:

1) degub < degua; 2) b(xi) = yi for all i for which mi 6= 0; 3) a(u) divides (b(u)2 +

b(u)h(u)− f(u)).

Notation: Divisor D =
∑
miPi − (

∑
mi)∞ represented by a pair of polyno-

mials a(u) and b(u) will be abbreviated as div(a, b).

Now we have an alternative representation for semi-reduced divisors, but as

discussed above, each element of J can be represented uniquely by a reduced divisor.

A reduced divisor is a semi-reduced divisor but of degree less than or equal to g.

Hence the polynomial a is of degree less than or equal to g.

As a conclusion of this section and for better understanding of Theorem 2.5.5

let us look at an example:

Example: Consider the hyperelliptic curve C : v2 + (u2 + u)v = u5 +

u3 + 1 of genus g = 2 over the finite field F 25 defined with the primitive

polynomial P (x) = x5 + x2 + 1, and let P (α) = 0. Let P1 = (α30, 0) and

P2 = (0, 1) be two points on the curve. Let’s now compute the polynomial

representation of D = P1 + P2 − 2∞ = div(a, b). As shown in Theorem

2.5.5 a(u) is calculated as a(u) =
∏

(u − xi)mi. It follows that a(u) =

(u+α30)(u+0) = (u+α30)u. In order to be able to calculate the polynomial
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b(u) we have to find b(xi) = yi for all i for which mi 6= 0. Hence we get

two equations with two variables: b(x1) = y1 = 0 = cx1 +d = cα30 +d and

b(x2) = y2 = 1 = cx2 +d = c ·0+d. From the second equation we find d =

1. Now we compute the inverse of α30 modulo the primitive polynomial

P (x) = x5 + x2 + 1: [α30]−1 = α mod P (x). With the knowledge of the

inverse we can easily find c = α. Hence we get b(u) = αu + 1. With

Theorem 2.5.5 we are able to find the polynomial representation of the

given semi-reduced divisor: div(a, b) = (u2+α30u, αu+1). We see that the

degree of a(u) is equal to g and therefore the polynomial representation

we found is also the representation for the reduced divisor.

2.6 Addition and Doubling over J

The addition D1 +D2 of two divisors D1 and D2 will be calculated in two steps:

• Composition Step: First we have to find a semi-reduced divisorD′ = div(a′, b′),

such that D′ is equivalent to D1 +D2 = div(a1, b1) + div(a2, b2) in the group J

(Algorithm 2.6.1).

• Reduction Step: Secondly we have to reduce the semi-reduced divisor

D′ = div (a′, b′) to an equivalent reduced divisor D = (a, b) (Algorithms 2.6.3

and 2.6.4).
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A more extensive treatment of these algorithms can be found in [Can87, Eng99, SS98,

SSI98].

2.6.1 Composition Step

Algorithm 2.6.1 describes the Composition Step and was published by Cantor in 1987

[Can87].

Algorithm 2.6.1

Input: Reduced divisors D1 = div(a1, b1) and D2 = div(a2, b2), both defined over F

Output: A semi-reduced divisor D′ = div(a′, b′) defined over F such that

D′ ∼ D1 + D2

1. Use the Euclidean algorithm to find polynomials d1, e1, e1 ∈ F [u] where

d1 = gcd(a1, a2) and d1 = e1a1 + e2a2

2. Use the Euclidean algorithm to find polynomials d, c1, c2 ∈ F [u] where

d = gcd(d1, b1 + b2 + h) and d = c1d1 + c2(b1 + b2 + h)

3. Let s1 = c1e1, s2 = c1e2, and s3 = c2, such that d = s1a1 +s2a2 +s3(b1 +b2 +h)

4. Set

a′ = a1a2/d2

and
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b′ = s1a1b2+s2a2b1+s3(b1b2+f)
d

(moda)

Remark: The steps 1 to 3 of the algorithm can be written as a calculation of the

gcd of three polynomials d = gcd(a1, a2, b1 + b2 + h) = s1a1 + s2a2 + s3(b1 + b2 + h).

The proof that D = div(a, b) is a semi-reduced divisor and that D ∼ D1 + D2

can be found in [Ful69].

If we want to double a divisor the operation is easier. Doubling means that

a = a1 = a2 and b = b1 = b2.

Algorithm 2.6.2

Input: Reduced divisors D = div(a, b) defined over F

Output: A semi-reduced divisor D′ = div(a′, b′) defined over F such that

D′ ∼ D + D

1. Use the Euclidean algorithm to find polynomials d, s1, s3 ∈ F [u] where

d = gcd(a, b2 + h) and d = s1a+ s3(b2 + h)

2. Set

a′ = a2/d2

and

b′ = s1ab+s3(b2+f)
d

(moda)
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2.6.2 Reduction Step

To complete the addition, we must find a unique reduced divisor D = div(a, b). There

are two algorithms that are used for the reduction step: Gauss reduction and Lagrange

reduction [Eng99]. In the first algorithm the computation of the ak (where ak is the

value of a in the iteration k of the algorithm) involves one multiplication and one

division of high degree polynomials. Each step is independent of the previous one.

However, as soon as a reduction step has been carried out, the formula for ak can

be rewritten using information from the previous step. Lagrange reduction takes ad-

vantage of this fact. The Lagrange reduction algorithm was published by Paulus and

Stein for hyperelliptic curves over a field of odd characteristic [PS98]. A generalized

version for arbitrary characteristic was given by Enge in [Eng99]. Algorithm 2.6.3

and 2.6.4 summarizing Gauss and Lagrange reductions, respectively.

Algorithm 2.6.3

Input: A semi-reduced divisor D′ = div(a′, b′) defined over F

Output: The (unique) reduced divisor D = div(a, b) such that D′ ∼ D

1. a0 = a′, b0 = b′

2. For k = 1 to t do (where t is minimal such that deg at ≤ g):

2.1 ak =
f−bk−1h−b2k−1

ak−1
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2.2 bk = (−h− bk−1) mod a

3. Output (a← ak, b← bk)

Algorithm 2.6.4

Input: A semi-reduced divisor D = div(a, b) defined over F

Output: The (unique) reduced divisor D́ = div(á, b́) such that D́ ∼ D

1. a0 = a, b0 = b

2. a1 =
f−b0h−b20

a0

3. −b0 − h = q1a1 + b1, with deg bk ≤ deg ak

4. For k = 2 To t Do (where t is the minimal such that deg at ≤ g):

4.1 ak = ak−2 + qk−1(bk−1 − bk−2)

4.2 −bk−1 − h = qkak + bk, with deg bk ≤ deg ak

5. Output (á← ak, b́← bk)

Theorem 2.6.5 shows that the gauss algorithm results in a reduced divisor.

Theorem 2.6.5 [Kob98] Let D = div(a, b) be a semi-reduced divisor. Then the

divisor D = div(a, b) returned by Algorithm 2.6.3 is reduced, and D′ ∼ D.
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Discrete Log (DL) Problem: The DL Problem on J(K ) is the problem,

given two divisors D1, D2 ∈ J(K ), of determining an integer m such that D2 = mD1,

if such an m exists.

Security against known attacks: It is currently believed that the best

attacks for curves of genus < 5 are generic square root algorithms, such as Pollard’s

Rho method or the Baby-step Giant-step algorithms. These attacks have a complexity

of O(
√
p), where p is the largest prime dividing the order of the group.

If the base field of the curve is a finite field with cardinality q, then the Jacobian

of the curve is a finite abelian group of order around qg. The Hasse-Weil bound gives

a precise interval for this order: (
√
q − 1)2g ≤ #J(C) ≤ (

√
q + 1)2g.

Computing Multiples of Divisors: A central ingredient in cryptosystems

based on the DL problem in an Abelian group is an efficient process for computing

mD for D ∈ J(K ) and for large integers m.

D ? D ? · · · ? D︸ ︷︷ ︸
m times

= mD

This operation is called divisor multiplication or scalar multiplication, and dominates

the execution time of hyperelliptic cryptosystems.
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2.7 Analogy

To summarize this chapter I will try to present an analogy between the computation

in the Jacobian group and more familiar groups Z q. Z q is also a quotient group, like

the Jacobian, and it can be written as Z /qZ . For example let’s take the quotient

group Z /7Z which can also be written as Z 7. If we work in this group we naturally

represent all elements, with a class representative. Let 0̄, 1̄, ...6̄ be the unique class

representatives. Hence, 0̄ = {...,−14,−7, 0, 7, 14, ...}, 1̄ = {...,−13,−6, 1, 8, 15, ...},

..., 6̄ = {...,−8,−1, 6, 13, 20, ...}.

