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Abstract

This thesis evaluates the use of kernel-based methods in thecontext of power
trace classi�cation/identi�cation.
Most previous works regarding the classi�cation of power traces involve only com-
mon methods from statistical learning theory. These methods exploit similarities
within power traces in a linear fashion. This work however, represents the �rst
approach to this topic by analyzing nonlinear similaritieswith a speci�c tech-
nique, more precisely, we utilize kernel methods. With thisapproach one can
construct a more useful representation for power traces, which then can be used
for the actual identi�cation of the power trace. Compared tothe use of the pre-
viously mentioned common methods, kernel methods yield, ingeneral, a visible
improvement regarding the success rate of classi�cation. Yet this approach also
yields a high computational complexity, within this thesiswe present methods to
reduce this drawback by utilizing the features of modern GPUs.
We show how di�erent kernel-based methods perform on the classi�cation of
power traces and we evaluate the bene�t of applying GPUs for data processing.
Additionally we developed a method which is capable of improving the results of
common kernel methods.
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1. Introduction

The term side channel attackis very unspeci�c. It can refer to many di�erent
scenarios, e.g., one could measure and record the electromagnetic emissions of
an electronic car key and use this recorded information to bypass the car lock.
This bypassing can also be done in many di�erent ways, e.g., asimple replay of
the emission could be su�cient or one might analyze the recording and reverse
engineer the communication protocol, thus gaining the ability to generate new
messages.
The scenario which will be addressed in this thesis is as follows. The device to
be analyzed is a common PIC microcontroller. During its operation the resulting
electrical power is recorded. The goal is to reconstruct theinstructions executed
by the controller using only the recorded data. Approaching this task can be
done in following steps:

ˆ record enough data (power traces),

ˆ learn patterns in the data,

ˆ use the gained knowledge to reconstruct instructions from new data.

This is a pretty abstract view on the problem as it leaves morequestions than
answers, how should the patterns belearnedand how can this knowledge after-
wards be used on unknown data? The form of a power trace depends on the
instructions executed during the measurement, e.g., anADD instruction yields a
di�erent power pattern than a SUB command. One possibility would be using
techniques from statistical learning theory , e.g., a combination of principal com-
ponent analysisand linear discriminant analysis (both terms will be explained in
later chapters). This approach has been evaluated by [Weg09] who gained �rst
results with the use ofhidden Markov models.
This thesis evaluates the application of so-called kernel based methods which
could be described as improved methods from statistical learning theory. The
term improved refers to a higher success rate in learning patterns. We willnow
translate the problem stated above into terms of learning theory. The recorded
data is called training data . It is used totrain an algorithm in terms of determin-
ing certain constants within this algorithm. Such an algorithm is called a classi�er
which, as its name indicates, classi�es the given data into speci�c classes. In our
case this corresponds to classifying the unknown data into groups of instruction
types, e.g., 25 instruction types asADD,SUB,etc., yield 25 corresponding classes.
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A goodclassi�er could enable us to reverse engineer the program ona microcon-
troller, it may even expose constant and variable data used within this program.
Kernel methods have proven to be very e�ective in a variety ofclassi�cation tasks,
e.g., image classi�cation [SG10], OCR [TKC07] or noise classi�cation [Tha06].
These methods are able to determine the nonlinear correlation between random
variables and thus allow a new approach to classi�cation tasks. Yet this e�ec-
tiveness comes with a price in the area of computational e�ort. Kernel methods
require a great amount of computation power compared to their non-kernel coun-
terparts. Thus one major task is to �nd and implement algorithms which solve
the underlying problem e�ciently. The algorithms used in this thesis have been
chosen according to their potential in parallel execution,the implementation uti-
lizes the capabilities of modern GPUs to gain a great speed up in comparison to
the standard CPU implementations.

1.1. A Short Outline of this Thesis

As described above the following chapters will gradually introduce/construct the
concepts needed for a deeper understanding of the work involved in this thesis.
Due to the nature of the topic, these chapters use a precise mathematical nota-
tion. Within all the upcoming details, it is easy to loose focus on the main goal
or the motivation behind these needed steps. Thus this section will give a brief
and abstract outline of the whole thesis and describe the motivation behind the
content of each chapter.
Our main goal is to construct an algorithmic solution for theproblem of identi-
fying power traces of unknown instructions. A power trace, in it's original form,
is nothing more than a series of numbers. Thus to recognize unknown traces,
one could compare these numbers to a power trace of a known instruction. Yet
this approach contains a certain instability, two traces from the same instruction
type do not need to be absolutely identical. There is always asmall amount
of uctuations involved, additionally power traces of di�erent instruction types
may look very similar, thus variations within the measurement can increase the
di�culty to successfully compare and identify those traces.
The solution to this problem is to �nd a more sophisticated representation for
traces, in other words, the numbers representing a single power trace must be
exchanged forsomethingdi�erent. The method within this thesis uses statistical
characteristics within a set of recorded power traces to create a meaningful rep-
resentation for each trace type, i.e., the traces for a certain instruction type. In a
nutshell explained, the numbers representing a single trace will be mapped onto a
mathematical function. Thus a function will represent a power trace and we will
essentially compare functions to recognize the corresponding instruction type.
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An example would be the following situation. Let us assume we have recorded
many traces for theADD instruction type, i.e., we have measured the power val-
ues during the execution of manyADD commands (with varying operands). The
mentioned statistical properties within all these traces will then be exploited to
create astablerepresentationPADD for the ADD type. This representation will be
an abstract mathematical function. During the construction of this representa-
tion we additionally gain an algorithm which allows us to create representations of
the same kind for unknown power traces. Thus we obtain the ability to transform
given power traces to abstract functions, which then can be compared against
PADD . Of course this view is a very macroscopic one; the whole process is more
complicated. Yet the goal still remains the same, the construction of an alter-
nate, more practicable representation for power traces. Chap. 2 introduces the
techniques behind this approach in great detail.
Although the approach from above supports us on the way to reach our main
goal, it also brings certain mathematical problems with it.The algorithm which
transforms the traces into abstract mathematical functions needs the eigenvectors
of a speci�c matrix. This matrix will be described very detailed in the mentioned
chapter. For now let us say that this matrix can reach huge dimensions. Thus
determining the eigenvectors becomes a less trivial task, one will face numerical
instabilities and long computation times. This problem must be solved in order
to increase our chances of recognizing unknown traces. We will introduce two
methods from numerical mathematics which both are able to calculate the de-
sired eigenvectors. Each method brings bene�ts and drawbacks with it, yet both
of them have one common problem: the computation time. For this thesis, both
algorithms have been implemented with GPU support, increasing their e�ciency
in that way. These algorithms will be introduced in Chap. 3.
Increasing the e�ciency of these two methods is not an easy task, our developed
acceleration techniques seek to exploit parallelism within them. Modern GPUs
allow the parallel execution of many threads, thus parallelsegments within the
mentioned algorithms could bene�t from the use of a GPU. Yet GPUs also provide
an additional obstacle. The architecture of a GPU requires di�erent approaches
for implementing these parallel segments. To enable the reader of this thesis to
understand our implementation, Chap. 5 provides a short introduction into the
structure of modern GPUs and describes important optimization techniques used
within this thesis.
Up until now, only the transformation of power traces and the involved problems
have been mentioned. The transformation was introduced with the motivation
to enhance the recognition of unknown traces, i.e., increase the chance to rec-
ognize a trace correctly. But how can one recognize an unknown power trace?
How can one assign the correct instruction type to a given trace? We are left
with these questions once we have solved all previous problems, e.g., calculating
the eigenvectors e�ciently with the help of a GPU. The problemof recognizing
unknown power traces can be interpreted as a classi�cation problem, where one
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tries to assign a power trace to a certain instruction type. Within this thesis we
have utilized di�erent classi�cation techniques from statistical learning theory to
solve the recognition task. Chap. 4 will introduce each of these methods and
explain the theory behind them.
Thus the way to our main goal consists of

1. �nding a robust representation for power traces

2. choosing/developing suitable classi�cation methods torecognize power traces
with a high success rate

3. developing an e�cient implementation of all involved methods (e.g., with
the help of a GPU)

The implementation of most algorithms was speci�cally developed for this thesis,
as for most of them currently no previous work exists for a GPUbased acceler-
ation. Additionally, regarding the algorithms for recognition, no previous work
exists which evaluates their potential for the recognitionof power traces. Fur-
thermore we have developed new methods to enhance the recognition rate, these
methods will be explained in Sect. 6.6. Chap. 6 describes ourimplementation of
each involved algorithm.
Following the explanation of our implementation, Chap. 7 will present the cor-
responding results, e.g., computation times or recognition rates.



2. Kernel Principal Component
Analysis

This chapter introduces the concept offeature extraction and explainsprinci-
pal component analysis(PCA) as a common method to perform this extraction.
Furthermore we will see how kernel methods work and how they can be applied
to enhance PCA. In preparation for chapter 6 we will also address the major
practical problems (e.g. algorithm complexity and numerical stability) that arise
when considering the actual implementation of PCA.
The following de�nitions, theorems and algorithms are based on or cited from
[SS02],[Wis10].

2.1. Introduction

The general approach to classi�cation tasks can be described in two phases. First
the so-called feature extraction and second the actual classi�cation task.
Feature extraction refers to the process of either selecting or creatingsigni�cant
values of the data which help to characterize the underlyingdistribution, irrele-
vant information is discarded in this process. The termcreating refers to mapping
the given data onto another set.
This chapter introduces the principal component analysis,which represents a
standard method for feature extraction. Afterwards, to overcome certain limi-
tations of PCA, the Kernel-PCA (KPCA) will be introduced. Before we begin
with the precise mathematical description of PCA, we will look at an example
of feature extraction. Let us consider a single power tracex1 as shown in Fig.
2.1. Additionally we assume that Fig. 2.1 shows a complete power trace. Let
� be the set of power traces and� � � � N a mapping which counts all maxima
above the threshold# (as indicated by the dashed line). Thus we have� ˆx1• � 2.
Every element of� ˆ � • is called a feature of one or more corresponding traces.�
is called a feature extractor .

Further we assume that the amount of maxima above the threshold allows us to
characterize the power trace, e.g.,� ˆx i • is su�cient enough to distinguish certain
trace types. Therefore classi�cation can be carried out on� ˆ � • instead of �, i.e.,
it is computationally easier to work on integer values instead of vectors (a power
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�

Fig. 2.1.: Possible feature extraction of a power trace

trace can be described as a vector of measurement samples, see Fig. 2.2). In
praxis of course such a feature extraction is not a very feasible approach, because
the number of peaks will not characterize the trace type, e.g., �ve peaks above a
threshold will not be a very reliable indicator for a speci�cinstruction.

�

Fig. 2.2.: Representation of a power trace as a vector

2.2. Principal Component Analysis

PCA is a very well-established method for feature extraction. In this chapter we
will �rst precisely de�ne the PCA concept and afterwards develop an intuitive
understanding of the mathematical concepts. Roughly described PCA works by
mapping the data points˜ x � • � >˜1;:::;m • into a new coordinate system and zeroing
out certain elements of each new coordinate vector~x � . The vector ~x � represents
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the feature(vector) for the data pointx � and can be used for classi�cation instead
of x � .
A very precise de�nition for the PCA problem is given by [Wis10]:

De�nition 2.2.1. Given a set˜ x � S� � 1; :::; M • of N -dimensional data points
x � � ˆx �

1 ; x�
2 ; :::; x�

N •T with zero mean, i.e.,E �X � � 0, �nd an orthogonal matrix ~Q
with determinant det̂ ~Q• � � 1 generating the transformed data points~x � �� ~Qx �

such that for any given dimensionalityP the data projected onto the �rstP axes,
~x �

SS� ˆx �
1 ; x�

2 ; :::; x�
P ; 0; :::;0•T , have the smallest

reconstruction error E ��
1

M

M

Q
� � 1

SS~x � � ~x �
SSSS2 (2.1)

among all possible projections onto aP-dimensional subspace.
The row vectors of~Q de�ne the new axes and are called the principal components.

Let I be the input space consisting of data points/samplesx i > Rn ; i > �M � .
Furthermore we assume that the underlying data distribution has zero mean,
e.g., E �X � � 0, with X as the corresponding random variable which indicates
the appearance of a data point. Otherwise we center the data by applying the
transformation ~x i � x i � E �X � . We de�ne the covariance matrix

C ��
1

M

M

Q
� � 1

x � x �T >RN � N (2.2)

For a deeper and intuitive understanding ofC one should consider the data
distributions visualized in Fig. 2.3.

��

��

��

��

��

��

�� �� ��

�� � �� � �� �

�

��

��	

���	

���

����

Fig. 2.3.: examples for 2-dimensional data distributions

De�nition 2.2 is equivalent to

Ci;j ��
1

M

M

Q
� � 1

x �
i x �

j (2.3)
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thus we have the varianceV arˆx i • � Ci;i and the so-called covarianceCov̂ x i ; x j • �
Ci;j . The covariance is a measure for the linear correlation between the involved
dimensions. On closer inspection of Fig. 2.2, one can verifythe following approx-
imated covariance matrices:

C1 �� Œ
0:37 � 0:004

� 0:004 0:012
‘ C2 �� Œ

0:37 � 0:2
� 0:2 0:11

‘ C3 �� Œ
0:5 0
0 0:5

‘ (2.4)

The covariance matrix has diagonal form if and only if the random variablesX i

are linearly independent, i.e.,Ci;j � 0 ¦ i x j . The core of the PCA algorithm needs
diagonal covariance matrices, yet as shown above, not all covariance matrices are
diagonal. It is obvious that C3 already has diagonal form regarding the baseE,
thus the question emerges if generally a base transformation can be found which
diagonalizes the covariance matrix.

Theorem 2.2.1 (Diagonalization of symmetric matrices).
Let C >RN be a real valued symmetric matrix with eigenvalues� i and correspond-
ing eigenvectorsv i , i � 1; :::; n. C can be orthogonally diagonalized by

C � Qdiaĝ � 1; :::; � n•QT (2.5)

whereQ �� ˆv1 v2 ::: vn• is an orthogonalN � N matrix (e.g. Q� 1 � QT ) con-
sisting of C's normalized eigenvectors. FurthermoreB �� ˆv1; v2; :::;vn• forms an
orthonormal base ofRN .

This theorem (2.2.1) from linear algebra states that every symmetric real ma-
trix can be orthogonally diagonalized by calculating its eigenvalues and eigen-
vectors. Taking into account that covariance matrices are always symmetric
(see Eq. 2.3), we are always able to �nd a baseB2 so that a covariance Ma-
trix C (currently expressed regarding a baseB1) will take diagonal form. For
reasons of simplicity we temporarily assume that the following symmetric ma-
trix C is already diagonalized regarding the baseB2 � ˆv1; v2; :::;vn• (e.g.
C � ˆv1 v2 ::: vn•diaĝ � 1; :::; � n•ˆ v1 v2 ::: vn•T ). Without loss of generality
we additionally assume thatB1 � E (where E denotes the canonical base onRn )
. The theoretical and practical techniques for diagonalization will be discussed
in Chap. 3.