The principal divisors in the Jacobian group are analogous to the represen-

tatives that we have chosen. To add two elements in Z /7Z , one has to provide two

steps: the addition of two elements and the reduction of the result. That means that

we have to provide the same two steps in order to get the result of an addition, as in

the Jacobian group. For example, suppose we want to add 3 + 5. The result of this

addition is 8. Now we reduce 8 ≡ 1 mod 7. Thus, we get the equivalent class 1̄.



Chapter 3

Previous Work

3.1 HECC Implementation

When we look at previous work, there are some papers that describe the implementa-

tion of HECC in a theoretical manner, and other papers where the authors actually

implemented the cryptosystem in software.

In [Eng99] Andreas Enge describes a theoretical analysis of the computational

efficiency of arithmetic on hyperelliptic curves. He first generalizes two reduction

algorithms. In the main part of the paper he analyses the average complexity of

the arithmetic in hyperelliptic Jacobians over any finite field. He comes up with an

exact average number of field operations for computing the greatest common divisor

26
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of polynomials over a finite field using the Extended Euclidean Algorithm. Then he

uses these result to calculate the complexity of addition and doubling in the Jacobian.

multiplication inversions

p 6= 2, g even 17g2 + 5g − 7 + 1
q
O(g3) 3

2
g + 3 + 1

q
O(g2)

p 6= 2, g odd 17g2 + 6g − 4 + 1
q
O(g3) 3

2
g + 7

2
+ 1

q
O(g2)

p = 2, g even 14g2 + 6g − 6 + 1
q
O(g3) 3

2
g + 2 + 1

q
O(g2)

p = 2, g odd 14g2 + 7g − 3 + 1
q
O(g3) 3

2
g + 5

2
+ 1

q
O(g2)

Table 3.1: Number of field operations for divisor addition [Eng99]

multiplication inversions

p 6= 2, g even 16g2 + 7g − 6 + 1
q
O(g3) 3

2
g + 2 + 1

q
O(g2)

p 6= 2, g odd 16g2 + 8g − 3 + 1
q
O(g3) 3

2
g + 5

2
+ 1

q
O(g2)

p = 2, h = 1, g even 7g2 + 3g − 3 + 1
q
O(g3) 1

2
g + 2 + 1

q
O(g2)

p = 2, h = 1, g odd 7g2 + 4g + 1
q
O(g3) 1

2
g + 5

2
+ 1

q
O(g2)

p = 2, h = X, g even 11g2 + 4g − 3 + 1
q
O(g3) 1

2
g + 3 + 1

q
O(g2)

p = 2, h = X, g odd 11g2 + 5g + 1
q
O(g3) 1

2
g + 7

2
+ 1

q
O(g2)

Table 3.2: Number of field operations for divisor doubling [Eng99]

Table 3.1 and Table 3.2 show his results. The first table states the average

number of field operations needed to add two distinct divisors. The second table

shows the numbers for field operations needed to double two divisors. In the two
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tables he distinguishes between even and odd characteristics, and p = 2 and p 6= 2.

He concludes with the suggestion to implement the hyperelliptic cryptosystem in

characteristic 2. He also adds that if the complexity of the field operations is constant

or grows with log(q), then the smallest possible genus fitting the system requirements

should be chosen. If the complexity of the field operations grow with (log(q))2, a

higher genus might be recommended.

In [Sma99] various aspects of cryptosystems based on hyperelliptic curves are

discussed. In particular, the author analyzes the implementation of the group law on

hyperelliptic curves and how to find suitable curves for use in cryptography. The paper

presents a practical comparison between the performance of digital signature schemes

based on elliptic curve and schemes based on hyperelliptic curves. He implemented

the group law in the Jacobian for curves of arbitrary genus over F 2n and F p, where

p is prime. The author decided to choose values of p and n such that p and 2n are

less than 232. This choice made sure that the basic arithmetic fits into single words

on the processor. The timings which are reported for a hyperelliptic variant of the

DSA scheme were obtained on a Pentium Pro 334 MHz, running Windows NT, and

using Microsoft Visual C++ compiler. Estimates of the timings for an elliptic curve

system with approximately the same group order are also included. The results are

shown in Table 3.3.

The hyperelliptic curve implementation of genus g = 5 over the field F 231 took
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Curve Field Sign Verify

HCDSA g=5 F 231 18 ms 71 ms

HCDSA g=6 F 231 26 ms 98 ms

HCDSA g=7 F 231 40 ms 156 ms

ECDSA F 2161 4 ms 19 ms

ECDSA F p 3 ms 17 ms

Table 3.3: HCDSA and ECDSA Timings [Sma99]

18 ms to sign and 71 ms to verify the message. Using curves over the same field with

g = 6 and g = 7, it took 26 ms and 40 ms to sign, and 98 ms and 156 ms to verify

the message, respectively. The elliptic curve implementation took about 3 to 4 ms

to sign and 17 to 19 ms to verify. It is important to point out that the elliptic curve

implementation made no use of special field representations such as using the subfield

structure. Smart notes that even though the finite field elements fit into a single

processor-word, the extra cost of the polynomial arithmetic needed for operations in

the Jacobian makes the time needed to perform sign/verify operation on the HECC

over four times slower than in the elliptic curve case. If more efficient elliptic curve

techniques had been used, the relative performance of the hyperelliptic curve DSA

algorithm would degrade even more. Given the difficulty of finding hyperelliptic

curves for use in cryptography and the poor performance of the hyperelliptic curve

algorithms when compared to elliptic curves, there seems to be no benefit in using
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hyperelliptic curves.

Yasuyuki Sakai, Kouichi Sakurai and Hirokazu Ishizuka investigated the dis-

crete logarithm problem over Jacobian varieties of hyperelliptic curves and clarified

practical advantages of hyperelliptic cryptosystems compared to the elliptic cryptosys-

tems and to RSA [SSI98]. They focused on curves defined over a field of characteristic

2 having genera g = 3 and 11. Furthermore, they discussed the efficiency in the im-

plementation of such cryptosystems. They never did any actual implementation, but

they show the theoretical results in some tables in the end of the paper.

In [SS98], the authors of this paper focused on the DL problem over hyperel-

liptic curves, in the cases where the underlying field has small characteristic 2, 3, 5,

and 7. They further implemented hyperelliptic cryptosystems over finite fields F 2n in

software on Alpha (467MHz) and Pentium-II (300MHz) computers.

If we look at the timings in Table 3.4, calculating the exponentiation with their

algorithm takes between 83.3 ms and 159 ms on the Alpha and between 476 ms and

2.36 · 104 ms on the Pentium for curves of the same security level as RSA-1024. They

also timed implementations on the Alpha for the Jacobians with the same security

level as RSA-2048, see Table 3.5. The results are 1.74 · 103 ms to 3.79 · 104 ms for

scalar multiplication depending on the finite field. The hyperelliptic curves scalar

multiplication of smaller fields are a few times slower than the elliptic curves cases.

In the appendix of the paper they list hyperelliptic curves suited for cryptographic
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g J(v2 + v = f(u); F 2n) Addition Doubling Scalar

(msec) (msec) (msec)

F 2n f(u) Alpha P-II Alpha P-II Alpha P-II

3 F 259 u7 0.54 67.6 0.26 34.1 83.3 1.17 · 104

4 F 241 u9 + u7 + u3 + 1 0.55 67.2 0.26 33.3 96.6 1.09 · 104

5 F 241 u11 + u5 + u+ 1 0.88 109 0.48 58.7 183 2.36 · 104

6 F 229 u13 + u11 + u7

+ u3 + 1 0.83 2.68 0.44 1.45 159 476

Table 3.4: Timings of Jacobians which have the same level of security as RSA-1024

[SS98]

g J C size of Addition Doubling Scalar

Pmax (msec) (msec) (msec)

3 J(C; F 289) v2 + v = u7 246-bit 85.3 42.8 2.57 · 104

3 J(C; F 2113) v2 + v = u7 310-bit 118 58.9 3.79 · 104

11 J(C; F 247) v2 + v = u23 310-bit 5.04 3.13 1.74 · 103

Table 3.5: Timings of Jacobians which have the same level of security as RSA-2048

[SS98]

applications.
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Yasuyuki Sakai and Kouichi Sakurai published a third and more recent paper

[SS00]. This paper also deals with the practical performance of hyperelliptic curve

cryptosystems in software implementations. They analyzed the complexity of the

group law on Jacobians JC(F p) and JC(F 2n) and compare their performance, taking

into consideration the effectiveness of the word size of the CPU. In this work it was

shown that JC(F 2n) is faster than JC(F p) on a DEC Alpha processor, whereas JC(F p)

is faster then JC(F 2n) on a Pentium processor. Moreover, they investigated the field

and polynomial arithmetic, as well as the group operation, to clarify the results from a

practical point of view, with the theoretical analysis done by them and Enge [Eng99].