PCA projects the given data pointsx � into a p-dimensional vector subspace
V b RN . More preciselyV � ˜ 2b i S2b i >B2; i > ˜ 1; :::; p•• with p B N . Fig. 2.4
visualizes this projection forN � 2. For example if we want to project the point
x � onto the x1 axis, we simply setx �

2 � 0, the resulting vector~x � has the form
ˆx �

1 ; 0•T and lies in a 1-dimensional subspace ofR2. Of course we need an algo-
rithm to achieve this projection for an arbitrary subspace choice. To achieve this,
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��

���

��

���

Fig. 2.4.: Projection of 2-dim data onto a 1-dim subspace

the PCA algorithm utilizes the base transformation matrixQ in the following way

QT x � � ˆv1 v2 ::: vn•T x � (2.6)

�

’
–––
”

@v1; x � A
@v2; x � A

:::
@vn ; x � A

“
———
•

(2.7)

�� ~x � (2.8)

One should remind himself thatQx is an element of span̂B2•, thus if we leave
out several columns fromQ, i.e., we construct ~Q � ˆv i 1 v i 2 ::: v i p •, we get a
projection matrix ~Q which projectsx � onto span̂ v i 1 v i 2 ::: v i p •. This holds for
arbitrary orthonormal basesB1, e.g., it is not needed that1b i � ei (where ei

denotes thei � th canonical unit vector of RN ).
The solution to the PCA problem can be algorithmically solved through following
steps:

1. given the data points˜ x � • � >� N � , form the covariance matrixC

2. diagonalizeC yielding C � QT DQ

3. choose needed dimensions and form~Q

4. extract features~x for a given test point x by calculating ~x �� ~Qx

With this approach, if i p @N , certain dimensions are discarded and information
is lost. We will discuss the resulting error shortly. But �rst, for a better un-
derstanding of this dimensionality reduction, we are goingto visualize the PCA
concept in a less formal way.
Let us have a look on Fig. 2.5, it is important to distinguish between the terms
data point and coordinates. The arbitrary pointx � ˆ1; 2•T has the coordinates
ˆ1; 2•, yet these coordinates have no meaning unless we specify a base. It is a
common assumption to considerE as this base and we denote that by writingxE.
Now consider another orthonormal baseB � ˆ 1º

2
ˆ1; 1•T ; 1º

2
ˆ � 1; 1•T •, the point x

can also be expressed as linear combination of those base vectors. To determine
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�

�

�

�

Fig. 2.5.: Example for 2-dimensional projection and di�erent coordinate systems

the coordinates ofxE regarding this base one simply has to projectxE onto the
base vectors, i.e., calculate

1
º

2
@Œ

1
1

‘ ; xE A �
1

º
2

@Œ
1
1

‘ ; Œ
1
2

‘ A (2.9)

�
3

º
2

(2.10)

�� ~x1 (2.11)

1
º

2
@Œ

� 1
1

‘ ; xE A �
1

º
2

@Œ
� 1
1

‘ ; Œ
1
2

‘ A (2.12)

�
1

º
2

(2.13)

�� ~x2 (2.14)

Thus we have determined the coordinateŝ~x1; ~x2•T � 1º
2
ˆ3; 1•T of x in B. This

transformation can also be written in a more compact way

xB �
1

º
2

Œ
3
1

‘ �
1

º
2

Œ
1 1

� 1 1
‘ Œ

1
2

‘ � QT xE (2.15)

where the columns ofQ consist of the base vectors ofB. BecauseQ is an orthog-
onal matrix the transformation back into the original coordinate system can be
achieved by

xE � Œ
1
2

‘ �
1

º
2

Œ
1 � 1
1 1

‘
1

º
2

Œ
3
1

‘ � QxB (2.16)

With this example it should be clear that (Eq. 2.7) actually represents two
operations, �rstly it transforms xE � xB1 into xB2 and secondly it reduces the di-
mensionality ofxB2 . Thus the vector~x is a representation ofx in a p-dimensional
subspace ofRN , expressed in coordinates regarding the baseB2. We refer to the
transformation back into the original space, i.e., calculating ~Q~x, as reconstruc-
tion of the projected data point, with ~Q as de�ned in the solution of the PCA
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problem.
Similar to points we have to distinguish between a linear mapping � � RM � RN

and its matrix form �, for better readability we will use the same symbol for
both. A linear mapping can be described by a matrix if we focuson a speci�c
base, also here we normally considerE as this base. Let us assume we are given
an arbitrary mapping

C � R2 � R2; Cˆx• �� Œ
x1 � 2x2

2x1 � x1
‘ (2.17)

As mentioned before we assumeE as the base for this mapping and denote this
by CE (we use the terms linear mapping and corresponding matrix form inter-
changeably). ThusC takes the following matrix form

CE � Œ
1 2
2 1

‘ (2.18)

which is a symmetric matrix. We now want to �nd CB , i.e., the matrix form of
C regarding the baseB. The desired matrix has the form (without proof)

CB � QT CEQ � Œ
3 0
0 � 1

‘ (2.19)

Thus the matrix we have looked for takes diagonal form, we saythat CE has
been diagonalized. This procedure can not be applied to arbitrary matrices, yet
for symmetric matrices we can �nd an orthogonal matrixQ such that CB takes
diagonal form (see theorem 2.2.1). To solve the PCA problem we look for a
matrix Q such that CB , i.e., the covariance matrix calculated from transformed
data points ~x � � QT x � takes diagonal form. FurthermoreQ needs to have a
determinant of � 1, i.e., Q represents a transformation into a (positively) rotated
coordinate system as depicted in Fig. 2.5.
At this point we can �nally analyze the reconstruction error E. To minimize
this error, we have to �nd a new coordinate system such that the loss through
projection onto the axes is minimized. This problem is visualized in Fig. 2.6. In
the left picture we see the projection of one pointx � onto the �rst axis ~x1 of the
new (i.e. rotated) coordinate system. The reconstruction error of x � is denoted
by r . One can see that following equation holds

r 2 � d2 � v2 (2.20)

whered stays constant in both cases, i.e., projection onto ~x1 or ~x2. The value ofv2

contributes to the variance of the data distribution in the new coordinate system
while r 2 contributes to the total reconstruction error E. Thus it seems that
minimizing the error is equivalent to maximizing the variance of the projected
data, which has been proven in [Bis06].

Following theorem has been proven by [Wis10]:
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Fig. 2.6.: Reconstruction errorr through projection onto 1-dim subspace

Theorem 2.2.2. Let ~Q �� ˆv1 v2 ::: vp• be the projection matrix constructed
from C's eigenvectorsv i with corresponding eigenvalues� i . Furthermore let the
eigenvalues be sorted in descending order. The resulting reconstruction error for
the projected data is given by

E �
N

Q
i � p� 1

� i (2.21)

Thus the projection onto subspaces of KerˆQ• (where Ker̂ Q• denotes the
nullspace ofQ) does not increase the error. As of this, leaving out the eigenvectors
v i which correspond to an eigenvalue� i � 0, during the construction of ~Q, will
not increase the error. Yet, leaving out the eigenvectorsv i which correspond
to an eigenvalue� i x 0, will increase the projection error. Although we may
have reduced the dimensionality of the input data, it is not ageneral result in
feature extraction. An example would be Kernel-PCA which canincrease the
dimensionality of the input data, i.e., it can extract more than N features from
each data sample.
From a statistical point of view, PCA can be described to �nd anew coordinate
system in which the given data points become nearly uncorrelated (which is
indicated by a nearly diagonal covariance matrix). In such acoordinate system
the projection on the axis can yield a good characterizationof certain data classes,
i.e., the variance is maximized along these axis. Although PCA always �nds such
a system, there exist data distributions for which the computed solution yields
no bene�t at all, or in other words, for which the extracted features will not help
in a classi�cation task. Yet there exists a more powerful variant of PCA for such
data distributions, the so-called kernel principal component analysis.
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2.3. Kernel Principal Component Analysis

Kernel principal component analysis (KPCA) works in its corejust like PCA,
the main di�erence lies in using a nonlinear mapping which maps each given
data point onto an abstract function. In other words, KPCA performs PCA with
functions. We will see that the actual algorithm completelycircumvents the use
of abstract data structures for function handling. To understand KPCA one has
to understand the principles of kernels or kernel functions.
Let us consider the following mapping

� � X � H (2.22)

whereX represents the set of given data points andH an abstract function space.
We will refer to them as input and feature space , respectively, where in our case
the feature space will always be a Hilbert space. An actual example for this
mapping could be

� � X � H ; x ( expŒ
SSx � :SS22

2� 2
‘ �� kˆx; :• (2.23)

which maps every given vectorx onto a Gaussian function . This is visualized
in Fig. 2.7 for a dimensionality of one. AsH is a Hilbert space, it is equipped

Fig. 2.7.: Mapping data points onto Gaussian functions

with a dot product @:; : AH which could be de�ned, forw1 � � ˆx•; w2 � � ˆy• >
H ; x; y >X as1

@w1; w2 AH � @kˆx; :•; kˆy; :• AH (2.24)

�� kˆx; y• (2.25)

One might recall that the standard euclidean dot product@x; y A�� xT y can be
interpreted as a similarity measure. If two normed vectorsx; y are very similar
regarding their orientation or position, the valueS@x; y ASwill be close to 1. This
view holds for arbitrary dot product spaces, e.g., if we restrict � to normed

1The proof that this de�nition ful�lls the requirements of a d ot product can be seen in [Vas09].
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functions in H , we receive a way to measure the similarity ofx1 and x2 in H .
For convenience it is possible to de�ne a function

kˆx1; x2• �@� ˆx1•; � ˆx2• AH (2.26)

which is also called a kernel (function). In other words a kernel measures the
similarity of two given data points in an abstract function space. It is important
to note that the restriction to normed functions is only one of many possible
ways to de�ne a similarity measure. One might ask why this approach should be
considered, it would also be possible to measure the similarity in the input space.
One bene�t of using kernels lies in the fact that a nonlinear mapping/transfor-
mation of the given coordinates is applied, we will see an actual example for the
practicability of this mapping later in the current section. Another advantage
of kernels is the possibility to avoid computation inH , all calculations can be
carried out in X.
Kernel PCA utilizes this concept to carry out PCA inH without actually enter-
ing H . Due to the complexity of the derivation of KPCA, this sectionwill only
explain the basic concepts required to perform KPCA. Proofs for the following
claims can be found in [SS02] and [Bis06]. For now we assume that the given
data points x i are centered in feature space.

De�nition 2.3.1 (Gram matrix) .
Let � � X � H be a nonlinear mapping andX �� ˜ x1; :::;xM • ` I . The Gram
matrix K >RM � M is de�ned by

K i;j ��@� ˆx i •; � ˆx j • AH (2.27)

The Gram matrix can be constructed directly in input space ifa corresponding
kernel function exists, as with the covariance matrix the Gram matrix is always
symmetric. A kernel is called positive de�nite if it gives rise to a positive de�-
nite Gram matrix. To perform KPCA one has to solve the following eigenvalue
problem

M�K � � K 2� (2.28)

which is the analogy to the eigenvalue problem in standard PCA. Yet as shown
in [SS02], it is equivalent to solve the following eigenvalue problem

M� � � K � (2.29)

which is more convenient than (2.28). Let� 1 C� 2 C::: C� p denote all solutions to
(2.29), i.e., all solutionsM� with � p being the last nonzero value andn � 1; :::; p.
The acquired eigenvectors� n have to be normalized so they ful�ll the equation

1 � � n @� n ; � n A (2.30)
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In KPCA we are interested in projecting a data pointx in feature space (i.e.
� ˆx•) onto the eigenvectorsvn of (2.28), i.e., computing@vn ; � ˆx• AH . Also
here the computation insideH can be avoided by

@vn ; � ˆx• AH �
M

Q
i � 1

� n
i kˆx i ; x• (2.31)

wherek represents the corresponding kernel. It is important to note that KPCA
can extract feature vectors with up toM (the number of data points) elements,
thus it is able to extract statistical correlations of higher order, compared to
standard PCA where each feature vector has an amount of maximal N (the
number of dimensions of each point) elements.
So far we have assumed that the mapped data points are centered in feature
space, yet this does not hold in the general case and thus the data points need to
be centered after they have been mapped into feature space. Conveniently this
can be done after we have used them to create the Gram matrix, this centering
is also referred to as centering the Gram matrix .

Theorem 2.3.1. Let � � X � H be a nonlinear mapping andX �� ˜ x1; :::;xM • ` I .
Centering � ˆX• before creating the Gram matrixK can be avoided and carried
out after creation of K by calculating the centered Gram matrix~K

~K i;j �� ˆK � 1M K � K 1M � 1M K 1M • i;j (2.32)

where 1M > RM � M ; ˆ1M • i;j �� 1
M . The matrix ~K represents the Gram matrix

based on the centered set� ˆX•.

All properties of standard PCA also hold for KPCA especially the error func-
tion. For an illustration of the projection onto a principal componentv2 one can
refer to Fig. 2.8. Four data pointsx i ; i >�4� are being used here for KPCA, each
data point represents a single trace in input space.

��������	�
�

����
����

����������������

���������	�
���������

Fig. 2.8.: KPCA with 4 data points (traces) x i for a given tracex
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First the new tracex will be compared with the existing data points in feature
space. The weighted sum of the comparison output, forms the projection onto a
principal component in feature space, i.e., the coe�cient for a linear combination
of functions.
In this thesis following kernels have been used

kˆx; y• �� @x; y Ad; d >Nƒ˜0• polynomial kernel;

kˆx; y• �� expŒ�
SSx � ySS22

2� 2
‘ ; � >Rƒ˜0• Gaussian kernel;

kˆx; y• �� tanhˆ � @x; y A � #•; # >Rƒ˜0• sigmoid kernel;

where the gaussian and polynomial kernel are positive de�nite, i.e., yielding only
positive eigenvalues. There is no general rule which kernelperforms better re-
garding a speci�c problem. Polynomial kernels have shown tobe very e�ective
in OCR tasks ([SS02]), whereas Gaussian kernels yielded good results in image
classi�cation ([SG10]). As mentioned at the beginning of this section, the non-
linear mapping � has some interesting properties regardingthe alignment of the
data in feature space. This can be visualized for a not very abstract mapping.
Fig. 2.9 shows a set of given data points on the left side, on the right side we
have the mapped datapoints. The mapping used here is

� ˆx• �� ˆx2
1; x2

2;
º

2x2
1x2

2• (2.33)

Fig. 2.9.: Alignment of data in feature space and a possible separation plane

The di�erent symbols for the data points represent di�erent classes, i.e., we
have data points representing two classes. To classify an unknown data point
one might draw a `�tting' separation line through the data and assign the new
data point to the class in which region it lies. In the input space this separation
line takes the form of an ellipse, while in the feature space this ellipse becomes
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a hyperplane. These results can also be deduced by only analyzing the mapping
of Eq. 2.33. All points within the ellipse will be mapped to thevolume V1 (due
to squaring the coordinates). The outer points of the ellipse will be mapped in
the same way to the volumeV2 which lies side by side with the aforementioned.
No single point ofIm ˆ� • can become negative in his coordinates, the points of
the ellipse ful�ll ax2 � by2 � c, in feature space they become linearly depended
by x2 � c~a � b~ay2 and y2 � c~b� a~bx2, thus they form the line h. This line
can be extended to a separating hyperplaneH . Such an approach allows one
to use linear classi�ers in feature space (or transformed input space) instead of
nonlinear classi�ers in input space, which reduces the computational e�ort.
Fig. 2.10 and 2.11 show another example of KPCA for arti�cialdata, the kernel
used here was a Gaussian one with� � 1.
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Fig. 2.10.: Data samples of two
classes in input space
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Fig. 2.11.: Data samples of two
classes in transformed in-
put space





3. The Symmetric Eigenvalue
Problem

If we think about the actual implementation of (K)PCA we will have to solve the
symmetric eigenvalue problem (SEVP).

De�nition 3.0.2 (Symmetric eigenvalue problem).
Let Q >RN � N be a symmetric matrix, �nd all eigenvalues� i and corresponding
eigenvectorsv i .

The SEVP can also be written in one equation

ˆv1; :::;vp•T diaĝ � 1; :::; � p• � QT � (3.1)

� ˆ � 1v1; :::; � pvp•T (3.2)

� � Q (3.3)

The theoretical solution is quite simple, �rst we need to calculate the zeros of

� ˆ � • � det̂ Q � � IN • (3.4)

which is equivalent to �nding the zeros (eigenvalues) of an-th polynomial func-
tion. Yet there exist no algebraic solution forn A 4, thus we have to resort to
approximation methods. Secondly we have to �nd the corresponding eigenspaces
and their bases (eigenvectors) for each eigenvalue by solving a (possibly underde-
termined) system of linear equations. For this thesis two very popular algorithms
have been chosen and implemented on GPU as well as on CPU, both of them are
iterative methods. Two important aspects arise when considering any of these
algorithms, �rstly computational complexity (how long wil l it take to solve the
problem regarding the size of the input data) and secondly numerical stability
(i.e. how accurate are we regarding a speci�ed/limited machine precision). The
computational complexity will be viewed separately for each algorithm when we
discuss it in detail. To address the severity of numerical instability one should
consider the following example which was encountered during GPU implementa-
tion of the QR-algorithm.
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Let Q be a symmetric matrix of the form

Q �

’
––––––
”

1 2 3 ::: N
2 N � 1 N � 2 ::: 2N � 1
2 3 2N ::: 3N � 3
� � � ::: �

N 2N � 1 3N � 3 ::: NN

“
——————
•

(3.5)

A naive implementation yielded� max;false � 1:462� 106 while the correct value is
� max;correct � 2:708�108 for N � 800. This miscalculation resulted from calculating

PA � ˆ IN � � vv T •A; IN � N -dimensional unit matrix (3.6)

instead of
PA � A � vw T ; w �� �A T v (3.7)

during the implicit QR algorithm. Although both equations are mathematically
equivalent, they yield di�erent results due to severe cancellation in Eq. 3.6.
The notation in following sections is borrowed from [GHG96] and basically iden-
tical to the matlab language. A matrix element will be addressed by mˆi; j •,
similar for vectorsvˆ i •, a complete row of a matrix is addressed viamˆi; �• analo-
gously for columns. With respect to a better readability, vectors x inside a listing
will be denoted asx. One important remark regarding indexing: we will start
counting from 1! Thus boundaries in the code of the actual implementation in
Chap. 6 will be shifted accordingly.

3.1. The Implicit QR Algorithm

This section describes the implicit QR algorithm which basically consists of two
other algorithms:

ˆ Tridiagonalization of a matrix (Alg. 2)

ˆ Classic QR algorithm (Alg. 4)

We will briey discuss the concepts of this algorithm, for a detailed explanation
one might refer to [GHG96] or [aHS88]. The following de�nitions, theorems and
algorithms are based on or cited from [GHG96].

De�nition 3.1.1. Let v >RN be a nonzero vector. The symmetricN � N Matrix

Pv � IN � � vv T ; � ��
2

vT v
(3.8)

is called a Householder matrix or Householder reection,v is called the corre-
sponding Householder vector and� the corresponding Householder coe�cient
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A Householder matrix calculated from a vectorv has the ability to mirror v ,
i.e., Pvv � � v thus it is called a reection matrix. For a given x >RN with x x 0
it is possible to calculate a Householder vectorv � x � SSxSS2e1 such that Pvx �
� SSxSS2e1. An example for this would bex � ˆ3; 1; 5; 1•T and v � ˆ9; 1; 5; 1•T �
x � 6e1 which yield

Pv �
1
54

’
–––
”

� 27 � 9 � 45 � 9
� 9 53 � 5 � 1
� 45 � 5 29 � 5
� 9 � 1 � 5 53

“
———
•

; Pvx �

’
–––
”

� 6
0
0
0

“
———
•

(3.9)

Algorithm 1 calculatesv for a given vectorx. Additionally this algorithm nor-
malizesv such that v1 � 1. This reduces the needed memory to storev by one
unit (e.g. one double value). The following algorithms use this fact to to save up
1
2N ˆN � 1• units in the representation of the end result.

Algorithm 1 �v; � � � houseˆA•
Input: A real vector x >RN

1: � � xˆ2 � N •T xˆ2 � N •

2: v � Œ
1

xˆ2 � N •
‘

3: if � � 0 then
4: � � 0
5: else
6: � �

»
xˆ1•2 � �

7: if xˆ1• B0 then
8: vˆ1• � xˆ1• � �
9: else

10: vˆ1• � �
�

xˆ1• � �
11: end if

12: � � 2
vˆ1•2

� � vˆ1•2

13: v �
v

vˆ1•
14: end if

The application of a Householder matrix to a set of vectorsx i ; i � 1; :::; N , i.e.,
calculating PvA where the columns ofA consist ofx i must be done carefully due
to the possibility of numerical cancellation. It holds that

PvA � ˆ I � � vv T •A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

‡1

� A � vw T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
‡2

; w �� �A T v (3.10)
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Yet the �rst method, i.e., ‡1, su�ers from severe cancellation for bad conditioned
matrices whereas the second method, i.e.,‡2, provides a numerical stable com-
putation.
To enhance the execution speed of the QR method one can simplify the structure
of the given problem. Although the QR algorithm has not been presented yet it
should be mentioned that the execution speed increases withthe number of zero
elements in the given matrixA.

De�nition 3.1.2. A matrix T >RN � N of the form

’
––––––––
”

d1 u1 0 0 ::: 0
l1 d2 u2 0 ::: 0
0 l2 d3 u3 ::: 0
0 0 l3 d4 ::: 0

�
0 0 0 0 ::: dN

“
————————
•

(3.11)

is called a tridiagonal matrix .

The following theorem gives rise to an algorithm which tridiagonalizes an ar-
bitrary symmetric matrix.

Theorem 3.1.1. Let A be a symmetric matrixA >RN � N . Then A can be tridi-
agonalized by applying Householder transformationsQi ; i � 1; :::; N � 2

ˆQ1Q2:::QN � 2•T AˆQ1Q2:::QN � 2• � T (3.12)

The resulting matrix T is symmetric and tridiagonal. Additionally it holds that

Qi :::QN � 2 � Œ
I i 0
0 ~Qi

‘ (3.13)

where ~Qi is a ˆN � i • � ˆN � i • Householder matrix.

As stated in the theorem, exactlyN � 2 Householder transformations are ap-
plied. Each Householder matrix can be represented by a singlevector v . The
product of these matrices also has a speci�c structure whichcan be exploited to
represent each matrixQi by a ˆN � 2 � i •-dimensional vector (one should be re-
minded that the �rst element of a Householder vector is always1 and thus needs
not to be saved).
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Algorithm 2 Tridiagonalizê A•
Input: A symmetric Matrix A >RN � N

1: for k � 1 to N � 2 do
2: [v,� ] � house(Aˆk � 1 � n; k•)
3: p � �A ˆk � 1 � n; k � 1 � n•v
4: w � p � ˆ 1

2 �p T v•v
5: Aˆk � 1; k• � SSAˆk � 1 � n; k•SS2
6: Aˆk; k � 1• � Aˆk � 1; k•
7: Aˆk � 1 � n; k � 1 � n• � Aˆk � 1 � n; k � 1 � n• � vwT � wvT

8: end for

Alg. 2 stores the Householder vectors in the subdiagonal part of the tridiagonal
output matrix T. This approach saves half the space one would need if every
Householder vector would be stored separately.

For initialization the �nal version of the QR algorithm demands one single
tridiagonalization matrix Q (i.e. QA � T). Yet the algorithms above never
calculated such a representation for the applied Householder matrices, in theory
the desired matrixQ can be calculated from all single Householder vectors which
are stored in the output of Alg. 2. One simply has to calculate

Q �� Q1Q2:::QN (3.14)

However, this approach yields a complexity ofOˆN 4•, thus it is not very useful
for a practical implementation. Therefore Alg. 3 should be considered.

Algorithm 3 Backward Accumulatê A; � •
Input: Output matrix A >RN � N and coe�cient vector � from Tridiagonalize(A)

1: Q �� IN ; v �� 0
2: for j � N to 1 do

3: vˆ j � N • � Œ
1

Aˆj � 1 � N; j •
‘

4: Qˆj � N; j � N • � ˆ IN � j � � j vˆ j � N •vˆ j � N •T •Qˆ j � N; j � N •
5: end for

This algorithm o�ers a complexity of OˆN 3• and thus is a more realistic ap-
proach to computeQ.
To get a basic understanding of the operations within the QR algorithm we de�ne
the QR decomposition
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De�nition 3.1.3. Let A > RN � N be an arbitrary matrix. A can be decomposed
into

A � QR (3.15)

whereQ is an orthogonal matrix andR is an upper-right matrix.

All the previous algorithms have been exact solutions to the given problems.
The QR algorithm is an approximation method that iteratively creates a matrix
D >RN � N which, in the end, holds all desired eigenvalues on its diagonal. Most
algorithms regarding the SEVP are unable to e�ciently compute the correspond-
ing eigenvectors. The computation of eigenvectors often involves the solving of a
system of linear equations. The QR method inherently allowsthe computation
of the corresponding eigenvectors. We will now give the mostbasic and abstract
version of the QR algorithm and enhance it with the concepts we have de�ned
before.

Algorithm 4 ClassicQRˆA•
Input: Real matrix A >RNxN

1: k �� 1
2: repeat
3: Zk �� AQk� 1

4: QkRk � Zk (QR factorization of Zk)
5: until result is accurate enough

Algorithm 4 has a complexity ofOˆN 4•, additionally its convergence rate is at
most linear. Therefore this algorithm is not suitable for practical considerations.
The QR factorization (OˆN 3•) represents the major performance brake in this
approach. To overcome this obstacle we introduce the concept of Givens rota-
tions. A Givens rotation Gˆj; k • is a rotation matrix which allows to zero the
elementˆk; j • in an arbitrary matrix A.
Givens rotation will play a fundamental role in Sect. 3.2, where we discuss them
in greater detail. Regarding the QR factorization it is su�cient just to note that
for tridiagonal matrices this decomposition can be done inOˆN 2• using Givens
rotations. The standalone QR factorization has not been implemented in this
thesis. The implemented algorithms will be explained in Chap. 6. To conclude
this section we take a look at the �nal form of the QR-algorithm which has been
used in this thesis. This algorithm needs about 9N 3 ops to solve the SEVP and
uses a subroutine 'QRSub̂ D; Q; q•' (see [GHG96] Alg. 8.3.3).
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Algorithm 5 QRˆA•
Input: Real matrix A >RN � N

1: compute tridiagonalization ofA
2: T �� ˆQ1Q2:::QN � 2•T AˆQ1Q2:::QN � 2•
3: D �� T
4: Q �� ˆQ1Q2:::QN � 2•
5: q �� 0
6: repeat
7: for i � 1 to N � 1 do
8: if SDˆi � 1; i • � Dˆ i; i � 1•S& SDˆi � 1; i •SBtol � ˆSDˆi; i •S� SDˆi � 1; i � 1•S•

then
9: Dˆi � 1; i • �� 0 set values to zero if below thresholdtol

10: Dˆi; i � 1• �� 0
11: end if
12: end for
13: QR Sub̂ D; Q; q•;
14: until q=n

The choice of the termination valuetol will be discussed in Chap. 6. The
subroutine performs the actual QR decomposition using Givens rotations and
several other subroutines. Because of the complexity of this method and the fact
that it was not implemented in this thesis we will not analyzeit any further.
Very detailed information regarding this routine can be found in [GHG96] and
[aHS88].

3.2. The Two-Sided Jacobi Method

The two-sided Jacobi method (TSJM) represents an algorithmwhich is inherently
parallel and works by applying orthogonal transformation matricesQ onto a given
matrix A in the following form:

A1 � QT AQ (3.16)

The orthogonal transformations are applied on both sides ofA. In [JD92] it has
been shown that the Jacobi methods in general yield a higher numerical accuracy
than QR methods. Although there exist one-sided versions of this algorithm,
for this thesis the two-sided approach has been chosen due tohigher numerical
accuracy for a given amount of iterations ([JD92]).
The goal of TSJM is to reduce the following quantity

o� ˆA• ��

¿
ÁÁÀ

N

Q
i � 1

N

Q
j � 1;j xi

a2
i;j (3.17)



30 The Symmetric Eigenvalue Problem

i.e., the 'norm' of the the o�-diagonal elements. The reduction is done through
so-called Givens rotations.

De�nition 3.2.1. A matrix Gˆi; k; � • >RN � N ; i; k >N; � >R is called a Givens
rotation if it satis�es the form

Gˆi; k; � • �

’
–––––––––––––––
”

1 : : : 0 : : : 0 : : : 0
� � � � �
0 : : : c : : : s : : : 0 � i
� � � � �
0 : : : � s : : : c : : : 0 � k
� � � � �
0 : : : 0 : : : 0 : : : 1

� �
i k

“
———————————————
•

(3.18)

with c �� coŝ � •; s �� sinˆ � •

A Givens rotation can be completely represented by the tuples ˆ i; k; � • or
ˆ i; k; c; s•. Algorithm 6 computes a Givens rotationGˆi; k; � • for 1 B i @k B N
with the property that bi;k � bk;i � 0 with B �� Gˆ i; k; � •T AGˆi; k; � •. For a given
input of ˆA; i; k • the output is a Givens rotation represented bŷ c; s•. The re-

Algorithm 6 Givenŝ A; i; k •
Input: Real symmetric matrix A >RN � N

1: if Aˆ i; k • x 0 then

2: � ��
ˆAˆk; k• � Aˆ i; i ••

2Aˆ i; k •
3: if � C0 then
4: t ��

1

� �
º

1 � � 2

5: else
6: t �� �

1

� � �
º

1 � � 2

7: end if
8: c ��

1
º

1 � t2

9: s �� tc
10: else
11: c �� 1
12: s �� 0
13: end if

sulting matrix enables one to zero out speci�c elements ofA. This leads to the
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classic Jacobi method which is described by Alg. 7. The parameter tol repre-
sents the termination criteria and determines the accuracyof the approximated
eigenvalues and eigenvectors. We will discuss its selection in Chap. 6. The clas-

Algorithm 7 ClassicJacobîA; tol •
Input: Real symmetric matrix A >RN � N

1: V �� IN

2: eps�� tol � SSASSF
3: while o� ˆA• Aepsdo
4: choosê i; k • so that Sai;k S� maxpxq Sap;qS
5: ˆc; s• �� Givenŝ A; i; k •
6: A �� Gˆ i; k; � •T AGˆi; k; � •
7: V �� V Gˆi; k; � •
8: end while

sic Jacobi algorithm basically thinsA out until it reaches nearly diagonal form.
The o�-diagonal elements will be regarded as zeros while thediagonal elements
represent the desired eigenvalues. Additionally we get an approximation V of the
corresponding eigenvectors.
Yet the search fori; k has not been speci�ed, a naive approach would be to check
every element ofA against all others which results in a complexity ofOˆN 2•.
This problem will be handled by the cyclic-row extension of the classic Jacobi
algorithm. But before that we take a look on both matrix updates. These up-
dates do not involve complete matrix multiplications, a Givens rotation can be
applied in 6N ops. Analyzing the form of a Givens rotation one can see that
it only a�ects two rows or two columns regardingGˆi; k; � •T A or AGˆi; k; � •,
respectively.

A1 � Gˆ i; k; � •T A �
A1ˆ �; �• � Aˆ �; �•

A1ˆˆ i; k •; �• � Œ
c s

� s c
‘

T

Aˆˆ i; k •; �•
(3.19)

A1 � AGˆi; k; � • �
A1ˆ �; �• � Aˆ �; �•

A1ˆ �; ˆ i; k •• � Aˆ �; ˆ i; k •• Œ
c s

� s c
‘

(3.20)

[GHG96] shows that the convergence rate is linear. Additionally [GHG96] shows
that it can reach quadratic convergence after enough iterations. The amount of
N while-iterations in Alg. 7 is called a (Jacobi) sweep.
The main problem with Alg. 7 is the search-complexity for appropriate indices
i; k . One solution to this problem is the so-called cyclic-row extension where the
symmetry of A and the structure of Givens rotations is exploited. Insteadof
�nding the maximal value of A, one can try to zero out the upper diagonal part
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(which also a�ects the lower diagonal part in the same way). Thus one can cycle
the elements row by row, e.g., forN � 4

ˆ i; k • � ˆ1; 2•; ˆ1; 3•; ˆ1; 4•; ˆ2; 3•; ˆ2; 4•; ˆ3; 4•; ˆ1; 2•; ::: (3.21)

until the terminations criteria is satis�ed. [GHG96] shows that this method
reduces o�̂ A• with every iteration. The complete extension is described by Alg.
8 and will be further extended to the �nal form of the Jacobi algorithm used
in this thesis. As mentioned before, Jacobi methods are inherently parallel, yet

Algorithm 8 CyclicRowJacobî A; tol•
Input: Real symmetric matrix A >RN � N

1: V �� IN

2: eps�� tolSSASSF
3: while o� ˆA• Aepsdo
4: for i � 1 to N � 1 do
5: for k � i � 1 to N do
6: ˆc; s• �� Givenŝ A; i; k •
7: A �� Gˆ i; k; � •T AGˆi; k; � •
8: V �� V Gˆi; k; � •
9: end for

10: end for
11: end while

the listed algorithms do not exploit this parallelism. Let us take a look on a
single sweep forN � 4. From now on we will refer to each choice ofˆ i; k • as a
subproblem. If we partition all subproblems in a single sweep into 3 sets

s1 � ˜ˆ 1; 2•; ˆ3; 4•• (3.22)

s2 � ˜ˆ 1; 3•; ˆ2; 4•• (3.23)

s3 � ˜ˆ 1; 4•; ˆ2; 3•• (3.24)

we can see that all subproblems within each of these sets can be executed in
parallel, e.g., we can updateA simultaneously forˆ i; k • � ˆ1; 2• and ˆ i; k • � ˆ3; 4•
(the same holds for V). Subproblems which can be executed simultaneously are
called independent subproblems. From now on we assume thatN is even (the
case whereN is odd will be handled later).
It is possible to create such a partition for all values ofN . The procedure is
visualized in Fig. 3.1 forN � 8. We start with s1, s2 is created by shifting all
values except 1 clockwise, this procedure is repeated 5 times. In the general case
this procedure yields a total ofN � 1 sets each containingN2 pairs ˆ i; k • of indices.
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Fig. 3.1.: construction of subsets containing independentsubproblems

We now de�ne the complete version of the two-sided Jacobi algorithm, as it
has been implemented.