The timing results from their implementation can be found in Table 3.6 and 3.7. The

paper gives a nice overview in terms of theory and practical implementation of the

state-of-the-art in hyperelliptic curve cryptosystems.

g J(v2 + v = f(u); F 2n) Addition Doubling Scalar

(msec) (msec) (msec)

F 2n f(u) Alpha P-II Alpha P-II Alpha P-II

3 F p, (log2p = 60) u7 0.39 - 0.38 - 98 -

6 F p, (log2p = 29) u13 0.28 0.83 0.26 0.80 66 189

Table 3.6: Timings of JC(F p). On DEC Alpha 21164A (6000 MHz) and Pentium II

(300 MHz) [SS00]

Uwe Krieger implemented in his thesis in 1997 a C library to sign messages
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g J(v2 + v = f(u); F 2n) Addition Doubling Scalar

(msec) (msec) (msec)

F 2n f(u) Alpha P-II Alpha P-II Alpha P-II

3 F 259 u7 0.30 - 0.09 - 40 -

4 F 241 u9 + u7 + u3 + 1 0.30 - 0.10 - 43 -

5 F 241 u11 + u5 + u+ 1 0.34 1.40 0.10 0.48 46 182

6 F 229 u13 + u11 + u7

+ u3 + 1 0.47 1.76 0.13 0.56 61 227

Table 3.7: Timings of JC(F 2n). On DEC Alpha 21164A (600 MHz) and Pentium II

(300 MHz) [SS00]

based on a hyperelliptic cryptosystems [Kri97]. In the second chapter he explains the

mathematical background that is needed, including an introduction to hyperelliptic

curves. The third part describes the actual implementation that he did. He imple-

mented three different versions of an Elliptic curve cryptosystem and two different

versions of Hyperelliptic curve cryptosystems. He shows a table in his result section,

where he applies the algorithm of Cantor and compares different genera, see Table

3.8. As a conclusion, Krieger gives a table that compares the time needed for a sig-

nature with RSA, Elliptic curves and HECC, which we reproduce as Table 3.9. He

further notes, that Elliptic curve cryptosystems as well as HECC can compete with

RSA in terms of speed.
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At the time of this writing, we are not aware of any published work that report

on hardware implementations of a hyperelliptic curve based on cryptosystem.

g field scalar (sec)

1 128 3.5 · 10−1

2 64 5.2 · 10−1

3 42 1.2

4 31 1.1

5 25 1.8

6 21 2.6

7 18 3.9

8 16 5.1

Table 3.8: Scalar multiplication [Kri97]

3.2 Elliptic Curve Implementations

This subsection describes one hardware and one software elliptic curve implementa-

tion report which were both crucial for the design presented in this thesis. Note that

the field of elliptic curve cryptosystems is large, and we restrict ourselves to the most

relevant work.

In [OP00], Gerardo Orlando and Christof Paar deal with a high performance
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crypto system timing

RSA with 1024 bit 0.53 sec

Elliptic curve 0.11 sec

HECC with genus=2 0.84 sec

Table 3.9: Comparison of three cryptosystems [Kri97]

reconfigurable elliptic curve processor for GF (2m). The processor is scalable in terms

of area and speed. It exploits the abilities of reconfigurable hardware to deliver

optimized circuitry for different elliptic curves and finite fields. The main features

of this architecture are the use of an optimized bit-parallel squarer, a digit-serial

multiplier, and two programmable processors. For this thesis we used the squarer and

the multiplier architecture described in the paper to perform the field operations. The

bit-parallel squarer is capable of computing a square in one clock cycle. The squaring

of a field element A(x) =
∑m−1

i=0 aixi ∈ GF (2m), ai ∈ GF (2) is ruled by the following

equation:

A2(x) ≡
m−1∑
i=0

aix
2i mod F (x)

The multiplication of two field elements A(x) and B(x) can be expressed as

seen in Equation 3.1. The equation is arranged so that it facilitates the understanding

of the digit-serial multiplier used. In the equation B(x) is expressed in kD digits

(1 ≤ kD ≤ dm/De) as follows: B(x) =
∑kD−1

i=0 Bi(x)xDi, where Bi(x) =
∑D−1

j=0 bDi+jxj
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and D is the digit size in bits.

A(x)B(x) ≡ (A(x)

kD−1∑
i=0

Bi(x)xDi) mod F (x) (3.1)

≡ (

kD−1∑
i=0

Bi(x)(AxDi mod F (x))) mod F (x) (3.2)

This multiplier computes a product sum A(x)B(x) + C(x) mod F (x) within dm/De

clock cycles, as shown in Algorithm 3.2.1. More precisely, the product is computed

in kD clock cycles. The performance and complexity of this multiplier is a function

of the digit size D [SP97].

Algorithm 3.2.1 [OP00]

Input: A(x)
∑m−1

i=0 aixi, B(x) =
∑kD−1

i=0 Bi(x)xDi, Bi(x) =
∑D−1

j=0 bDi+jxj

Output: C(x) = (A(x)B(x) + C(x)) mod F (x)

1. C(x) = 0 or the previous value of C(x)

2. For i = 0 to kD − 1 do:

2.1 C(x) = Bi(x)(AxDi mod F (x)) + C(x)

3. C(x) = C(x) mod F (x)

Darrel Hankerson, Julio López Hernandez, and Alfred Menezes presented an exten-

sive and careful study of the software implementation on workstations of the NIST-

recommended elliptic curves over binary fields [HHM00]. They also presented results
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of an implementation in C on a Pentium II 400 MHz workstation. Algorithm 3.2.2

was introduced in Section 3.4 of this thesis. This algorithm computes the inverse of a

non-zero field element a ∈ F 2m using a variant of the Extended Euclidean Algorithm

for polynomials. The algorithm maintains the invariants ba+ df = u and ca+ ef = v

for some d and e which are not explicitly computed. The algorithm performs at

each iteration, if deg(u) ≥ deg(v), the partial division of u by v, by subtraction xjv

from u, where j = deg(u) − deg(v). In this way the degree of u is decreased by at

least 1, and on average by 2. Subtraction xjc from b preserves the invariants. The

algorithm terminates when deg(u) = 0, in which case u = 1 and ba + df = 1; hence

b = a−1 mod f(x).

Algorithm 3.2.2 [HHM00]

Input: a ∈ F 2m , a 6= 0

Output: a−1 mod f(x)

1. Set b← 1, u← a, v ← f

2. While deg(r1) 6= 0 Do:

3.1 j ← deg(u)− deg(v)

3.2 If j < 0 Then: u↔ v, b↔ c, j ← −j

3.3 u← u+ xj · v, b← b+ xj · c

3. return(b)



Chapter 4

Implementation of Field- and

Polynomial-Arithmethic

4.1 Field Arithmetic Implementation

The elements of the Jacobians are represented as polynomials where the coefficients

are elements of a finite field, as described in Section 2.5. In order to perform poly-

nomial operations, it is necessary to be able to realize field operations. We only

concentrate on fields of characteristic two. In this section we will describe imple-

mentation techniques for the field operations and in Section 4.2 we will focus on the

polynomial operations. To perform an addition in the Jacobian we need the field oper-

ations: addition, multiplication/squaring and inversion. In the following, we assume

38
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a polynomial representation of the finite field elements. The irreducible polynomial

will be denoted as F (x). For a thorough treatment of finite fields the reader is referred

to, e.g., [LN86].