Algorithm 9 TwoSidedJacobîA; tol•
Input: Real symmetric matrix A >RN � N

1: V �� IN

2: eps�� tolSSASSF
3: while o� ˆA• Aepsdo
4: for set � 1 to N � 1 do
5: for sub� 1 to N

2 do
6: ˆ i; k • �� PROBLEM LUT ˆset; sub•
7: ˆc; s• �� Givenŝ A; i; k •
8: A �� Gˆ i; k; � •T AGˆi; k; � •
9: V �� V Gˆi; k; � •

10: end for
11: end for
12: end while

Alg. 9 utilizes a lookup table 'PROBLEM LUT ' to determine the needed
indices, the creation of this table and its structure will beexplained in detail in
Chap. 6. The inner for-loop can be executed in parallel as allsubproblems in
each set are independent, this fact will used in a later chapter. So far we have
assumed thatN is an even number, this assumption is very convenient for the
algorithms above, yet it represents a practical restriction for them. The case
whereN is odd can be handled by adding a new zero �lled row and a zero �lled
column to the given matrix A.





4. Classi�cation

So far we have only explained coordinate transformations ofthe input space,
which yield a more feasible representation in the context ofstatistics. Yet our
goal is the classi�cation of unknown traces. For this task wewill use three popular
concepts and corresponding algorithms. These concepts arethose of nearest
neighbour classi�cation (KNN), linear discriminant analysis (LDA) and support
vector machines (SVM). The KNN and LDA will be explained in their non-
kernelized version, i.e., their formulation in terms of input space. As [aAFF05]
points out, the kernelized version of both algorithms can beformulated in terms
of a transformed input space.

4.1. Kernel k-nearest Neighbors Classi�cation

The k-nearest neighbors approach to classi�cation is one ofthe most simple so-
lutions to this task, as it makes no assumptions about underlying distributions.
The following derivation is based on [Bis06]. Let us supposewe are givenN i data
points of classCi for i � 1; ::; K and have to construct a classi�erf � I � ˜ 1; :::; K • .
For a given point x one could draw a sphere around it in way that it containsk
other points (disregarding their class membership) of the given data samples and
exactly ki data points of the class whichx belongs to. The conditional density
of each class can be estimated with

pˆxSCi • �
ki

N i V
(4.1)

whereV denotes the volume of the sphere. The unconditional densitytakes the
form

pˆx• �
K

NV
; N �

K

Q
i � 1

N i (4.2)

with prior estimations

pˆCi • �
N i

N
(4.3)

Combining these equations one can formulate the posterior probabilities

pˆCi Sx• �
ki

k
(4.4)
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Minimizing the risk of misclassi�cation can be done by simply assigningx to
the class which minimizes the posterior probability. In other words, x will be
assigned to the class with the majority of points inside the sphere (as depicted
in Fig. 4.1). In algorithmic terms, this corresponds to analyzing the k nearest
samples tox and assigningx to the class with the most samples under thosek
neighbors.
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Fig. 4.1.: KNN algorithm for k � 6

4.2. Kernel Linear (Fisher) Discriminant Analysis

In linear discriminant analysis one tries to �nd a so called discriminant function
of following form

f � I � R; f ˆx• � wT x � w0 (4.5)

The vector w is called a weight vector and the numberw0 is the bias. For now,
let us assume that we only have to distinguish between two classesC1 and C2.
Furthermore we assume thatf ˆx• C0 if f ˆx• belongs toC1 and f ˆx• @0 if x lies
in C2. This discriminant is visualized in Fig. 4.2, one can see that the decision
boundary between the two classes is nothing more than aˆN � 1•-dimensional
hyperplaneH � ˜ xSf ˆx• � 0• (hessian normal form). It is not always possible to

Fig. 4.2.: Example of separating hyper-
plane in input space
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Fig. 4.3.: Non-separable data set
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create a perfect class separation. This case is visualized in Fig. 4.3. Additionally
Figs. 4.4 and 4.5 show the resulting overlap of the projectedvalues, i.e., the
projection of each data point onto the weight vector (exempli�ed by W). We
will refer to this overlap as class overlap. But how do we choose the right weight
vector and bias to get the best possible class separation. Before we address the
problem of �nding these parameters, we shall ask the question what characterizes
the separability of two given data sets. If we take a look at Fig. 4.4 it is obvious
that a small variance within each dataset and a large variance between both data
sets yields a smaller class overlap. Thus one should take these properties into
account when looking for optimal valuesw and w0.
This strategy is applied in a speci�c variant of LDA called Fisher LDA (FLDA),
where it is proposed to carry out the optimization in the hyperplane H with �xed
w0 � 0. First a few words about notation. Letm1; m2 >RN be the class means for
C1 and C2, respectively. Furthermore we havex � >C1; y � >C2; � >˜ 1; :::; M • ; � >
˜ 1; :::; P• . To maximize the global variance one has to maximize the value

ˆ
wT

SSwSS2
ˆm2 � m1•• 2 � ˆm2 � m1•2 (4.6)

For mathematical convenience the weight vector shall be normed. In other words,
the global variance will be maximized for the projected points x � and y� . To
minimize the within-class variance, the following value has to be minimized.

� 2
1 � � 2

2 �
M

Q
i � 1

ˆx i � m1•2 �
P

Q
i � 1

ˆyi � m2•2 (4.7)

�
M

Q
i � 1

ˆˆ
wT

SSwSS2
x i � w0• � m1•2 �

P

Q
i � 1

ˆˆ
wT

SSwSS2
y i � w0• � m2•2 (4.8)

Both problems can be formulated in one equation

max
w

ˆm2 � m1•2

� 2
1 � � 2

2
� max

w

wT Sbw
wT Sww

(4.9)

where
Sb � ˆm2 � m1•ˆ m2 � m1•T (4.10)

and

Sw �
M

Q
i � 1

ˆx i � m1•ˆ x i � m1•T �
P

Q
i � 1

ˆy i � m2•ˆ y i � m2•T (4.11)

are symmetric positive de�nite matrices. As noted in [Bis06]the solution w is
proportional to S� 1

w ˆm2 � m1•, i.e.,

w ŒS� 1
w ˆm2 � m1• (4.12)

Thus only a matrix inversion (in praxis, the solution of a linear equation sys-
tem with LR/Cholesky decomposition) is needed to compute the direction ofw.
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[Wis10] gives an alternative derivation using a diagonalized average covariance
matrix, yet this approach is computationally too expensive.
We now have determined the optimal direction for the weight vector with �xed
bias w0 � 0, in general this bias does not have to be the optimal value. To con-
struct an appropriate bias [Bis06] suggests the use of class-conditional densities

pˆf ˆ :•SCi • (4.13)

while [Kuh06] proposes

w0 �
wˆm2 � m1•

2
(4.14)
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Fig. 4.4.: Projected data points in
case of perfect separable
classes
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Fig. 4.5.: Class overlap in the case
of non-optimal parame-
ters

For better accuracy we will use the �rst proposition. The derivation of following
bias can be found in [Bis06], [Li08] and [Ige10]

w0 � log
� 1

� 2
�

1
2

ˆm1 � m2•T � � 1ˆm1 � m2• (4.15)

Where � 1, � 2 represent the prior probabilities (i.e.� i � pˆCi •) for classC1 and C2,
respectively. � is the covariance matrix of both classes, i.e., we assume that both
data sets have an underlying normal distribution with an indentical covariance
matrices. The prior probabilities can be approximated with

� i �
# of samples in classi

total # of samples
(4.16)

Approximating the gaussian distribution can be done via

� �
1

M � P � 2

2

Q
i � 1

Q
x >Ci

ˆx � m i •ˆ x � m i •T (4.17)
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So far we only considered two classes of data points, in praxis one often has to
classify with more than two classes. As mentioned in [Bis06] afeasible way to
classify with K classes is the construction of multiple discriminantsf k . Which
yield a measure of class membership. Classi�cation can be done by assigningx
to classj through

j � arg max
k

f kˆx• (4.18)

The above derivation for a two class problem can be generalized for K classes.
Yet at this point, only the �nal derived discriminants f k ; k >˜ 1; :::; K • should be
given. The reader interested in the complete proof should refer to [Bis06], [Li08]
and [Ige10].

f kˆx• � xT � � 1m k �
1
2

m k T
� � 1m k � log� k (4.19)

with estimations

� �
1

l � K

K

Q
k� 1

Q
x >Ck

ˆx � m k•ˆ x � m k•T ; l �
K

Q
k� 1

# samples in classk (4.20)

In this thesis, the kernelized version of LDA consists of applying LDA to the
KPCA-transformed spaceRM � M (as motivated and researched by [aAFF05]). As
mentioned above, the KNN classi�er does not take probabilitydistributions into
account. Thus the above made assumption of normal distributed data sets will
proof wrong, if KLDA produces worse results than KKNN.

4.3. Support Vector Machines

In this section a di�erent approach to classi�cation will be presented. So far
we have used KPCA as a tool to enhance standard classi�cationmethods (i.e.
KNN and LDA). We have reduced or increased the dimensionality of the space
in which we carried out the classi�cation. We will now present a way of perform-
ing linear classi�cation entirely in the feature space, i.e., without changing the
dimensionality or approaching classi�cation in a transformed input space. From
now on we again assume that only two classesC1; C2 have to be distinguished.
The technique described next, consists of separating data points in the feature
spaceH by a hyperplane.
Let

H � ˜ x S@w; x AH � b � 0• (4.21)

be a hyperplane inH , with weight vector w >H and biasb>R. We will classify
according to decision functions

f ˆx• � sgn̂ @w; x AH � b• (4.22)
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Let ˜ˆ x i ; yi •• be a family of M data points with corresponding class labels
yi > ˜ � 1; 1• , which we will refer to as training points. To �nd the best sepa-
rating hyperplane we assume that the training points are linearly separable, i.e.,
a separating hyperplane exists. The not linearly separablecase will be handled
later. The optimal hyperplane maximizes the margin (i.e. the shortest distance
of a point to the hyperplane) of each training point. In mathematical terms

max
w >H ;b>R

min˜SSx � x i SSH Sx >H ; @w; x AH � b � 0; i � 1; :::; M • (4.23)

This concept is visualized in Fig. 4.6. In the following derivation (which bases
on [SS02] and [Bis06]) we requireS@w; x i AH � bS� 1 for the closest points toH .
With this, the minimal margin becomes 1~SSwSSH . This can be seen by considering
two points, e.g.,x1; x2 with minimal distance to H

@w; x1 AH � 1 (4.24)

@w; x2 AH � � 1 (4.25)

� @w; ˆx1 � x2• AH � 2 (4.26)

� @
w

SSwSSH
; ˆx1 � x2• AH �

2
SSwSSH

(4.27)

Fig. 4.6.: Visualization of a hyperplane in feature space
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We now de�ne

De�nition 4.3.1 (Canonical hyperplane ).
Let T � ˜ˆ x i ; yi •• be a training set. The pairˆw; b• >H � R is called a canonical
form of a hyperplaneH with respect toT if

min
i � 1;::;m

S@w; x i AH � bSC1 (4.28)

and which yields
yi @w; x i AH � bC1 (4.29)

Thus a canonical hyperplane is optimal in the sense that it classi�es all training
points correctly and has a lower bound 1~SSwSSH for its margin. Maximizing this
lower bound corresponds to minimizingSSwSSH . For mathematical convenience we
formulate this optimization problem as �nding ˆw; b• with

ˆw; b• � arg min
~w ;~b

1
2

SS~wSS2H (4.30)

subject to yi @w; x i AH � bC1 ¦ i � 1; :::; M (4.31)

This is a typical problem of quadratic programming, its solution can be obtained
by the minimization of following Lagrangian

Lˆw; b;a• �
1
2

SSwSS2H �
M

Q
m� 1

am ˆ@w; � ˆx• AH � b• � 1; x >I; am C0 (4.32)

This formulation is called the primal problem. To calculate(i.e. approximate)
the solution another formulation is needed, the so-called dual problem . The dual
problem arises from the above Lagrangian and requires the maximization of

~Lˆa• �
M

Q
m� 1

am �
1
2

M

Q
n� 1

M

Q
m� 1

anam tn tmkˆxn ; xm • (4.33)

subject to the constraints

am C 0; m � 1; :::; M (4.34)
M

Q
m� 1

ymam � 0 (4.35)

Although this represents again a quadratic programming problem, the amount
of variables has been reduced and we obtained a formulation in terms of kernel
functions. The training points xm with am A0 are called support vectors. After
solving above the optimization problem, one can formulate aclassi�er f by

f ˆx• � sgn̂
M

Q
m� 1

amymkˆx; xm • � b• (4.36)



42 Classi�cation

This kind of classi�ers are called support vector machines (SVM). At this point
it should be noted that by calculating ©Lˆw; b;a• , it can be shown that the
weight vector can be expressed as

w �
M

Q
m� 1

� mymxm (4.37)

Thus the weight vector is a linear combination of the supportvectors.
In praxis however, most problems are not linearly separable. This requires a
relaxation of the constraints we have made above. To accommodate this fact one
can introduce so called slack variables

� m >R; m � 1; :::; M (4.38)

with following property

ym ˆ@w; � ˆxm • AH � b• C1 � � m (4.39)

SVMs that use these variables are called soft-margin SVMs. Thegeometric in-
terpretation of the slack variables can be summarized as:

ˆ if �ª @� m @0, we demand that the sample� ˆxm • has a hyperplane margin
greater than the minimal distance of 1, i.e., it still has to be classi�ed
correctly.

ˆ if 0 @� m @1, we allow the sample� ˆxm • to have a hyperplane margin
smaller than 1. Yet it still has to be classi�ed correctly.

ˆ if 0 @� m B 1, we allow the sample� ˆxm • to have a hyperplane margin
smaller than 1. Yet it can lie on the hyperplane itself, yielding no clear
classi�cation.

ˆ if 0 @� m @ª , we allow the sample� ˆxm • to be misclassi�ed, i.e., we
tolerate an error regarding� ˆxm • during training of the SVM.