4.1.1 Field Addition

The addition of two field elements in F 2m is accomplished by a bitwise XORing of the

field elements. Subtraction of two field elements is done in the same way since each

element is its own additive inverse. Algorithm 4.1.1 describes the pseudo code:

Algorithm 4.1.1

Input: A(x) =
∑m−1

i=0 aixi, B(x) =
∑m−1

i=0 bixi, where A,B ∈ GF (2m); ai, bi ∈ GF (2)

Output: C(x) =
∑m−1

i=0 cixi, where C ∈ GF (2m); ci ∈ GF (2)

1. For j = 0 to m− 1

1.1 ci = ai + bi mod 2

This means that we can write C(x) = A(x) + B(x) =
∑m−1

i=0 ((ai + bi) mod

2)xi =
∑m−1

i=0 cixi. In terms of hardware, we need m parallel XOR units (denoted by

⊕). Each unit computes (ai ⊕ bi), as shown in Figure 4.1.
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Figure 4.1: Addition in GF (2m)

4.1.2 Field Multiplication

The product of two field elements is calculated with the LSD multiplier introduced

in [SP97] and the implementation of [OP00]. For more details on LSD multipliers

see [BP99, SV93]. The multiplication of two field elements A(x) and B(x) can be

expressed as followed, where D is the digit-size:

A(x)B(x) ≡ (A(x)

kD−1∑
i=0

Bi(x)xDi) mod F (x)

≡ (

kD−1∑
i=0

Bi(x)(AxDi mod F (x))) mod F (x)

The product can be calculated in dm/De clock cycles [OP00], as D bits are processed

in one clock cycle.
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4.1.3 Field Squaring

The squaring of a field element A(x) =
∑m−1

i=0 aixi is ruled by the following equation:

A2(x) ≡
m−1∑
i=0

aix
2i mod F (x), where ai ∈ F 2

Let’s look at a small example to see how it works:

Example: Let F (x) = x5 + x2 + 1 and

A(x) = a4x4 + a3x3 + a2x2 + a1x+ a0 ∈ GF (2m). Thus,

A2(x) = [a4x
4 + a3x

3 + a2x
2 + a1x+ a0]

2 = a4x
8 + a3x

6 + a2x
4 + a1x

2 + a0

If we now reduce the x-terms equal to or higher than x5 modulo the

field polynomial, we get: a3x6 ≡ a3(x3 + x) mod F (x), a4x8 ≡ a4(x3 +

x2 + 1) mod F (x). Hence, with replacing the modulo-two-additions by

XORs (⊕): A2(x) ≡ a4(x3 + x2 + 1) + a3(x3 + x) + a2x4 + a1x2 + a0 ≡

a2x4 + (a4 ⊕ a3)x3 + (a4 ⊕ a1)x2 + a3x+ (a4 ⊕ a0) mod F (x). We obtain

a output polynomial O(x) = A2(x) =
∑m−1

i=0 oixi:

o0 ← a0 XOR a4

o1 ← a3

o2 ← a1 XOR a4

o3 ← a3 XOR a4

o4 ← a2
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The bit-parallel squarer is capable of computing a square in one clock cycle

and requires at most (r−1)(m−1) gates [PFSR99, Wu99, OP00], where r represents

the number of non-zero coefficients of the field polynomial. Hence the complexity is

at most (m+ t+1)/2 gates for irreducible trinomials F (x) = xm+xt+1 and 4(m−1)

gates for pentanomials F (x) = xm + xt1 + xt2 + xt3 + 1 [Wu99].

4.1.4 Field Inversion

One way to calculate the inverse based on a modification of Fermat’s Little Theorem.

For any prime number p, the theorem reads for characteristic two fields as follows:

ap−1 ≡ 1(modp), for all a ∈ F ∗p

Hence, a · a2m−2 ≡ 1 mod F (x), where F (x) is the field polynomial, a ∈ F 2m . There-

fore, a−1 ≡ a2m−2 mod F (x). Using the standard square-and multiply we need m− 2

multiplications and m squarings [MvOV96]. That means that we need at most

(m − 2) · dm/De clock cycles for the multiplications and m clock cycles to realize

the squarings, if the architectures described earlier are being used. In total we need

[(m− 2) · dm/De] +m clock cycles.

A more efficient way to calculate the inverse is to use the Extended Euclidean

Algorithm (EEA). Different ways to implement the EEA for integers as well as for

polynomials can be found for example in the following books [vzGG99, MvOV96,



Field- and Polynomial- Arithmethic 43

Ber68, Aho74, Knu98] and in numerous papers [Moe73, BCH93, Jeb93, HHM00]. In

[HHM00] the authors present a version of the EEA (Algorithm 3.2.2) to calculate an

inverse in F 2m. This algorithm is well suited for an implementation on FPGAs. The

algorithm does not use any divisions, but multiplications of field elements by xj and

additions. The multiplication by xj is a j-position left shift, which is a very efficient

operation and carries virtually no delay in hardware. The addition of two polynomials

is just the bitwise XORing of the coefficients, as described in Section 4.1.1.

Per iteration, we need one clock cycle for the calculation of j, for the swapping

of the field elements, for the shifting, for the addition, and for the calculation of the

degree. This means we need 5 clock cycles for one iteration. We have to iterate at

most m times. Consequently, in the worst case, 5 · 2m clock cycles are needed for the

calculation of the inverse with the version of the EEA as stated above.

In [IT88], the authors proposed a way to compute the multiplicative inverses

in GF (2m) using normal bases. They perform an inversion with at most 2[log2(m−1)]

multiplications in GF (2m) and (m− 1) cyclic shifts.

4.2 Implementation of the Polynomial Operations

If we look at Algorithms 2.6.1, 6.2.1, 2.6.3, and 2.6.4, and the description in Chapter

6, we can see that we have to provide the following functions in order to implement
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the addition on hyperelliptic curves:

• polynomial addition (poly sum)

• polynomial multiplication (poly prod)

• polynomial squaring (poly squa)

• polynomial gcd (poly gcd)

• polynomial division (poly quot)

• polynomial inversion (poly inverse)

The polynomials that we encounter are of the form: A(u) = akuk+ak−1uk−1 +

...+ a2u
2 + a1u+ a0, where ai ∈ F 2m. Let us now analyze the architectures for each

of the functions.

4.2.1 Polynomial Addition

The poly sum is a function that implements the addition of two polynomials. Since

the coefficients of the polynomials are elements in GF (2m), this is done by bitwise

XORing. The pseudo code looks like the one for the addition of two field elements

(see Algorithm 4.1.1). The only difference is that we now work not only with one

field element. We have to add at most (deg[P (u)]+1) field elements, where deg[P (u)]
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is the degree and m is the extension degree of the field over which the polynomial

is defined. In hardware terms that means we need [(deg[P (u)] + 1) · m] gates to

implement a polynomial adder. We can do the whole addition in one clock cycle.

It is also an advantage to have a function that adds three polynomials at the

same time (poly 3sum). This gives us the possibility to add three polynomials in

one clock cycle, whereas otherwise we would need two cycles. This is achieved by

XORing three elements, instead of two, of the input vectors, which requires twice as

many XOR gates.

4.2.2 Polynomial Multiplication

In order to provide a polynomial multiplication we could use the schoolbook method.

This means we would multiply each coefficient from the first polynomial with each

coefficient of the second polynomial. We could use Algorithm 3.2.1 for the calcu-

lation of a field multiplication. This can be a good approach for certain software

implementations, but not very efficient for hardware implementation as it only com-

putes one coefficient product at a time. The method we used for the polynomial

multiplication is shown in Figure 4.2. It parallelizes k coefficient multiplications.

We multiply two polynomials A(u) = akuk + ak−1uk−1 + ... + a2u2 + a1u + a0 and

B(u) = bnu
n + bn−1u

n−1 + ...+ b2u
2 + b1u+ b0, where ai, bi ∈ GF (2m). We start doing

a scalar multiplication of the highest coefficient from A times the whole polynomial
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B(u): ak · B(u). Afterwards we take the next coefficient of A: ak−1 · B(u) and do

the scalar multiplication and so on. The result of each scalar multiplication is added

to the total result. The total result is shifted by one coefficient after each addition.

Hence we calculate step by step the output polynomial of the polynomial multiplica-

tion: R(u) = rk+muk+m + rk+m−1uk+m−1 + ...+ r2u2 + r1u+ r0 . This is summarized

in the following pseudo code:

Algorithm 4.2.1

Input: A(u) =
∑k−1

i=0 aiu
i, B(u) =

∑n−1
i=0 biu

i,

where ai, bi ∈ GF (2m) and k = deg(A(u)) ≤ deg(B(u)) = n

Output: R(u) =
∑kn−1

i=0 riui, where ri ∈ GF (2m)

1. R(u) = 0

2. For j = deg(A(u)) down to 0

2.1 tmp(u)→ (aj) ·B(u)

2.2 R(u)→ R(u) + tmp(u)

2.3 R(u) << 1 (shift R(u) by one coefficient)

3. Return (R(u))

One scalar multiplication (step 2.1 in the algorithm) takes the same amount

of clock cycles as a field multiplication, that means we need dm/De clock cycles with
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the field multiplier introduced in Subsection 4.1.2. In the worst case we multiply a

polynomial of degree 2g + 1 by a polynomial of degree g. Therefore we would need

at most [g · dm/De] clock cycles.