The introduction of slack variables changes the optimization problem which was
described above. One possible way to formulate a new objective function (i.e. a
function which has to be minimized to solve an optimization problem) is described
in [SS02]. Where the following function has to be minimized

f ˆx; � • �
1
2

SSwSS2H �
C
M

M

Q
m� 1

� m (4.40)

The last term in this function describes a trade-o� between margin maximization
and training error. The constantC regulates this ratio. As in the separable case,
the soft-margin problem yields a weight vector which can be expressed as a linear
combination of support vectors (see Eq. 4.37). To obtain thecoe�cients � m one
has to solve

� � arg min
~�

M

Q
i � m

~� m �
1
2

M

Q
m;n � 1

~� i ~� j yi yj kˆx i ; x j • (4.41)
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subject to the constraints

0 B � m B
C
M

; m � 1; :::; M (4.42)

M

Q
m� 1

ymam � 0 (4.43)

The proof for this statement can be found in [SS02] and [Bis06]. One important
note should be taken regarding the constantC, which is no variable in the op-
timization problem. Yet C is a variable in the overall training of a SVM. After
determining � one can calculate the hyperplane o�set via

b�
1

# of SVs
’

”
Q

j �� j A0
yj �

M

Q
m� 1

ym � mkˆxm ; x j •
“

•
(4.44)

We will not cover the numerical solution to this problem as ithas not been
implemented during this thesis. The reader might consider [SS02] and [aCJL11]
for implementation details.
A SVM is a binary classi�er, using the above formulation it is impossible to
distinguish between more than two classes. Yet there exist many approaches to
extend the use of SVMs to multi-class problems, i.e., classi�cation tasks with
p C2 classes. The most simple one is the so called one-vs-one (OvO) approach.
Where training data is splitted regarding the classes, before the actual training
begins. Let us assume that we are given training samples fromp classes. In
OvO, the data is segmented intop parts. Each part consists only of data from
the corresponding class. Afterwardspˆp � 1•~2 SVMs are trained on all possible
pairs of classes, e.g.,̂1; 2•; ˆ3; p•; ˆ12; 5•. To classify a given test pointx � each
SVM will classify it and make a vote for the correct class. In the endx � will
be assigned the class with the most votes. The case where two or more classes
have the same vote can be handled by assigningx � to the �rst class encountered.
[aCJL11] points out that this method is a competitive approach regarding other
solutions like, e.g., one-vs-all. The OvO method has been used in this thesis.

4.4. Grid Searching

Let us assume that we have a method to solve all optimization problems which
were mentioned in the last section. We still need to tune several external pa-
rameters, like multiple kernel parameters or the trade-o� constant C. A common
method to locate the optimal range of parameters is the so-called grid search.
During a grid search the whole possible parameter range is discretized into an
exponential grid. For example, the range ofC >R would beˆ�ª ; ª • which could
be sampledvia :::; b� 2; b� 1; b0; b1; b2; ::: with b >N. Of course one will not sample
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the complete range. Instead a subset of the range will be chosen and discretized,
e.g., � 2; 104� for C. Once a subregion has been sampled one can train a SVM for
each sample point and afterwards evaluate the overall classi�cation performance.
According to the results afterwards, a more speci�c subset ofthe previous subset
can be chosen. On which in turn a grid search can be performed.This technique
narrows the optimal parameters down.
The training of a SVM involves at least two parameters: at least one kernel pa-
rameter and the trade-o� constant. Thus the grid search requires a sampling
of the euclidean plane (as depicted in Fig. 4.7). The SVMs usedin this thesis
involve kernel functions with only one parameter.

Fig. 4.7.: SamplingR2 for a local grid search

At this point we can precisely de�ne the goal of this thesis: the construction
of a so-called template

De�nition 4.4.1 (Template).
Let � � I � � p� be a classi�er working onC and T, with C �� ˜ C1; :::;Cp• a
set of classes,T ` I a set of training data. Furthermore it should hold that
¦ x > T§!i > �p� � x > Ci . The tuple T � ˆ � ; C; T;	 • is called a template where	
denotes the classi�er parameters that are independent ofC.

which minimizes

AvEr ˆU• ��
1

SUS
Q
x >U

� ˆS� ˆx• � kxS•; U ` I; U 9 T � g ; � ˆx• ��
¢̈
¨
¦
¨̈
¤

0 x � 0

1 else
(4.45)

for an arbitrary choice of U, where kx denotes the class index ofx. Regard-
ing above de�nition the classi�er � must not be of a speci�c type, e.g., a single
SVM. It would be also possible to use a classi�er array, consisting of a KLDA, a
k-nearest neighbors and a SVM classi�er. The set 	 holds the parameters which
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are required to optimize �, e.g., the trade-o� constant C within a SVM.
The function AvEr represents the average recognition error, thusAvEr ˆU•
stands for the classi�cation error on a setU of data points. Furthermore we
de�ne the actual recognition rate onU.

De�nition 4.4.2 (averate recognition rate).

AvˆU• �� 1 � AvEr ˆU• (4.46)

Thus a template attack, in the context of this thesis, involves the construction of
a templateT, using a setT of power traces and an arbitrary classi�er �, which has
been trained onT. This classi�er has to be �ne-tuned with an appropriate choice
of 	. Enabling it to correctly identify many instruction typ es from unknown
power traces.





5. The CUDA architecture

The last chapters covered the key concepts for this thesis. Most methods de-
scribed in Chap. 2 and 4 have a complexity ofOˆN 3•, whereN stands for the
dimensionality of the input spaceI . One method to approach this complexity
is the use of heuristics or approximation methods (e.g. construction of kernel
classi�ers by approximating the gram matrix). Yet the focusin this thesis lies
on the direct solution of the described problems. Accelerating the algorithms
can be done by utilizing parallel computation in terms of symmetric multipro-
cessor (SMP) architectures. The CUDA architecture providesmassively parallel
computation power, e.g., as of today up to 448 computation cores per CUDA
device. This chapter will provide a very brief introductioninto CUDA, including
important hardware speci�cations and implementation aspects.

5.1. A Brief Introduction to CUDA

Modern graphic cards utilize so-called shader units which allow a graphics de-
signer to implement custom computation routines. For example, enhancing the
look of a texture by adding special e�ects after it has been applied to the sur-
face of a polygon. A shader unit can be described as a restricted (in terms of
functionality) CPU core. A GPU features a high number of suchunits, thus
they are also called a shader array. NVIDIA cards provide another abstraction
layer, called CUDA, to this shader array. CUDA enables the developer to use the
GPU nearly in the same way as a SMP system. Yet there are several important
restrictions to this access. Let us �rst take a look onto the CUDA architecture
and the developers view onto it.
Fig. 5.1 shows the view onto a CUDA enabled device. The GPU is segmented
into so called streaming multiprocessors (SMs), which in turn consist of streaming
processors (SPs). A SP is also called a CUDA core. The SP is one atomic com-
putation unit in CUDA, i.e., one processor which executes a program. The GPU
used in this thesis is a GTX470 which provides a total of 448 SPsand belongs to
NVidias Fermi GPU generation. Those CUDA cores are grouped into14 SMs,
each of them incorporating 32 cores. The developer can not access these cores
directly, the execution of a CUDA program will be managed by the GPU itself.
The management of program execution is clearly de�ned and the programmer
must use this to his advantage. In most literature (e.g. [aEK10] or [aWmH10])
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Fig. 5.1.: CUDA architecture of a GPU

this programming model is introduced by an implementation of the well-known
matrix multiplication. For reasons of simplicity we will introduce the concepts
with an example of computing the sum of two real valued quadratic matrices
A; B >Rn� n . This operation has a complexity ofOˆn2•.
The sum of two matrices is de�ned as

ˆA � B• i;j �� A i;j � B i;j (5.1)

An ordinary single threaded implementation would have a formlike

1 void main ( )
2 f
3 for ( int i =0; i <n ; i++)
4 f
5 for ( int j =0; j <n ; j++)
6 f
7 C[ i , j ] = A[ i , j ]+B[ i , j ] ;
8 g
9 g

10 g

One might notice that the instructions inside the inner for-loop are independent
of each other, thus they can be executed in parallel. The optimal case would be
if we hadn2 cores available, such a system would reduce the complexity to Oˆ1•.
Yet for arbitrary matrix sizes, no such system exists. Even though one might not
have the required number of cores to execute all instructions simultaneously, the
usage of more than one core is still a major bene�t, as it reduces computation
time by at least half.
The CUDA approach to this algorithm consists of launchingn2 threads, each
computing one element ofC. At this point thread scheduling becomes relevant.
Before we take a look on scheduling we shall explore how threads are ordered
and executed in general. CUDA groups threads into three dimensional thread
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blocksTi;j . Those blocks are in turn ordered in a so-called two dimensional grid
G. This concept is visualized in Fig. 5.2. Let us further simplify the situation by
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Fig. 5.2.: Thread grouping in CUDA

assuming that each blockTi;j is quadratic and its size dividesn. The program
which will be executed by every thread is called a kernel (which should not be
confused with kernel functions). The kernel in our case could have following form,
which is similar to, e.g., an OpenMP approach.

1 g l o b a l kerne lForMatr ixAddi t ion ( double * A, double * B,
double * C, int b l ockS ize )

2 f
3 // b l o c k coord ina tes
4 int blockX = blockIdx . x ;
5 int blockY = blockIdx . y ;
6 // th read coord ina tes i n s i d e the b l o c k
7 int threadX = threadIdx . x ;
8 int threadY = threadIdx . y ;
9

10 // a c t ua l i n d i c e s fo r memory access
11 int i = blockX * b lockS ize+threadX ;
12 int j = blockY * b lockS ize+threadY ;
13
14 C[ i , j ] = A[ i , j ]+B[ i , j ] ;
15
16 g

Every thread entering the kernel computes its indicesi; j and accesses the corre-
sponding matrix elements. A kernel launch is always asynchronous, i.e., once the
GPU has received the command to launch a kernel, it returns control to the host
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thread. Thus the host must take care of synchronization between GPU and host
application segments. GPU threads can communicate with each other in terms
of data exchange and synchronization. Yet this is limited tothreads within a
block. The synchronization of all GPU threads can be done by amethod called
'host synchronization' which holds the host thread until all GPU threads have
�nished execution. This method can be explained with the following example.
Let us assume that we want to synchronize all threads on the GPU during the
execution of a kernel. To achieve this, we have to split the kernel into two new
kernels. The �rst one will hold all instructions before the synchronization point,
whereas the second one holds all instructions after the synchronization point.
The �rst kernel will be launched and the host thread will waituntil the GPU has
�nished computation. In other words, until all GPU threads have reached the
end of the �rst kernel. Afterwards the host will launch the second kernel, thus
we achieved the desired synchronization of all GPU threads.
Only a speci�c (GPU dependent) number of blocks can be assigned to a SM,
e.g., up to 8 on a GTX470. It should be noted that this number depends on
the total count of threads residing in these blocks, e.g., a GTX470 can assign up
to 1536 threads to a single SM. Each SM also has a limited number of internal
resources, which could further reduce the maximal number ofassignable threads
during runtime. Each SM divides its blocks into so called warps of threads. This
segmentation of blocks into warps is visualized in the Figs.5.3 to 5.5 for a warp
size of 32 threads within quadratic blocks. For reasons of simplicity these �gures
do not take into account GPU speci�c limitations regarding the maximal thread
number. On a GTX470 a warp contains 32 threads, which will be executed in
parallel by the SPs of the SM.

Fig. 5.3.: Warps inside a three dimensional thread block
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Fig. 5.4.: Warps inside a two dimensional thread block
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Fig. 5.5.: Warps inside a one dimensional thread block

The GPU uses these warps as an atomic schedule unit. Up to 48 warps may
be active on a SM for the mentioned GPU. This means that the GPU schedules
actively between those 48 warps, which are chosen arbitrarily from the assigned
thread blocks.
The limitations for, e.g., assignable threads per SM or the global thread limit for
the GPU, are speci�ed in the CUDA capability levels . These levels are de�ned
in [NVI10b]. For a GTX470 (CUDA capability level 2.0) the limitat ions are
summarized in Table 5.1

Table 5.1.: Important limitations for the GTX470 GPU

Maximum x- or y- dimensions of a grid of thread blocks 65535
Maximum number of threads per block 1024
Maximum x- or y- dimension of a block 1024

Maximum z- dimension of a block 64
Warp size 32

Maximum number of resident blocks per multiprocessor 8
Maximum number of resident warps per multiprocessor 48

Maximum number of resident threads per multiprocessor 1536
Maximum number of instructions per kernel 2 � 106



52 The CUDA architecture

Up until now only the computational aspect of CUDA has been discussed. The
actual data was considered a given constant in the explanations above. A GPU
can access data in several ways, the most important for us are

1. copying data from host memory to GPU memory

2. accessing data on the host directly via the PCIexpress bus

Before analyzing both methods it should be stressed out thatnone of both meth-
ods is superior to the other. For every given problem is must be carefully decided
which approach would yield the best performance.
The GPU memory, also called global or device memory, is considerably faster
than the host memory . Yet its size is often much smaller than the host memory.
It might not be possible to �t all the data into GPU memory at once and incre-
mental copying might be necessary. Many copy operations with huge data chunks
between host and GPU can reduce the bene�ts of using CUDA considerably. The
use of GPU memory is recommended when many operations will beexecuted on
a relative small amount of data, i.e., data that �ts completely into GPU memory.
It is also possible for the GPU to access the hosts memory directly. This may
reduce the size restrictions considering GPU memory. The downside to this lies
in the transfer speed of the data. If a kernel accesses the hosts memory many
times during his execution, the algorithm will be slowed down to a large extend.

5.2. Optimization Methods

In the previous section we have developed an understanding about the basic
CUDA concepts. We will now briey review important optimization strategies
which have been considered in our implementation.

5.2.1. Coalesced Memory Access

Under certain conditions the GPU can optimize the memory access to device
memory. The requirement for such an optimization is a coalesced memory access
by the kernel. Coalesced memory access refers to a speci�c access pattern by the
kernel. Again for reasons of simplicity, let us assume the kernel will be executed
by 128 threadst1; :::; t128 in a one dimensional block, inside a 1x1 grid. Addition-
ally the kernel shall work on a 128 byte array, residing in global memory. This
memory can be linearly split into segmentss1; :::; s4 of size 32. The GPU threads
will be linearly scheduled into warpsw1; :::; w4 of size 32. For coalesced memory
access, each threadt i ; i � 1; :::;16 in a half warp ~wk;j ; k � 1; ::;4 ; j � 1; 2 has to
access thê j � 1• �16� i -th byte in segmentsk . This concept is visualized in Figs.
5.6 and 5.7.
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Fig. 5.6.: example of coalesced mem-
ory access

Fig. 5.7.: example of non-coalesced
memory access

The explanation above refers to the basic principle as introduced in the spec-
i�cation of CUDA computability level 1.0 (see [NVI10a]). The requirements are
relaxed with increasing level and one should refer to the appropriate documenta-
tion regarding the device's level.

5.2.2. Pinned Memory & Zero-copy

Pinned memory refers to page locked host memory, i.e., memory which will not
be swapped by the operating system. The use of pinned memory increases the
transfer rates for data copying between host and GPU. This speed up results
from the fact that the basic data copying from host to device memory involves
the following stages: copy data from non-pinned host memoryto pinned host
memory and afterwards to device memory. The usage of pinned memory does
not require an additional transfer to pinned host memory. Yet one should use
the allocation of pinned memory with caution as is reduces the overall memory
available to the system.
The GPU can also access host memory directly, this is referred to as zero-copy
memory access. The GPU can only access pinned memory on host side. Zero-
copy memory access allows a GPU to overcome the size restrictions of its own
memory. In other words, the GPU can access large data amountswithin the
hosts memory. Yet this access is a high latency operation andshould be used
with caution.
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5.2.3. Block dimensions & Thread Resources

The choice of the thread block dimension is very important, as it can be used
to control the thread scheduling and thus the performance ofthe algorithm. As
described above, each SM consists of multiple SPs. Every SM has a limited
amount of resources, this includes limited memory to execute a kernel using the
assigned threads. Each thread incorporates his own copy of the kernels data,
e.g., if the kernel declares 10 double variables, each the size of 64 bits and the
SM will be assigned 1000 threads, the SM has to provide 80 kB ofmemory. If
the requirements are not met, the kernel will not be launchedat all. Thus the
developer has to be careful when designing kernels.