= multiplication of two elements in GF(2m)

= addition of two elements in GF(2m)

= shift by on coefficient of the polynomial

r2 r(k+m-1)
...

bn, bn-1, ... , b1, b0

ak ak-1

r1

a0
...
...

... r(k+m)

Figure 4.2: Block diagram of the polynomial multiplication

4.2.3 Polynomial Squaring

The squaring of a polynomial is a relatively easy operation. The pseudo code is shown

in Algorithm 4.2.2:
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Algorithm 4.2.2

Input: A(u) =
∑k−1

i=0 aiu
i, where ai ∈ GF (2m)

Output: C(u) =
∑(2k)−1

i=0 ciui, where ci ∈ GF (2m)

1. For j = 0 to deg(A(u)) + 1

1.1 c2j ← (aj)2 mod P (u)

2. Return (C(u))

From a hardware point of view, we just need deg(A(u)) + 1 field squarers to perform

polynomial squaring. This calculation takes one clock cycle, if we assume that the

field squarer computes a result in one clock cycle.

4.2.4 Polynomial gcd

The greatest common divisor (gcd) of two polynomials can be calculated with the

Extended Euclidean Algorithm. The theory of greatest common divisors and the

Euclidean Algorithm for integers carries over in a straightforward manner to the

polynomial ring F q [x]. Where F q is a finite field of order q.

Definition 4.2.3 [MvOV96] Let g(x), h(x) ∈ F p[x], where not both are 0. The

greatest common divisor of g(x) and h(x), denoted as gcd(g(x), h(x)), is the monic

polynomial of greatest degree in Z q[x] which divides both g(x) and h(x).
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Remark: the gcd of two polynomials has to be a monic polynomial. This is

done by dividing all coefficients with the leading coefficient. In our implementation

we worked only in fields of characteristic 2 and therefore did not have to normalize.

Algorithm 4.2.4 provides the EEA for polynomials [MvOV96]:

Algorithm 4.2.4

Input: Two polynomials r0(x), r1(x) ∈ F q[x]

Output: d(x) = gcd(r0(x), r1(x)) and polynomials s(x), t(x) ∈ F q [x] which satisfy

s(x)r0(x) + t(x)r1(x) = d(x)

1. If r1(x) = 0 then set d(x)← r0(x), s(x)← 1, t(x)← 0 and return (d(x), s(x),

t(x))

2. Set s0(x)← 1, s1(x)← 0, t0(x)← 0, t1(x)← 1

3. While r1(x) 6= 0 do:

3.1 q(x)← r0(x) div r1(x), r2(x)← r0(x)− r1(x)q(x)

3.2 s2(x)← s0(x)− q(x)s1(x), t2(x)← t0(x)− q(x)t1(x)

3.3 r0(x)← r1(x), r1(x)← r2(x)

3.4 s0(x)← s1(x), s1(x)← s2(x), t0(x)← t1(x), and t1(x)← t2(x)

4. Set d(x)← r0(x), s(x)← s0(x), t(x)← t0(x)
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5. Return (d(x), s(x), t(x))

In [HHM00] the authors present an EEA algorithm to calculate the inverse

in F 2m . This algorithm is well suited for implementation on FPGAs, because the

algorithm does not use any divisions. This algorithm can be modified to compute the

gcd and the two polynomials s(x) and t(x), instead of just the inverse. The modified

version is shown in Algorithm 4.2.5:

Algorithm 4.2.5

Input: r0(x), r1(x) ∈ F 2m, where deg(r0) > deg(r1)

Output: d(x) = gcd(r0(x), r1(x)) and s(x), t(x) ∈ F 2m which satisfy s(x)r0(x) +

t(x)r1(x) = d(x)

1. Set s0(x)← 1, s1(x)← 0, t0(x)← 0, t1(x)← 1

2. While deg(r1) 6= 0 do:

2.1 j ← deg(r1)− deg(r0)

2.2 if j < 0 then: r0 ↔ r1, t0 ↔ t1, s0 ↔ s1, j ← −j

2.3 r1 ← r1 + xj · r0

2.4 t1 ← t1 + xj · t0, s1 ← s1 + xj · s0

3. Set d(x)← r1(x), s(x)← s1(x), t(x)← t1(x)
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4. Return (d(x), s(x), t(x))

We now have to modify this algorithm, so that we are able to calculate the

gcd of two polynomials that have coefficients in F 2m . Algorithm 4.2.5 works only for

polynomials that have coefficients in F 2. That means we have to replace each of the

three shifts in Step 2.3 and 2.4 of Algorithm 4.2.5 with a shift, a field inversion and a

field multiplication. These two steps (step 2.3 and 2.4) look like the following, where

LC() denotes the leading coefficient of the polynomial:

2.3 r1 ← r1 + xj · [LC(r0)/LC(r1)] · r0

2.4 t1 ← t1 + xj · [LC(r0)/LC(r1)] · t0, s1 ← s1 + xj · [LC(r0)/LC(r1)] · s0

The field inversion is of course very expensive in terms of resources and time.

We modified the algorithm as suggested by [Mon01] to avoid the inverse computation

in each iteration, see 4.2.6:

Algorithm 4.2.6

Input: Two polynomials r0(u) = akuk + ak−1uk−1 + ... + a2u2 + a1u + a0, r1(u) =

bnun + bn−1un−1 + ...+ b2u2 + b1u+ b0, where ai, bi ∈ F 2m and deg(r0) > deg(r1)

Output: d(u) = gcd(r0(u), r1(u)) and polynomials s(u), t(u) which satisfy s(u)r0(u)+

t(u)r1(u) = d(u)

1. Set s0(u)← 1, s1(u)← 0, t0(u)← 0, t1(u)← 1
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2. While r1 6= 0 do:

2.1 j ← deg(r1)− deg(r0)

2.2 if j < 0 then: r0 ↔ r1, t0 ↔ t1, s0 ↔ s1, j ← −j

2.3 r1 ← LC(r0) · r1 + uj · LC(r1) · r0

2.4 t1 ← LC(r0) · t1 + uj · LC(r1) · t0, s1 ← LC(r0) · s1 + uj · LC(r1) · s0

3. Set d(u)← LC(r0)−1 · r1(u), s(u)← LC(r0)−1 · s1(x), t(x)← LC(r0)−1 · t1(x)

4. Return (d(u), s(u), t(u))

Remark 1: The multiplications that we have to provide in Step 2.3 and Step

2.4 are scalar multiplications. We multiply one coefficient with a polynomial; this

means we do not have to do a full polynomial multiplication.

Remark 2: In order to be able to compute Step 3, we have to calculate a field

inversion of the leading coefficient of the polynomial r0. The inverse is then multiplied

(a scalar multiplication) with r1(x), s1(x) and t1(x) and the results is stored in d(c),

s(x), and t(x), respectively.

In every iteration of the while-loop we calculate j, switch all values if j < 0,

shift three polynomials by j, do six scalar multiplications and add the calculated

values in order to obtain the new values for r1, t1 and s1. That means we need

1 + 1 + 1 + dm/De + 1 clock cycles for every iteration, if we assume that all six scalar
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multiplications are computed in parallel. The while-loop is executed at most deg(r0)+

1 times, i.e. g + 1 times, since the degree of the polynomial r0 is reduced by at

least by one in each iteration. We need another [5 · m + 2] cycles for the inversion

and dm/De cycles for the scalar multiplication in step 3. So the total is at most

[(g + 1) · (4 + dm/De)] + [5 ·m+ 2] + dm/De clock cycles.

4.2.5 Polynomial Division

Possible algorithms to calculate the quotient of two polynomials can be found in

[vzGG99, Ber68, Knu98, Aho74]. In [vzGG99] a method to calculate the quotient of

two polynomials was introduced, but these algorithms do not calculate the remainder.

What they do is they truncate the polynomials. They are based on the observation

that the quotient of two polynomials of degrees deg1 and deg2, with deg1 > deg2,

depends only on the 2(deg1− deg2) + 1 highest coefficients of the dividend and the

deg1− deg2 +1 highest coefficients of the divisor.

Example: Let p1(x) = x5 + x4 + x3 + x2 + x+ 1 and p2(x) = x4− 2x3 +

3x2 + x− 7. Let p1(x) = q(x) · p2 + r(x) with deg(r) < deg(p2).

Hence, q(x) = x+ 3 and r(x) = 4x3 − 9x2 + 5x− 22.