5.2.4. Thread Divergence

Another crucial aspect in kernel design is the problem of thread divergence. The
CUDA architecture is not driven by the SIMD (single instruction, multiple data)
paradigm. Where data is prefetched and afterwards used by a speci�c instruction,
e.g., instructions in SSE in Intel CPUs. The GPU executes kernels by following
the SIMT (single instruction, multiple-thread) approach. It executes a (common)
instruction for all threads within the same warp before continuing with the next
instruction. Let us now consider the kernel in Listing 5.1. This kernel obviously
splits the control ow during execution. The GPU will require multiple execution
passes to execute each warp involved in this kernel. One passfor the threads
which handle the if-part and one pass for the else-part, thusparallelism will be
reduced. The homogeneity of a kernel, i.e., the amount of control ow splits, is
a measure for the divergence of the control ow during execution.

Listing 5.1: Kernel yielding thread divergence
1 g l o b a l i n e f f i c i e n t K e r n e l (double * someArray )
2 f
3 // th read coord ina tes i n s i d e the b l o c k
4 int threadX = threadIdx . x ;
5 int threadY = threadIdx . y ;
6
7 i f ( threadX>=2 && threadY < =15)
8 f
9 someArray [ i , j ] = i+j ;

10 g
11 else
12 f
13 someArray [ i , j ] = i � j ;
14 g
15 g
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Control structures as if-else blocks should be avoided as much as possible. A
kernel yielding no thread divergence at all, will be called ahomogeneous kernel.
Otherwise we will call the kernel inhomogeneous.





6. Implementation

This chapter explains the implementation of the algorithmsfrom Chaps. 2 and
4. At the time this thesis was written, many frameworks for numerical linear
algebra existed. Yet most of them represented simple wrapper APIs for the well-
established framework LAPACK. This library provides a wide variety of numeri-
cal methods from linear algebra, yet it is written in Fortranand does not include
SMP or even GPU support. Regarding an implementation in the C/C++ lan-
guage, theGNU scienti�c library (GSL) represents a popular framework. NVidia
also provides its own version of the LAPACK libraries, yet this framework is
closed source and only commercially available. Thus it is unclear what algo-
rithms have been used and how e�cient their implementation is. Additionally it
provides only a tiny fragment of the LAPACK functionality. For this thesis the
GSL has been choosen due to following reasons:

ˆ It provides access to the source code, thus fragments can be used and en-
hanced for, e.g., SMP

ˆ It is still in development, thus new features might be available in time, e.g.,
new algorithms

Whenever possible, methods which were already present in the GSL, have been
used to solve subproblems in our implementation. In other cases, GSL routines
have been enhanced by replacing subroutines with CUDA counterparts. Not ev-
ery such replacement was implemented from scratch, i.e., bywriting a custom
kernel for it. CUDA also includes basic functions for computations in linear alge-
bra. These functions are bundled under the so called CUBLAS portion of CUDA.
In speci�c cases, the usage of CUBLAS can yield a major performance gain. To
understand these speci�c cases one has to consider the complexity of basic cal-
culations from linear algebra. These are grouped in three so-called BLAS levels.
The �rst level includes all scalar-vector operations, e.g., the scaling of a vector
by multiplying each element with a real number. Level two consists of vector-
vector operations ,e.g., adding two vectors or the euclidean scalar product. Level
three incorporates all matrix-matrix operations, e.g., the matrix multiplication.
As shown in [aWmH10] it is unwise to move all BLAS calculations tothe GPU.
The reason for this is quite simple, the overhead of computing small problems
on a GPU outweighs its bene�ts. Small calculations, like thecomputation of a
scalar product with two 5-dimensional vectors, are carriedout faster on the host
side. Additionally Chap. 7 will verify these facts through benchmarks of basic
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CUBLAS and GSL methods for di�erent problem sizes.
Our implementation consists of so-called hybrid-algorithms, which execute sub-
routines on the GPU only if it yields a massive speedup compared to the host
side. The functions in level three can reach a complexity of,e.g.,OˆN 3•, thus if
a parallel approach exists for them, the speed-up will be immense. Especially the
ordinary matrix multiplication bene�ts greatly for huge values N . Thus certain
parts of the algorithms from the chapters above will be reformulated to use level
three routines.
In the following sections we will omit code fragments as far as possible, list-
ings will be given only if they are self-explanatory or intuitively to grasp. The
major implementation concepts and their bene�ts as well as drawbacks, will be
explained. Additionally the encountered problems and theirsolutions will be
addressed. If not mentioned otherwise, all given numbers refer to the GTX470
GPU.
Before we start, an important aspect must be mentioned. The host and device
memory is organized in a one dimensional fashion, i.e., by numbering the mem-
ory slots. Yet a matrix is a two dimensional structure, thus the indices must be
mapped onto the corresponding memory addresses. This mapping can be done
in two ways, either as column- or row-major mapping. The di�erence between
both methods is visualized in Fig. 6.1. The column-major format sequentially
aligns the columns of a matrix in memory, while the row-majorformat does the
same for the rows of the matrix. The conversion between both formats can not
be done by a simple call tomemcpy. The data needs to be copied by a single
for-loop, i.e., regarding aN � N matrix, N 2 for-loop iterations are required for
this.
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Fig. 6.1.: mapping a matrix onto host/device memory
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One problem lies in the di�erent philosophies of CUDA and GSL,while CUDA
(and Matlab) uses the column-major alignment, GSL uses row-major alignment.
This requires some overhead during data exchange between both frameworks, yet
this poses no major problem in the following implementations. The reason for
this is the fact that such a data exchange (e.g. the conversion of a CUBLAS
matrix to a GSL matrix) only occurs in the initialization or t he end phase of an
algorithm. The conversion times (up to 20ms) are relativelysmall compared to
the involved computation time (up to 5 minutes).
Additionally an interface for Matlab was required, thus a exible matrix class
(Listing 6.1) was developed. It can be used for GSL and CUDA (format conver-
sion is performed in the background) and provides methods for data import/ex-
port from/to Matlab.

Listing 6.1: the main data structure used in this thesis

1 template < c lass T> c lass Matrix f
2 public :
3 Matrix ( int type ) ;
4 Matrix ( Matrix <T> * matrix , int type ) ;
5 vi r tual ~Matrix ( ) ;
6 void in i tMa t r i x ( int rows , int columns , bool pinned

= fa l se ) ;
7 void setData ( int i , int j , T va lue ) ;
8 T getData ( int i , int j ) ;
9 T* getDataPtr ( ) ;

10 int getRowCount ( ) ;
11 int getColumnCount ( ) ;
12 void readMatr ixFromFi le ( s td : : s t r i n g f i l ename ) ;
13 void wr i teMatr ixToFi le ( s td : : s t r i n g f i l ename ) ;
14 void exportMatr ix ( s td : : s t r i n g f i l ename ) ;
15 void readMatr ixFromMatlabFi le ( s td : : s t r i n g f i lename

, s td : : s t r i n g varName) ;
16 void wr i teMatr ixToMat labFi le ( s td : : s t r i n g f i lename ,

s td : : s t r i n g varName , bool compressed ) ;
17 int getType ( ) ;
18
19 private :
20 int type ;
21 int rows ;
22 int columns ;
23 bool pinned ;
24 T* data ;
25 bool readCSVValue (FILE** pFi le , s td : : s t r i n g * s ) ;
26 g;
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Additionally this data structure provides pinned memory if desired, the details
of each method can be viewed in the documented source �les.

6.1. QR Algorithm

The implementation of the QR algorithm involved the following tasks:

1. extending the GSL routines with an interface which allowscommunication
with CUDA methods

2. implementing Alg. 2 and the required subroutines with CUDA enhance-
ment

3. ensure the correctness of the implementation

The GSL already provides the QR algorithm as described in Chap. 2, yet it does
not utilize SMP. For this thesis the GSL implementation has been modi�ed. More
precisely, the matrix tridiagonalization has been ported to the GPU. An interface
has been created which allows injection of an already tridiagonalized matrix into
the QR routines within GSL. This concept is visualized in Figure 6.2.
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Fig. 6.2.: Modi�cation of the GSL to allow injection of an already tridiagonalized
matrix

The original GSL function gsl eigensymmvconsists of the matrix tridiagonal-
ization and QR steps. In our implementation this procedure has been reduced
to only incorporate the QR steps, yet this requires the inputof an already tridi-
agonal matrix. This matrix will be provided by a subroutine which utilizes the
GPU to tridiagonalize the given matrix. The reason for not porting the QR Sub
procedure to the GPU as well, lies the algorithms internal structure, which does
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not allow parallelization.
We will now look in detail onto the implementation of the matrix tridiagonaliza-
tion. The tridiagonalize function follows the GSL convention, i.e., it splits the
actual algorithm into two parts. One handles the tridiagonalization (algorithm
2) and creates a compact representation of the matricesT; Q in just one matrix.
The other part expands this compact representation into twofull size matrices.
This parts are handled by the functionssymmtd decompand symmtd unpack, re-
spectively. Before we continue with the details of those functions, we shall look
on the compact representation̄ >RN � N of the tridiagonalized matrix T and the
corresponding tridiagonalization matrixQ. Fig. 6.3 shows the form of such a
matrix ¯ .

Fig. 6.3.: Representation of a tridiagonalizationA � QT TQ with just one matrix
¯

The diagonal elementsdi represent the matrix T, under each of these entries
lies one Householder coe�cient and the corresponding Householder vector. Tridi-
agonalization of aN � N matrix requires N � 1 Householder reections. At this
point is should become more clear what was meant in chapter 2 by `... saves
half the space ...'. The �rst element of the Householder vector is always 1. h1

is of dimensionN � 1. Leaving out the �rst element, we need to save only the
remaining N � 2 elements. Yet the �rst column hasN � 1 slots left under the
diagonal element, this allows us to save even� 1 betweenh1 and d1. Additionally
it should be noted that hN � 1 � 1 thus we only store� N � 1 under dN � 1.
Now to the methodssymmtd decompand symmtd unpack. symmtd decompcom-
putes the tridiagonalization and creates̄ . It is basically Alg. 2 which is already
rich in BLAS-3 routines and thus needs no reformulation. Yet it involves the sub
routine housewhich only incorporates the euclidean dot product. This operation
(taking the remaining structure of the algorithm into account) can not be ex-
tended to a higher BLAS level. Our implementation works nearly completely on
the GPU, only the scalar routines inhouseare executed on the host. Thus only
ˆN � 1• double values (i.e. the� values) are exchanged between host and device
within the inner part (i.e. omitting initialization) of one tridiagonization.
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Once the matrix ¯ has been created,symmtd unpackcan create the matricesT
and Q. The creation of T is straight forward as is only consists of copying the
diagonal values of̄ into an empty matrix, this requires N � 1 copy operations.
The important step is the creation ofQ, this was done completely on the GPU
by using Alg. 3 which consists of level 3 routines. No custom kernels have been
developed for these functions, only routines from CUBLAS havebeen used. It
would be di�cult to create a homogeneous kernel which provides the computa-
tion of a Householder vector and corresponding coe�cient.
Testing the implementation of numerical methods can be a di�cult task, cancel-
lation can stay undetected for small matrix dimensions. This was also the case
in this thesis. Using the matrix (Eq. 3.5) cancellation became evident atN � 70.
Verifying the correctness of the implementation was done bycomparing the re-
sults with reference implementations, i.e., Matlab and GSL. The results do not
have to be identical as Matlab uses di�erent algorithms. Additionally the GPU
uses di�erent representations of oating point numbers (e.g. di�erent rounding
and cut-o� policies). Thus comparison was done by calculating the Frobenius
norm SSS:SSSF of the di�erence matricesˆAgsl, matlab� ACUDA•.

6.2. Two-Sided Jacobi Method

The two-sided Jacobi method was implemented without the usage of CUBLAS
routines. The reason for this lies in the fact that the involved 2-dimensional
Givens rotations are not suitable (regarding their performance) for CUBLAS
functions. Our implementation is inspired by the work of [GS10]. The possibly
easiest method to understand the program structure of our implementation, is by
looking at Figure 6.4. We will omit the details of initialization here, one might
refer to the source code to see the details. LetA be a ˆn � 2• � ˆn � 2• matrix.
The following explanations will refer to a dimensionality of n, i.e., it will seem as
we try to diagonalize an � n matrix. The reason for that will be discussed later,
at this point it is su�cient to consider A temporarily as an � n matrix.
First the matrix V will be set to I n , this matrix will be holding our eigenvectorsv i .
Additionally a matrix ~A is being initialized, this matrix will be explained later.
Afterwards the actual algorithm begins his work, 3̂n � 1• n

2 Givens rotations
are carried out on the GPU. We will now take a more detailed lookon where
this number of rotations originates from. As described in Chap. 2 the cyclic-
row extension works by grouping the rotations in a single sweep into so called
subproblems. Each subproblem-set consists ofn

2 Givens rotations which can be
executed in parallel. There are exactlyn � 1 subproblem-sets in a single sweep.
This translates into Fig. 6.4 as follows.n

2 rotations are applied on the rows of
~A, yet these rotations also need to be applied on the columns of~A. Obviously
this can not be done simultaneously. One has to wait until allrow operations
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Fig. 6.4.: Implementation outline of the two-sided Jacobi method

have �nished before continuing with the columns. This step can only be done by
synchronizing all threads on the GPU (e.g. by a thread barrier). As described
in Chap. 5, the technique for this is host synchronization. Thus we have 3
applications of n

2 Givens rotation for a singe subproblem-set. There aren � 1
subproblem-sets, which implies a total of 3̂n � 1• n

2 Givens rotations in a single
sweep.
So far we have described the implementation in a macroscopicview, now we
take closer look on the developed kernels for executing these rotations. Again
a visualization, given by Fig. 6.5, will accompany us. We used column-major
alignment on the device memory. Every thread on the GPU handles a single
column of the matrix, e.g.,tk� 1 executesn

2 Givens rotations on columnci , which
consists of values� j ; j >�n� . At this point the question arises about the amount
of threads to be launched and the dimensionality of the gridG and the thread
blocks. The answer to this question lies completely in the structure of the look-
up table LUT for the subproblems. Each column inLUT represents a Givens
rotation, thus we split the table into segments of length 32 (chosen to be same
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Fig. 6.5.: Threads executing Givens rotations

length as a warp). If the size ofLUT is no multiple of 32 we pad the table with
enough additional columns. Each of them containing the numbersn � 1 andn � 2
in the �rst and second row respectively (see Fig. 6.6).

Fig. 6.6.: Padded look-up table for subproblem-set 1

This approach allows us to launchn� z
2�32 1-dimensional thread blocks of size 32

whose threads execute a homogeneous kernel (z �� 32 � � n
2 mod 32� stands for

the amount of padding). The choice for the content of the additional columns is
motivated by the access onto the matrix data. The kernel doesnot work on the
matrix A, for the strategy described so far to work, the matrixA must be padded
with two additional columns and rows. Thus we work on the matrix ~A given by

~A ��
’
–
”

A 0 0
0 0 0
0 0 0

“
—
•

> Rn� n (6.1)

At this point is should be visible that our additional columns in LUT represent
dummy rotationson the added rows and columns of~A.
A naive way of implementation would be to pre-calculate thislook-up table and
store it in device memory. Each thread could then access the appropriate indices
from global memory and start executing the rotation. Which essentially, is noth-
ing more than a for-loop withn iterations. Yet, according to [NVI10a] a single
access to global memory takes� 400� 600 clock cycles. Thus this approach would
yield a severe overhead. To overcome this obstacle each thread can compute the
appropriate table elementson-the-y during execution. [GS10] presented a simi-
lar approach, for this thesis a slightly modi�ed version hasbeen developed. First
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it should be pointed out that the method to create a certain subproblem-set is
equivalent to the method depicted in Fig. 6.7.

����������������������
���������������������	

Fig. 6.7.: Another approach to create a subproblem-set

The main di�erences to Chap. 2 are the counting order and the �xed element.
Additionally we start counting at 0. A table as the one in Fig. 6.7 can be linearly
mapped to the 1-dimensional structure depicted in Fig. 6.8.
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Fig. 6.8.: Mapping a subproblem-set onto a 1-dimensional array

The shifting is needed only for the �rst n � 1 elements. It can be carried out
by simply calculating x � ˆn � 2• mod ˆn � 1• wherex >˜ 1; :::; n � 1• is the desired
position in our 1-dimensional structure. Because each look-up table is a multiple
of 32, each 1-dimensional mapping will be one as well. Thus each thread can
access the mapping as depicted in Fig. 6.9. The numbers next to the arrows
indicate corresponding elements, e.g.,ˆ2; 5• indicated by the number 3 represent
one single subproblem.