If we truncate the polynomial p1(x) by 2(deg1− deg2) + 1 = 3, we get

p∗1(x) = x3 + x2 + x + 1. The polynomial p2(x) will be truncated by

deg1− deg2 +1 = 2 and we get p∗2(x) = x2 − 2x + 3. If we now calculate
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the quotient q∗(x) and r∗(x) we will get the following results: q∗(x) = x+3

and r∗(x) = 4x− 8.

It can be seen that with the truncated polynomials we get the correct result for

the quotient, but not for the remainder. In order to obtain the truncated polynomial

from the original polynomial, we just have to shift the coefficients to the right by

(2 deg2− deg1) positions. If we store the polynomials in registers, we need a (deg1 +1)-

bit register and a (deg2 +1)-bit register. We know that deg1 > deg2. Therefore we

have to truncate p1 by 2(deg1− deg2)+1, that is equal to a right shift by (deg1 +1)−

[2(deg1− deg2) + 1] = 2 deg2− deg1. We have to shift the polynomial p2 with the

lower degree deg2: (deg2 +1)− [deg1− deg2 +1] = 2 deg2− deg1.

The method of providing a truncation before we divide means that we would

not have to deal with vectors that are as long as the original vectors. The drawback

would be that we have to add some more gates to truncate the polynomials. If we

compare the method of truncating the polynomials with a straightforward polynomial

division, we will find out that the number of iterations that is need for both methods

is the same. This results from the fact that the difference of the degrees of the two

polynomials will stay the same in both methods. We decided to go for the division

without truncation. Therefore we have to use a bigger register for the vector so

that we do not have to truncate the polynomials. This assures us to get the correct

remainder, and hence we can use the polynomial division for modulo reduction if
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necessary.

Algorithms 4.2.7 computes q(u) and r(u) such that A(u) = q(u) ·B(u) + r(u)

with deg(r) < deg(B) for given A(u) and B(u).

Algorithm 4.2.7

Input: Dividend A(u) = akuk + ak−1uk−1 + ...+ a2u2 + a1u+ a0 and divisor B(u) =

bnun + bn−1un−1 + ...+ b2u2 + b1u+ b0, where ai, bi ∈ F 2m and deg(A) > deg(B)

Output: Quotient q(u) and remainder r(u), where A(u) = q(u) ·B(u) + r(u)

1. inverse← LC[B(u)]−1

2. For j for (deg[A(u)]− deg[B(u)]) down to 0 do:

2.1 factor ← LC[(A(u)] · invers

2.2 factor ←factor· uj

2.3 temp B(u)← B(u) · factor

2.4 A(u)← A(u) + temp B(u), q(u)← q(u)+factor

3. Set r(u)← A(u)

4. Return (q(u), r(u))

Remark: The multiplication by uj can be realized by a left shift. We also

notice that we have to do only one field inversion (Step 1.) and no full polynomial

multiplication.
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The resulting design is presented in Figure 4.3.
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field_
inversion

LC[B(u)]

LC[B(u)]-1

LC[A(u)]

uj

j=deg(A) - deg(B)

B(u)

Figure 4.3: Block diagram of the polynomial division

We need [5 ·m]+2 cycle counts for the field inversion. The field multiplication

will take dm/De cycles, the shift will take one cycle, the scalar multiplication takes

also dm/De cycles, the addition is done in one cycle count. In total we will have at
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most 2 + (5 ·m) + (deg[A(u)]− deg[B(u)]) · (2 · dm/De + 2) cycle counts.

4.2.6 Polynomial Inversion

The inverse can be calculated via Algorithm 4.2.6 in Section 4.2.4. This means that we

just use our gcd implementation for the inverse calculation, with s(x) as the inverse.



Chapter 5

Design Methodology

This chapter describes the process to actually design the architecture of FPGAs.

Parts of this section were presented in [Ros98] and [ECYP00].

There are two basic hardware design methodologies currently available: lan-

guage based (high level) design and schematic based (low level) design. Language

based design relies upon synthesis tools to implement the desired hardware. While

synthesis tools continue to improve, they rarely achieve the most optimized imple-

mentation in terms of both area and speed when compared to a schematic imple-

mentation. As a result, synthesized designs tend to be (slightly) larger and slower

than their schematic based counterparts. Additionally, implementation results can

vary greatly depending on the synthesis tool as well as the design being synthesized,

leading to potentially increased variances in the synthesized results when comparing

58
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synthesis tool outputs. This situation is not entirely different from a software imple-

mentation of an algorithm in a high-level language such as C, which is also dependent

on coding style and compiler quality. Schematic based design methodologies are no

longer feasible for supporting the increase in architectural complexity provided by

modern FPGAs. As a result, a language based design methodology was chosen as the

implementation form for the hyperelliptic curve cryptosystem with VHDL being the

specific language chosen.

5.1 The Design Cycle

The general design cycle for High Description Language (HDL) architectures consisted

of the following steps:

1. Research of arithmetic functions.

2. Research of hyperelliptic curve constructs.

3. VHDL implementation of arithmetic functions.

5. Design of point addition/doubling hyperelliptic curve engine.

6. Logic verification of the design.

7. Synthesis and logic optimization.
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8. Device specific realization (place and route).

9. Back-annotated verification of the design.

We chose VHDL as the language to describe the design of the arithmetic needed

for the group operations on the hyperelliptic curve. We completely implemented both

group operations, i.e. the addition and doubling, in VHDL. We represented the divi-

sors with polynomials, as shown in Chapter 2. The coefficients of these polynomials

are elements in F 2m . The VHDL design was simulated and the correctness of the

operation was verified.

For the entire design, i.e., the HEC group operation, steps 1–6, as described

above, were conducted. Verification of the design was first performed on the logic

level basis. This step assured the correct functionality if all combinatorial and net

delays are ignored. In order to do the verification, we used the test vectors that were

produced from a C and NTL [Sho01] implementation (consult the next section for

more details about the calculation of test vectors). Once the design was logically

verified, we synthesized the modules performing the field arithmetic (step 7). The

synthesis resulted in timing and area estimates. In order to achieve exact results,

however, steps 8 and 9 of the design cycle would still have to be conducted.
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5.2 Generating Random Divisors

From a cryptosystems point of view, we need a method of generating a random divisor

D ∈ J(F qn). We used the method described in [Kob89b]. In order to use this method

we first have to define the trace:

Definition 5.2.1 [LN86] For α ∈ F = F qn and K = F q, the trace TrF/K(α) of α

over K is defined by

TrF/K(α) = α+ αq + ...+ αq
n−1

If K is the prime subfield of F , then TrF/K(α) is called the absolute trace of α and

simply denoted by TrF(α).

Let us now see how we may construct random divisors. We may regard C as

defined over F qn . Let C be v2 + h(u)v = f(u). Choose the coordinate u = x ∈ F qn

at random. This means in our case x ∈ F 2n . Attempt to solve v2 + h(u)v = f(u) for

v ∈ F 2n . In the case that q is even, h(x) 6= 0 and the change of variables z = v/h(x)

leads to the equation z2 + z = a, where a = f(x)/h(x)2. This equation has a solution

z ∈ F q if TrFqn/F2
a = 0 and does not have a solution if this trace is 1. In the latter

case, we must choose another u = x ∈ F q and start again. In the former case, we can

find z as follows: If q = 2n is an odd power of 2, simply set z =
∑(n−1)/2

j=0 a22j
.
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5.3 Design Tools

Synplify by Synplicity, Inc. was used to synthesize the VHDL implementations of

the cryptosystem. As this study places a strong focus on high throughput imple-

mentations, the synthesis tools were set to optimize for speed. That means resultant

implementations exhibit the best possible throughput with the associated cost being

an increase in the area required in the FPGA for each of the implementations. Simi-

larly, if the synthesis tools were set to optimize for area, the resultant implementations

would exhibit reduced area requirements at the cost of decreased throughput. How-

ever, this theory does not always hold true for certain algorithms and architectures.

This contradiction is caused by the underlying proprietary synthesis tool algorithms

— different synthesis algorithms tend to yield different implementations for the same

VHDL code.

XACTstep 2.1i by Xilinx, Inc. was used to place and route the synthesized

implementations.

Finally, Speedwave by Viewlogic Systems, Inc. and Active-HDLTM by ALDEC,

Inc. were used to perform behavioral and timing simulations for the implementations

of the cryptosystem. The simulations verified both the functionality and the ability

to operate at the designated clock frequencies for the implementations.