������������ ���������	

Fig. 6.9.: Thread accessing a mapped �rst lookup-table i.e.subproblem-set 1,
example forn � 8

To understand the �nal formula, one should �rst refer to Fig. 6.10, where the
on-the-y computation of the look-up table is visualized. To access a pair from
the subproblem-set 2 forn � 8, one just has to carry out the depicted calculations.
Only the basic array from Fig. 6.7 is needed.
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Fig. 6.10.: Computing the subproblems for subproblem-set 2, n � 8

Theorem 6.2.1 (On-the-y calculation of subproblem-sets).
Each subproblempj;l � ˆ i; k • > ˜ 0; :::; n � 1• 2; j > ˜ 1; :::; n

2 • of subproblem-set
l >˜ 0; :::; n � 1• can be calculated by

pj;l � Œ
ˆj � 1• � l � ˆn � 2• mod ˆn � 1•

�ˆ n � 1• � ˆ j � 1•� � l � ˆn � 2• mod ˆn � 1•
‘ (6.2)

with the exception of

p0;l � Œ
ˆj � 1• � l � ˆn � 2• mod ˆn � 1•

n � 1
‘ (6.3)

Both equations in a single kernel need an if-else structure,thus a homogeneous
kernel becomes impossible.
Additionally one might argue that this approach yields no speed-up by using coa-
lesced memory access. It would be possible to avoid the for-loop inside the kernel
and instead use much more threads, i.e., each thread would perform one iteration
of the for-loop approach. This suggestion must be analyzed carefully, �rstly it
still would yield the same amount of accesses to the device memory. Secondly
only one kind of Givens rotations would bene�t from coalesced memory access,
either the row rotations or the column rotations (dependingon how one aligns
the matrix in memory, either in row-major or in column-majororder). Thus only
one half of the algorithm would bene�t from coalescing, yet this is not the major
disadvantage of this approach. The kernel would need a control-structure, e.g.,
an if-else block, to �nalize the computation. Thus in the worst case the execu-
tion speed would be reduced by another half. Another inherentdrawback is the
subroutine GivenŝA; i; k • (Chap. 3) as it splits up the control ow twice.
Summarized it can be said that our approach allows up to 448 Givens rotations
to be executed in parallel while minimizing the thread divergence. A major bot-
tleneck in this solution is the host synchronization which contributes a noticeable
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amount to the overall running time.
This bottleneck will become more evident in the extension tothe multi-GPU
version, depicted in Fig. 6.11. In the case of 2 GPUs, one mighthandle the

�����

�����

Fig. 6.11.: Distributing subproblem-sets onto two GPUs

odd numbered subproblem-sets while the other one handles the even numbered.
Yet the host synchronization from above, has to be extended onto multiple de-
vices. Every GPU needs the results of all the other ones. The most reasonable
approach would be to either use a common host memory space (e.g. zero-copy
memory access) or copy the result back to the host memory, wait until all devices
have copied their results and then copy the complete data back into every device.
Both approaches have bene�ts and disadvantages. Using a common host memory
space allows the handling of very large matrices but slows the kernel execution
down due to high latencies. The use of a temporary cache on host side does not
slow the execution down. Yet the matrix size is limited by thelowest memory
capacity of the GPUs involved. Additionally the synchronization procedure be-
comes more complex, as each GPU must copy only speci�c rows and columns
back to the host.
The correctness has been veri�ed in the same manor as with theQR algorithm.

6.3. Kernel Principal Component Analysis

In this section we will describe our implementation of the GPU-enhanced KPCA.
Before describing the complete algorithm we will explain the major improvements
and di�erences compared to the standard (i.e. CPU based) KPCA. The execution
of the KPCA has been enhanced by the usage of a GPU in multiple ways, which
are speci�cally:

ˆ creating the Gram matrix on GPU

ˆ performing matrix centering on the GPU
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ˆ reformulating the projection of all data points in a single matrix multipli-
cation

We will �rst take a look on how the Gram matrix was created on the GPU, a
new kernel has been developed for this. Considering a set ofp n-dimensional data
points x i ; i > �p� , where p is a multiple of 32, the strategy is as follows. Every
launched thread computes one single element of the Gram matrix. This compu-
tation is basically a simple for-loop withn iterations. In general the assumption
regardingp will not hold, thus we will require some data padding. Beforediving
into the details of this padding, we shall take a look on Fig. 6.12, which visu-
alizes the concept described so far. The threadt1;1 in block T1;1 will compute

Fig. 6.12.: Computing the Gram matrix by a kernel on the GPU

elementK 1;1 of the Gram matrix K , the needed data for this consists of the vec-
tor x1 >I . Each thread block has a dimension of 32� 32, as each thread computes
a single element ofK . If p is not a multiple of 32, the described concept has
to be extended as follows. The working space, i.e., where thecomputed values
will be stored, has to be padded accordingly. To avoid control ow splits e.g.
if-else segments, the number of input vectorsx i has to be increased as well, Fig.
6.13 shows this approach. It depicts the case where the memory space has to
be padded by only 1 unit, thus only one row and one column is added to K .
Every cell of the memory(-grid) holdingK will be handled by a unique thread,
thus all thread blocks cover this grid without an overlap. The thick black line
represents the border between elements ofK and dummy entries in the added
rows/columns. These dummy entries will be discarded after the computation has
�nished. Their purpose is nothing more than the avoidance ofif-else parts within
the kernel. As mentioned before, each thread computes a single elementK i;j by
using the input vectorsx i ; x j .
Once the matrix has been extended with one row and one column we will need
one additional vectorxp� 1. The threads at the border of the extended matrix
can then usexp� 1 to compute the elementsK p� 1;j � kˆxp� 1; x j •. Once the gram
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Fig. 6.13.: Padding the device memory according to the dimension of the thread
blocks, here for the case where only one column and row have been
added

matrix has been computed and before solving the SEVP, it must be centered.
During implementation it became evident that this centering represents a major
bottleneck during the KPCA, as it requires 4 matrix multiplications. Considering
the matrix dimensions encountered in this thesis (up to 6000), it is unfeasible to
execute these multiplications on the host side (as will be shown in Chap. 7).
Thus the centering has been transfered to the GPU.
In chapter 2 it was explained how a single vectorx >I is being projected onto the
principal components� i in feature space. This was formulated by a single sum
for each input vector, for this thesis another formulation was developed. We will
give a projection formula that projects all desired vectorsonto a set of principal
components, in terms of a single matrix multiplication.

Theorem 6.3.1 (Projecting multiple input vectors).
Let x l >I; l >�w� be the training set for the KPCA. Furthermore lety j >I; j >�n�
be the set of vectors to be projected onto the principal components� i ; i >�m� ; m @
w in feature space. The projections~y j ; j >�n� are given by

’
–––
”

kˆx1; y1• kˆx2; y1• ::: kˆxw ; y1•
kˆx1; y2• kˆx2; y2• ::: kˆxw ; y2•

� � ::: �
kˆx1; yn• kˆx2; yn• ::: kˆxw ; yn•

“
———
•

ˆ� 1 ::: � m • � ˆ ~y1 ::: ~yn•T (6.4)

The actual implementation precomputes the kernel matrix (i.e. the matrix with
kernel calls inside) using the same method as for the Gram matrix. Afterwards
the multiplication is again carried out through the CUBLAS framework. The
described projection method yielded signi�cant speed improvements compared
to other implementations (especially Matlab). We will now show the complete
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implementation with the most relevant points, for more details (e.g. initialization
procedures) one should refer to the provided source code.

Algorithm 10 KPCA
Input: Training set ˆx i • i >� w�

Set of vectors to be projected̂y i • i >� n�

Dimension countm

1: init memory for K , kernel matrix,
eigenvector matrixQ, eigenvalue vector �
temporary bu�er ~Q

2: computeK on GPU
3: compute kernel matrix on GPU
4: center Gram matrix on GPU
5: compute eigenvectors and eigenvalues ofK using the GPU
6: sort eigenvectors according by their eigenvalues in descending order
7: compute projection ofˆy i • onto �rst m eigenvectors using the GPU

The sorting of the eigenvectors is a non critical task regarding the execution
time. Only the eigenvalues have to be sorted, e.g., forw data points, w numbers
have to be sorted in descending order. As our experimentsonly involve up to
6000 eigenvalues, this sorting will be carried out on the host side. Afterwards the
corresponding eigenvectors are sorted by copying them intothe right position in
a temporary bu�er ~Q. From there the sorted vectors will be copied back into the
original matrix Q. This requires at most 2w memcpycalls, which in turn only
occupies a small fragment of the overall execution time (diagonalization can take
up to 5 minutes for a 5000� 5000 matrix).
One might argue that this copying is not necessary. It would also be possible to
use a simple two dimensional look-up table which connects the sorted eigenvalues
and the corresponding eigenvectors. Yet we require the eigenvectors to be aligned
in memory according to their eigenvalues, as we need to perform an e�cient
matrix multiplication.

6.4. k-nearest Neighbors & Linear Discriminant
Analysis

For this thesis only the KNN algorithm has been ported to the GPU. The reason
for this is simply that only this algorithm can bene�t signi� cantly from parallel
computation. The LDA was carried out through Matlab, as its implementation
utilizes SMP and the algorithm itselfonly involves a single simple matrix inver-
sion. The results from a KPCA have been exported to Matlab andused there by
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the mentioned routines.
We will now explain our implementation of the KNN algorithm, it can be divided
into two parts:

1. compute the distances of every test point to all training points and create
a distance matrix D

2. useD to classify all test points according to a given parameterk

Let ˆx i • i >� w� be the set of training points and̂ y i • i >� m� the set of test points. The
distance matrix D is de�ned by

D ��

’
–––
”

SSx1 � y1SS SSx1 � y2SS ::: SSx1 � ymSS
SSx2 � y1SS SSx2 � y2SS ::: SSx2 � ymSS

� � ::: �
SSxw � y1SS SSxw � y2SS ::: SSxw � ymSS

“
———
•

(6.5)

The computation is carried out in exactly the same way as for the Gram matrix.
Thus up to 448 elements will be computed in parallel. Considering this matrix,
getting the k nearest neighbors of a test pointy i is equivalent with sorting the
i -th column of D in ascending order and get the test pointsx j corresponding to
the �rst k entries. This procedure represents again a candidate for a host side
implementation, as only up tom � w distance values need to be sorted. We do
not need to sort any vectors in this case.
The classi�cation was carried out on host side, yet it utilizes SMP by using the
OpenMP framework. Our implementation classi�es up tor given test points
simultaneously, wherer represents the number of available CPUs on the host.
We now summarize the complete algorithm

Algorithm 11 KNN
Input: Labeled Training setˆx i • i >� w�

Set of unlabeled test vectorŝy i • i >� m�

Neighbors countk

1: init memory for D, temporary bu�ers
2: computeD on GPU
3: DO IN PARALLEL
4: sort columns ofD in ascending order
5: get �rst k values and corresponding vectorŝx j • for each columnj
6: assign each test pointy i to the class with most elements among

the last k corresponding vectors
7: OD IN PARALLEL
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6.5. Support Vector Machines

The implementation complexity of the underlying algorithms for SVMs is compa-
rable to the task of implementing QR or TSJM. Thus due to reasons of remain-
ing time for this thesis, it became unfeasible to further pursue a GPU enhanced
implementation of SVMs. As a result of this fact, two already existing SVM
frameworks have been evaluated. These were theSharkand the LibSVM library.
Although both frameworks claim to provide SMP support, only LibSVM provides
it for SVM-based classi�cation. Experiments with the Shark library yielded very
poor performance for the OvO method (as it doesn't utilize SMP in this con-
text). On the other side, LibSVM showed an acceptable performance for even
large classi�cation problems. Thus it was decided to use LibSVM for evaluating
the OvO SVM classi�cation.
Additionally the authors of LibSVM provide a Matlab-interface (in form of mex-
assemblies). For this thesis an interface has been developed which provides Mat-
lab with test and training data for the aforementioned LibSVMinterface.

6.6. Boosting

The term boosting refers to a powerful technique which can increase recogni-
tion results by utilizing multiple classi�ers (e.g. multiple SVMs), these classi�ers
are also calledbase classi�ers. [Bis06] introduces boosting algorithms like the
ADA-Boost, yet most of these approaches require a deep modi�cation of existing
classi�cation methods. For this thesis a new approach has been developed and
successfully evaluated. We will introduce a committee of multiple SVMs, which
utilize a voting system to further increase the recognitionrate of the optimal
SVM (i.e. the SVM, optimal in the sense of de�nition 4.4.1, which has been
determined through a grid search).
Before introducing our approach, we will explore the motivation behind it. Let
us assume we have found a SVMSopt that produces good recognition results.
The term good refers to an acceptable average recognition rate (i.e. the opti-
mization criteria in our de�nition of a template). Sopt has been determined by a
grid search, meaning that several SVMs have been analyzed regarding their av-
erage recognition rates. Yet this process may skip SVMs with good local results,
i.e., SVMs able to classify only certain patterns with high results. The following
gedankenexperiment illustrates this problem very directly. Let us assume we are
classifying power traces of our microcontroller. The optimal SVM Sopt yields an
average rate of 65%, the instruction typesADD,MUL and SUB can be recog-
nized with a success rate of 90% each, all other rates are below 20%. Thus the
remaining commands have a very low rate, yet if we are only interested in the
three instruction types from above, this SVM represents an acceptable choice.



6.6 Boosting 73

Let us further assume that the process of �ndingSopt involved a grid search with
30 vertices, i.e., 30 SVMsS1; :::; S30 have been evaluated. The classi�erS4 had an
average rate of 48%, yet it showed a local rate of 80% for theADDWF command.
A similar situation happened for several other of these SVMs.Thus it may be
wise, not to use onlySopt alone for our classi�cation task.
We will now explain our boosting approach, yet another new term must be ex-
plained before that.

De�nition 6.6.1 (Confusion matrix).
Let � � I � � p� be a classi�er working onC and T, with C �� ˜ C1; :::;Cp• a set of
classes,T ` I a set of training data, U ` I a set of test data. Furthermore it
should hold that¦ x >T§!i >�p� � x >Ci as well as¦ x >U§!i >�p� � x >Ci .
The matrix Conf is de�ned by

Conf ��

’
–––
”

g1ˆU1• g2ˆU1• ::: gpˆU1•
g1ˆU2• g2ˆU2• ::: gpˆU2•

� � ::: �
g1ˆUp• g2ˆUp• ::: gpˆUp•

“
———
•

>Rp� p (6.6)

where Ui ` U represents the set containing only test samples from classi , the
functions gi � ˆUj • j >� p� � R are de�ned through

gi ˆUj • ��
1

SUi S
Q

x >Uj

� ˆS� ˆx• � iS• (6.7)

Thus the entry Conf i;j represents the percentage of how many samples from
classi have been recognized as samples from classj . It should be noted that

#
j >� p�

Uj � U (6.8)

and that

AvEr ˆU• � 1 �
1

p � 100

p

Q
i � 1

Conf i;i (6.9)

and thus

AvˆU• �
1

p � 100

p

Q
i � 1

Conf i;i (6.10)

Our boost concept can now be introduced. First we do not discard any SVM
obtained during the grid search. Every classi�er and the corresponding confusion
matrix will be aligned in an sequence to form the aforementioned committee.
Secondly we need a test set to obtain the confusion matrices.All these SVMs
will then be used as a new classi�er in the following way. An unknown test point
x will be presented to all aligned classi�ers, each of them will then give his opinion
i for the right class. The details of this voting are presentedin Fig. 6.14.
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Fig. 6.14.: A committee of SVMs

Every SVM Sl will classify the point x and tell us its opinioni l about the right
class. Once we have all opinions, we need to decide which classi�er tells the truth.
This will be done by considering the confusion matrix of eachSVM, depending
on its answer to the question after the right class. The entryConf i l ;i l will now
be used as a measure for the probability thatl tells the truth (as Conf i l ;i l stands
for the recognition rate ofl for this particular class i l ).
Yet this approach yields following problem, what if two classi�ers tell the truth
with the same probability? A decision has to be made in that case, we propose
the following strategy:

ˆ choose the classi�erl with the highest average rate regarding the corre-
sponding confusion matrixConf l

Additionally we propose another way of �nding the right classi�er in the com-
mittee. For this we lift the decision problem into the 2-dimensional realm. One
dimension is made up of the average recognition rateAvl ˆU•, with l being the
number of the corresponding SVM, while the other dimension represents the
recognition rate Conf i l ;i l regarding SVM ls prediction i l . The SVM with the
largest distance to the originˆ0; 0•, i.e., the largest euclidean norm, will be cho-
sen. Figure 6.15 visualizes this concept for 4 SVMs, i.e.,l >�4� . The classi�er S2

will be chosen as it has the largest distance to the origin.
We added both strategies to a template consisting of oneoptimal SVM, the cor-
responding results will be given in Chap. 6.
Our boosting concept has been implemented and evaluated only for SVMs, yet
it can be applied to any array of classi�ers (these classi�ers even do not need to
be of the same kind). An additional bene�t of this approach is the fact, that it
requires no adjustment of any involved classi�er. It must bementioned again,
that this technique represents an add-on for a given template. The committee
should be considered only for classes with alow recognition rate regarding the
template. Considering our previous gedankenexperiment, the usage of this boost-
ing technique can be indicated through the following situation. The SVM Sopt

classi�es a point x as belonging to classl, yet from Conf opt we know that this
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Fig. 6.15.: Two dimensional boosting

is true with a probability of 19%. It would be unwise to trust Sopt in this case,
thus one could refer to the committee of multiple SVMs.