Chapter 6

Towards an Architecture for a the

Hyperelliptic Curve Cryptosystem

For the implementation of a Hyperelliptic Curve Cryptosystem (HECC) we need to

implement the additive group operation, i.e., addition and doubling of elements of

the Jacobian represented by divisors. All the algorithms needed, can be found in

Section 2.6. Architectures for the field operations and polynomial operations can be

found in Sections 4.1 and 4.2, respectively.

Our goal was an architecture which is optimized for the use of hyperelliptic

curves with h(u) = 1. Hence the equation of the curve is v2 + v = f(u). We also

restricted ourselves to fields of characteristic 2 and to irreducible field polynomials of

the form P (x) = xm + xt + 1. Divisors D = (a(u), b(u)) are implemented as a pair

63
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of polynomials, a(u), b(u) ∈ F 2m [u]. Each polynomial is represented as a vector with

(3 · g + 2) ·m bits, where g is the genus of the HECC and we work in the underlying

field F 2m . From Algorithm 2.6.1 it is easy to see that the largest number of bits

needed to represent polynomials will be (3 · g + 2) ·m bits.

6.1 Implementation of the Addition Operation

As seen in Section 2.6, the addition of two divisors on a hyperelliptic curve, involves

two steps: composition (“hyper composition”) and reduction (“hyper reduction”), see

Figure 6.1.

hyper_
addition

Polynomials Divisor 1:
(A1,B1)

Polynomials Divisor 2:
(A2,B2)

Curve C & field GF()

Polynomials Divisor 3:
(A,B)

hyper_
reduction

Polynomials
Divisor 3:

(A,B)

hyper_
composition

Curve C & field GF()

Polynomials
Divisor 3':

(A',B')

Polynomials divisor 1:
(A1,B1)

Polynomials divisor 2:
(A2,B2)

Figure 6.1: Block diagram for addition on Hyperelliptic Curves

We will consider two steps of the addition, separately, in order to find out how
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to connect and how to parallelize the entities that we have to implement. The next

section will describe the composition step.

6.1.1 Implementation of the Composition Step

We can divide the composition step into three parts, represented by three modules.

The first step is the calculation of the gcd of three polynomials (poly 3gcd). The next

steps are the calculation of the output polynomial A′(u) and the output polynomial

B′(u), as can be seen in Figure 6.2 (where calA and calB are the names of the modules

that provide this functionality, respectively).

Let us now have a closer look at the implementation of the steps needed for the

composition, starting with the poly 3gcd. With poly 3gcd we indicate the calculation

of the gcd of three polynomials; whereas the term poly gcd denotes the module for

the calculation of the gcd of only two polynomials.

We are faced with two possible implementation options to find the gcd of the

three polynomials a1, a2, and (b1 + b2 + h) with:

gcd(a1, a2, (b1 + b2 + h)) = d = s1a1 + s2a2 + s3(b1 + b2 + h)

One possibility would be to calculate the gcd as shown in Algorithm 2.6.1. First

calculate the gcd of a1 and a2: d1 = gcd (a1, a2) = e1a1 + e2a2. The calculated d1 is

used as an input for the second gcd calculation together with the sum (b1 + b2 + h):
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calB

s1

B'

s2

s3

d

A1

A2

B1

B2

A

f

A1

A2

B1

B2

h

f

calA A'

d

A1

A2

B'

A'

extended
_3gcd

A1

A2 s1

s2

d

B1

B2

h

s3

Figure 6.2: Block diagram of the composition step

d = gcd(d1, b1 + b2 + h) = c1d1 + c2(b1 + b2 + h). Let s1 = c1e1, s2 = c1e2, and

s3 = c2, such that d = s1a1 + s2a2 + s3(b1 + b2 + h). This is described in Figure

6.3. The second possibility would be to use a special algorithm that calculates the

gcd of three polynomials. An algorithm to implement the gcd calculation of several

polynomials can be found in [vzGG99]. For the option shown in Figure 6.3 we have to

provide poly prod, poly add, and twice the calculation of the gcd of two polynomials

(poly gcd) to be able to calculate the poly 3gcd.

We will now analyze the complexity of both options and decide which one

offers better performance. If we look at Figure 6.3 or at Algorithm 2.6.1, we see that

the result of the first gcd calculation is an input for the second gcd calculation. This

means that the result after the computation of the two poly gcd and poly prod will
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poly_gcd
A1

A2

e1

e2

d1

poly_add

B1

B2

h

(B1+B2+h)
poly_gcd

d1
c1

c2

d

poly_prod
e1

c1
s1

poly_prod

c1

e2
s2

s3

d

Figure 6.3: Block diagram of the calculation of poly 3gcd

be the same as if we would calculate a gcd of three input polynomials. To be able to

calculate the gcd of three polynomials, we just have to combine the first, second, and

third step of Algorithm 2.6.1. Or, in terms of hardware, we have to build a module

that replaces two poly gcd and poly prod in Figure 6.3 by a function that calculates

the gcd of three polynomials.

In [Eng99] the author analyzed the average complexity of the arithmetic in

the hyperelliptic Jacobian over any finite field. He also determined the exact average

number of field operations for computing the greatest common divisor of polynomials

of the EEA. Lemma 6 in this publication shows that two randomly chosen polynomials

over F q are coprime with a probability of 1−1/q. We are working with large fields and

therefore the probability is almost one. Hence no further computations involving the

third polynomial are needed. That does not mean that we do not have to calculate
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the gcd of our given polynomials at all, since the coefficients s1 and s2 are needed,

but it means that it is worth testing for coprimality after the calculation of the gcd

of two polynomials. If they are coprime, we do not have to calculate the second

polynomial gcd and s3. Hence, s1 = e1, s2 = e2 and s3 = 0 if the two polynomials a1

and a2 are coprime. Thus the implementation option shown in Figure 6.3, with two

gcd calculations is preferable.

Let us now consider the calculation of the two resulting polynomials after the

composition step A′(u) (see Figure 6.4) and B′(u) (see Figure 6.5). All necessary

modules are described in Chapter 4.2 and we just have to build the state machines

to calculate the results of the composition step.

poly_quot
d2

A1 * A2

A'

poly_prod

A1

A2

poly_squad d2

Figure 6.4: Block diagram of the calculation of A′(u)

If we implement calA and calB in two modules as suggested so far, we miss

the opportunity to run parts of the two calculations in parallel. Parallelization is not

possible, because the output A′(u) is an input to the module calculating B′(u). A
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prod
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prod poly_
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B2

f

poly_
sum

poly_
prod

(B1B2
+ f)

s3

A

sum

A'

d

poly_
quot mod

B'

Figure 6.5: Block diagram of the calculation of B′(u)

better approach would be to have a state machine that has as input the two divisors

D1(A1, B1), D2(A2, B2) and the output of poly 3gcd. In this way we could parallelize

the calculation of A′(u) and B′(u). Figure 6.6 shows the parallel approach. In this

figure all the modules that can start the calculation at the same time or do the

calculation in parallel are drawn underneath each another. This means the time axis

is from left to right.

Remark: The calculation of the poly 3gcd is not shown in Figure 6.6. The

design assumes that the results of the gcd calculation are available.
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s2 * A2 * B1
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Figure 6.6: Block diagram of the calculation of A′(u) and B′(u) in parallel

6.1.2 Implementation of the Reduction Step

We implemented the Gauss reduction as described in Algorithm 2.6.3. The design

can be seen in Figure 6.7.

Remark: Figure 6.7 shows only the iteration steps that have to be done in

order to reduce the degree of the polynomials a(u) and b(u). The figure does not

show the steps needed to get a monic polynomial.
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IF
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poly_
prod

poly_
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poly_3add
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quot

poly_
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B' h

A'

(f - B'*h - B'2)

A'

(-h -B')

B'

D = (A', B')

D = (A, B)

Figure 6.7: Block diagram of the design of the Gauss Reduction Algorithm

6.2 Implementation of the Doubling Operation

The design of the doubling operation is much easier than that of the addition. When

a = a1 = a2 and b = b1 = b2, we can take s2 = 0, where a1, a2, b1, b2 are the input

polynomials (see Algorithm 2.6.2). Moreover, in the case of characteristic 2 and
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h(u) = 1, we can assume d1 = 1, s1 = s2 = 0, and s3 = 1. Therefore, a doubling of a

divisor in J(F 2m) on a curve of the form v2 + v = f(u) can be simplified as shown in

Algorithm 6.2.1 and Figure 6.8.

Algorithm 6.2.1

Input: Reduced divisors D = div(a, b) defined over F 2n .

Output: A semi-reduced divisor D′ = div(a′, b′) defined over F 2n such that D′ ∼ 2D.

1. Set a′ = a2
1

2. b′ = b2
1 + f (mod a′)

Remark: This doubling algorithm can only be used for hyperelliptic curves

of the form v2 + v = f(u).

We see that the critical path of the doubling design is one clock cycle for the

squaring and the polynomial addition, plus the calculation of one polynomial division.

In order to do the reduction after the doubling we use the same method as for

the addition, described in Section 6.1.2.

6.3 Results

We chose VHDL as the language to describe the design of the arithmetic needed for

the group operations on the hyperelliptic curve. We completely implemented both
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 A2

B

B2 + f

A' B'

Figure 6.8: Block diagram of doubling

group operations, i.e. addition and doubling, on HEC, in VHDL. The VHDL design

was simulated and the correctness of the operation was verified. Certain arithmetic

modules were also synthesized leading to timing and area estimates. However, exact

results are not available at the time of writing.

We chose to implement the hyperelliptic curve C: v2 +v = f(u), where f(u) =

u9 + u7 + u3 + 1. We operated on the polynomial ring F 241 [u]. For the field F 241 we

chose a polynomial basis with the irreducible polynomial P (x) = x41 + x20 + 1.

The number of elements in the Jacobian group that we chose factors into two primes:
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#J = 11 · 212581615244041340661452662120917241919480417187 [SS98].

The largest prime factor has 161 bits. We created ten test input and output vectors

with the method described in Section 5.2 to be able to verify the designs for addition

and doubling. We chose a digitsize of four for the field multiplication.

The timing and area results for the field arithmetic can be seen in Table

6.1. We can achieve relatively high clock frequencies for all modules except for the

inverter (we have to further optimize the inverter). Even for the polynomial scalar

multiplier, which calculates the product of a field element and a polynomial with

fourteen coefficients, we are able to clock at almost 100 MHz; and we can perform

this operation in only eleven clock cycles.

Table 6.2 shows the number of clock cycles that we achieved with our VHDL

design. We conclude from this table that the polynomial operations addition, squar-

ing, and scalar multiplication are very inexpensive. The most time consuming op-

eration is the calculation of the gcd and the division of two polynomials. Even the

multiplication is far less time critical. We obtained an average cycle count of 2353.5

for the group operation addition and 1426 for the group operation doubling. This

means, if we estimate a clock frequency after mapping of 20 MHz (at the time of pub-

lication final results where not available), the group addition will take approximately

118µs and the doubling approximately 71µs.

With the results achieved above, we can estimate the time needed for divisor
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F 241 , P (x) = u9 + u7 + u3 + 1
field arithmetic

modules frequency average area
MHz clock count

field adder 162 1 41 (LUTs)
field squarer 211.9 1 30 (Cells)

field multiplier
(digitsize = 4) 146 11 227 (LUTs)

inverter 13 198.5 1903 (Cells)
polynomial scalar multiplier
(polynomial degree = 13) 96.9 11 2998 (LUTs)

Table 6.1: Timing results for field modules after synthesizing

C : v2 + v = u9 + u7 + u3 + 1, F 241

polynomial and group arithmetic

modules average
clock count

polynomial adder 1
polynomial squarer 1

polynomial
scalar multiplier 11

polynomial multiplier
(digitsize = 4) 64.6

polynomial divider 246
polynomial gcd /inverter 359.8

group addition 2353.5
group doubling 1426

Table 6.2: Clock cycle counts of VHDL modules

multiplication. This is computing kD, where k is an integer and D is a Divisor. The

most straightforward algorithm for the divisor multiplication is the left-to-right binary

method [BSS99]. This algorithm requires m doublings and m/2 additions on average,

where m = log2k and k approximates the order of the group. There are a variety of
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algorithms that improve scalar multiplication. One of the most efficient algorithm is

the Window NAF [BSS99]. We need m doublings and the average density of non-zero

coefficients is m/(w+1), where w is the window size. We also need to perform (w−1)

additions for the precomputation. Therefore, we need m/(w+ 1) + (w− 1) additions

on average. The results of the estimation are shown in Table 6.3.

C : v2 + v = u9 + u7 + u3 + 1, F 241

# of doubling # of addition time (msec)
Binary 161 80.5 24.7

Window NAF 161 34.5 21.4

Table 6.3: Estimated timing results for divisor multiplication, assuming a hypotheti-
cal clock frequency of 20MHz
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Discussion

This chapter will summarize the results that were obtained throughout the research

work that culminated in this thesis. A summary of the main results as well as some

recommendations for future research will be provided.

7.1 Conclusions

From a design point of view, FPGAs provide a suitable environment for our imple-

mentation. These devices can accommodate large memory structures and provide

optimized macro cells that improve the speed performance of the system. The fine

grain device architecture allows for synthesis tools to perform optimizations almost

at a gate level resulting in very efficient implementations.

77
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The concept of reconfigurable hardware for hyperelliptic curves is very attrac-

tive for various reasons. In particular, we can provide very efficient finite field arith-

metics for squaring and multiplication, which are optimized for the specific field order

and irreducible polynomial used. That means, we are not constrained to a specific

field, but at the same time make use of the advantages of field-specific architectures.

With the tools and time available, it was possible to simulate and verify all the

modules, but it war not possible to compile, and map the design of the addition and

doubling algorithms on hyperelliptic curves. The main achievements of this research

include:

• Development of suitable algorithms to implement the necessary field operations

in hardware.

• Development of an architecture for polynomial arithmetic in hardware. In par-

ticular the development of an efficient algorithm for polynomial division and

the calculation of the Extended Euclidean Algorithm in the polynomial ring

was demonstrated.

• VHDL description of all modules.

• Functional verification of all modules.

• Estimated time of 118µs for an addition and 71µs for a doubling in the Jacobian.
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• The estimated time for performing a scalar multiplication using the left-to-right

binary method is 24.7ms and using the Window NAF method it is 21.4ms.

7.2 Recommendations for Further Research

This thesis concentrated on developing architectures for addition and doubling on

hyperelliptic curves in reconfigurable hardware. To our knowledge, this approach has

not been attempted before. This section will provide the reader with an overview of

the possible areas in which further work could be pursued. The presented ideas came

up as a result of the research and implementation that was done. These recommenda-

tions provide opportunities to investigate further the possibilities of the design that

was developed.

Place and Route: The created netlist has to be placed and routed for the Xilinx

FPGA. After finishing this processes, we would be able to exactly determine

the speed and the number of CLBs used on the reconfigurable hardware.

Implementation of Lagrange Reduction: We implemented the reduction algo-

rithm proposed by Gauss. This algorithm involves one multiplication and one

division of high degree polynomials per iteration of reducing the two polyno-

mials. The algorithm is not optimal, because each iteration is independent of

the previous one. However, we could use information from the previous step
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to speed up the reduction. Lagrange reduction takes advantage of this fact. A

generalized version for arbitrary characteristic was given by Enge in [Eng99].

A project would be to implement the Lagrange reduction and compare the two

implementations of the reduction algorithms.

Different Curve Parameters: The VHDL code was optimized for the use of a

special curve and field. In a future project, one could test the consequences in

terms of timing and area used, that result from using different curves, fields,

and genera.

Acceleration of gcd Implementation: One of the bottlenecks of the addition on

a hyperelliptic curve is the calculation of the gcd of three polynomials over a

polynomial ring. Further research could lead to a more efficient way to imple-

ment the calculation of the gcd. One possibility would be to look into the gcd

calculation with lattices [Knu98].

Implementation of Inversion: In [IT88], the authors proposed a way to compute

multiplicative inverses in GF (2m) using normal bases. They perform an inver-

sion with at most 2[log2(m− 1)] multiplications in GF (2m) and (m− 1) cyclic

shifts, which can be less than those required in the Extended Euclidean Algo-

rithm. In this way we could speed up our implementation, because we need the

inversion in various modules.

Time-Area Complexity Tradeoff: We implemented a digit-serial type field mul-
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tiplier in this thesis. Thus we have an easy way to increase or decrease the

speed/area of the field multiplier. If we choose a high digit-size for the multi-

plier, we have a highly parallelized multiplier. This means we achieve a high

speed, but the drawback is the larger area needed. Whereas if we choose a

small digit-size we get a multiplier that is almost serial. Finding the optimum

configuration is an open problem.

Hyperelliptic Processor: Hardware offers greater physical security than software

implementations. For example, we have a better protection of the private key

and a better protection against algorithm manipulation. But we can use such

advantages only if we implement a stand-alone processor. Otherwise, there

could be security holes, e.g. while passing keys. A possible project could be a

realization of a hyperelliptic processor. Our implementation could be used as

the core of this processor.
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