7. Results

This chapter presents and discusses the �nal results. Whichhave been obtained
by the methods described in Chap. 6. We will �rst show the performance of
the numerical algorithms, i.e., the QR and Jacobi algorithm. Afterwards the
environment for testing will be described, i.e., the setup of power traces. The
last section �nally presents the recognition rates for various instruction types of
our microcontroller.
Some of the plots which will be referenced in this chapter, can be found in the
appendix. Only the most informative plots have been included into this chapter,
i.e., comparison of recognition rates and confusion matrices.

7.1. BLAS & LAPACK Benchmark

We begin this section by listing all involved soft- and hardware. The important
hardware specs are as follows

ˆ Intel Core I7 950 3.07Ghz (4 Cores, enabled Hyper-Threading,disabled
Turbo-Boost)

ˆ 24GB DDR3 RAM (1066MHz)

ˆ X58 Chipset

ˆ 2x GTX470 GPU (each 1.2 GB RAM) using 16x PCIe 2.0, these cards were
used exclusively for computation, i.e., the display image was provided by a
separate card

The software setup can be summarized by

ˆ Ubuntu 10.10 x64

ˆ GSL 1.14

ˆ Matlab 2009b

ˆ GCC 4.1

ˆ CUDA 3.2

In Chap. 6 it has been mentioned that only problems of a certain size should be
computed on the GPU. Additionally the claim was made that BLAS3 routines
are good candidates for GPU computation. Fig. A.1 veri�es allthese statements
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by showing the computation times for di�erent implementations of the common
matrix multiplication. The upper curve shows the performance of the naive ma-
trix multiplication (i.e. the school method). Our classi�cation setup will handle
matrices with a dimensionality up to 5250. It can be seen thatthe computation
time would reach up to 200 seconds for a single mutliplication, if we would stick
with this method. Another option would be to use Matlab, whichprovides a
SMP implementation. The computation time would be reduced 20 times to � 10
seconds. Yet the GPU implementation provided by the CUBLAS library reduces
the time to at most 2 seconds. Which corresponds to a factor of100 compared to
the naive implementation. One should note that below a dimensionality of 500,
the GPU implementation should be avoided.
Thus if an algorithm can be formulated in terms of BLAS3 routines, a major
performance gain can be expected when execution of the appropriate segments
is ported to the GPU.
Let's take a look on Fig. A.2, which shows the computation times for two im-
plementations of the QR algorithm. The ordinary implementation provided by
the GSL library needs twice the time compared to our GPU implementation. As
described before, we have only ported the tridiagonalization to the GPU, which
is rich in BLAS3 methods. Thus again, one can see that our implementation
yields a gain only for matrices with a dimensionality above 256.
Fig. A.3 shows execution times of three implementations of the TSJM. As GSL
provides no implementation of this method, a correspondingMatlab version rep-
resents the naive (host) implementation. The �rst observation would be that our
implementation is up to 5 times faster than the ordinary Matlab version. Yet this
only holds if we use the GPU memory during computation. The zero-copy ver-
sion of our implementation yields a tremendous slow-down. Asof this a zero-copy
multi-GPU version was no longer pursued. We implemented themulti-GPU ver-
sion without the use of zero-copy memory access. The synchronization between
all involved GPUs has been done in the following way. After all GPUs have
�nished their computation, each GPU copies all its processed rows or columns
to a memory block on host side. Once all GPUs have �nished this process, the
complete memory block is copied to every GPU. Which then can carry on with
the next computation step. Theoretically the execution speed should linearly
increase with each additional GPU. Yet the required synchronization yields a
serious slow-down. We used two GPUs for the benchmark depicted in Fig. A.3.
The aforementioned synchronization procedure slows the algorithm down to host
level, i.e., all bene�ts of our GPU implementation disappear.
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7.2. Classi�cation Setup

The power traces were recorded with aLecroy SDA 735Ziscope, at a sampling
rate of 1GHz and a shunt of 27
. The involved microcontroller was aPIC16F54,
which provides 25 one-cycle instruction types, each with upto two operands. Our
classi�cation experiments will use only these types. The traces for each type had
been recorded in the following way. Let us take theCLRF instruction type as an
example, only one operand is required in this case. The microcontroller executed
a test series with following structure

1. CLRF( randomizedvalue ); randomizedinstruction( randomized value );

2. CLRF( randomizedvalue ); randomizedinstruction( randomized value );

3. :::

For each element in this series, the corresponding power trace had been recorded.
We will now describe the structure of training- and test-sets. In the following
experiments each set consist of 6250 traces, for each instruction type 200. Fol-
lowing this method, every type has the same amount of traces in our sets. These
200 traces have been chosen in the following way. Again, we shall explain it by
using theCLRF instruction type. The corresponding 200 traces can be described
by the following series

1. CLRF( randomized value ); instruction1( randomizedvalue );

...

8. CLRF( randomized value ); instruction1( randomizedvalue );

9. CLRF( randomized value ); instruction2( randomizedvalue );

...

16. CLRF( randomized value ); instruction2( randomizedvalue );

...

193. CLRF( randomized value ); instruction25( randomizedvalue );

...

200. CLRF( randomized value ); instruction25( randomizedvalue );

Where instructioni is an element of the enumerated 25 instructions, i.e., instruction17

stands for instruction type 17. In that way the 200 traces have chosen for every
type.
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7.3. Classi�cation Results

The sets in the following sections have been chosen as described above. The sets
within each classi�cation are disjoint, e.g., for the SVM classi�cation the test-
and training-set have no common traces.

7.3.1. Kernel k-nearest Neighbors

First experiments with sigmoid and polynomial kernels yielded very low recogni-
tion rates. Thus they have not been pursued any further. Our experiments base
on Gaussian kernels. The Gram matrixK was created using a training set of
6250 traces. Afterwards this matrix was used for KPCA as described in chapter
2. Two test-setsU1; U2 have been created, the traces inU1 were projected onto
the principal components ofK . While the elements inU2 were used as unknown
traces in our classi�cation task. Figure A.4 shows the best average recognition
rate. This result was obtained by projecting onto the �rst 5000 principal com-
ponents and considering only 1 neighbor. One can see that therecognition rate
peaks at 46.4% for� � 2� 3 . The experiment was repeated with the same sets for
the KPCA using the TSJM.
No di�erences between both algorithms have been found. In other words, the
TSJM yielded no bene�t during the principal component analysis. The confu-
sion matrices are also identical, thus we only list one of them in table 7.1
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Table 7.1.: Confusion matrix for kernel k-nearest neighbors

addwf andlw andwf bcf bsf btfss clrf clrw comf decf decfsz incf

addwf 22 0 2 1 5 6 3 0,5 0 2 2,5 2,5
andlw 2 59,5 1,5 0 6,5 0,5 0 0 0 0,5 1 10,5
andwf 3,5 1 51 17,5 1,5 4,5 5,5 0 1 1 0 2,5

bcf 1,5 0 10 68 0,5 0,5 0 0 0 2,5 1,5 0
bsf 2 2 0,5 0,5 48 1 2,5 0,5 0 0,5 0 4

btfss 3 0 3,5 1 0,5 71 0 0 0 2 5 1,5
clrf 8 1 1 0 1,5 0,5 41 0,5 2 1 0 1,5

clrw 0 0 1 0,5 0 0 2 84,5 0,5 0,5 0 0
comf 0 0 3,5 0 0 0 4,5 0,5 68,5 17,5 3 1,5
decf 2 1 2,5 2,5 0,5 6 0 0 10,5 43,5 21 2,5

decfsz 1 1,5 1,5 1,5 0 14 0,5 0 6,5 22,5 40 2
incf 2 5,5 4,5 0 13 3,5 4,5 0,5 2 1 2,5 27,5

incfsz 2 5,5 2 0 9,5 2 2 0 1 2 3 16
iorlw 1 0,5 1,5 0,5 3 1 1 0 0 0 0 0
iorwf 6 0 3,5 3,5 1,5 0,5 2,5 2,5 0 0,5 0 1
movf 2,5 0,5 1,5 1 1,5 0 1,5 1 0 0 0 0,5

movlw 1 0 0 0 1 0 1 0 0 0 0 0
movwf 6,5 2 1,5 0,5 1,5 0 18 3,5 1 0 0 6

nop 0 0 0 0 0 0 0 7,5 0 0 0 0
rlf 6,5 3 0 0 4,5 0 1 1,5 1 0 0 1,5
rrf 4 5 0 0 0,5 0 2 2 1,5 1 0,5 3

subwf 1 0 0 7,5 0 0,5 0 0 0 4,5 6 0
swapf 4,5 3,5 0 0 2,5 0 0,5 1,5 2,5 0 1 0,5
xorlw 2 0,5 0,5 0 5,5 0 0 0 0 0 0 0,5
xorwf 10,5 0 0,5 2 2 2 3,5 1,5 0 0 0 1,5

incfsz iorlw iorwf movf movlw movwf nop rlf rrf subwf swapf xor lw xorwf

addwf 3 4 7,5 3,5 0,5 2,5 0 9 5,5 0,5 6,5 2 9
andlw 6 0,5 0,5 0 0,5 2,5 0 1,5 3 0 2,5 0,5 0,5
andwf 0,5 1,5 2 1,5 1,5 0,5 0 1 0,5 0 0,5 0 1,5

bcf 0 0,5 4,5 2,5 0,5 0 0 0 0 6 0 0 1,5
bsf 13 6 2 1 3 0 0 2,5 0,5 0 0 7 3,5

btfss 0,5 2,5 1 1 0,5 0 0 1,5 0 1 1 0 3,5
clrf 0,5 0,5 0,5 4 0 16,5 0 2,5 8 0 1,5 0 8

clrw 0 0 1,5 1 0 5 0 0 0,5 0 0,5 0 2,5
comf 0,5 0 0 0 0 0 0 0,5 0 0 0 0 0
decf 1 0 2 0,5 0 0 0 0 1 2,5 0 0 1

decfsz 0,5 0 3 1,5 0 0 0 0,5 0 3 0 0 0,5
incf 12,5 1 1 1,5 0,5 4,5 0 0,5 2 0 3 1 6

incfsz 31 3,5 1 0,5 0 1 0 4,5 3 0 4 5,5 1
iorlw 2,5 44,5 3 2 17 0,5 0,5 1,5 0,5 0 1,5 15,5 2,5
iorwf 0,5 2,5 27,5 18,5 0,5 3 0 2,5 4 4 3 0,5 12
movf 0 4 16 31,5 7,5 3 0 3 9,5 0,5 6,5 0 8,5

movlw 0 16 1,5 4,5 64 0,5 1 1 3 0 1 3,5 1
movwf 0,5 1 5 2,5 0,5 30,5 0 3 8 0 3,5 0 5

nop 0 0 0 0 0 0 92,5 0 0 0 0 0 0
rlf 2,5 1 1 4 1,5 1,5 0 20,5 20 0 22 2 5
rrf 3,5 0,5 2,5 2,5 0,5 3,5 0 21 19,5 0 17,5 0,5 9

subwf 0 0 4,5 0 0 0 0 0 0 74,5 0 0 1,5
swapf 4,5 0,5 2,5 3,5 1,5 1,5 0 17 17,5 0,5 26 1 7,5
xorlw 5 21 1 1 1,5 0 0,5 1,5 1,5 0 1,5 56,5 0
xorwf 1 2,5 12 10,5 3 1,5 0 10,5 9 1 7,5 0 18
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7.3.2. Kernel Linear Discriminant Analysis

Also for the kernelized version of LDA, a training set was created which was used
for KPCA. The LDA utilized a training- and test-set U1; U2. respectively. The
traces in U1 have been projected onto the principal components and used for
training within the LDA. The data in U2 was again used as unknown traces. Fig.
A.5 shows the best results, which have been obtained by the projection onto the
�rst 500 principal components.
The highest average recognition rate of 57:1% was obtained for� � 2� 3. The
confusion matrix for these parameters is listed in Table 7.2. Studying this table,
one can see that theNOP instruction type can be recognized with a probability of
100%. Additionally the CLRW instruction type can be indenti�ed with a success
rate of 97%.
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Table 7.2.: Confusion matrix for kernel LDA

addwf andlw andwf bcf bsf btfss clrf clrw comf decf decfsz incf

addwf 23,5 0 1,5 2,5 8 1 2,5 0 0 0,5 2 4
andlw 0 77,5 2 0 5,5 0 0,5 0 0 0 0,5 2,5
andwf 4,5 0 45,5 26 0 0,5 3 0 0,5 1 1 4,5

bcf 1,5 0 20 60,5 1 0,5 0 0 0 2,5 1,5 0,5
bsf 7 1 0,5 0,5 42 0 1,5 0 0 0 0 4,5

btfss 5 0 2,5 2,5 0,5 72 0 0 0 0 1 2
clrf 6 0 1 0 2 0 41,5 0 2,5 0 0 4

clrw 0 0 0 0 0 0 0,5 97,5 0 0 0 0
comf 1 0,5 3 0 0 0 8,5 0 57 17 7,5 2,5
decf 0 0 1,5 0 0 0,5 0 0 9,5 55,5 26 3

decfsz 0,5 0,5 0 1 0 2 0 0 7 21,5 62,5 3
incf 4,5 4 1 0 12 1 3,5 0 2,5 0 1,5 34,5

incfsz 4 3,5 0,5 0 14 1 1 0 0 0 1,5 14
iorlw 2,5 0 1 1,5 2 0,5 0 0 0 0 0 0
iorwf 10 0 3 4 0,5 0 2 1 0 0 1 2
movf 4,5 0 4,5 0,5 0 0 4 0 0 0 0 1

movlw 0 0 0 0 0,5 0 0,5 0 0 0 0 0
movwf 2,5 1 1,5 0 0,5 0 20,5 1,5 0,5 0 0 1,5

nop 0 0 0 0 0 0 0 0 0 0 0 0
rlf 7,5 2 1 0 6,5 0 0 0 1 0 0 2,5
rrf 5 0,5 0,5 0 2,5 0 1,5 0 0,5 0 0 5

subwf 0 0 0 1 0 0 0 0 0 7,5 4,5 0
swapf 3 2,5 0 0 2 0 1 0 0,5 0,5 0,5 1,5
xorlw 0,5 0 0 0 1,5 0 0 0 0 0 0 0
xorwf 9,5 0 1 3 0 0,5 3,5 0 0 0 0 2,5

incfsz iorlw iorwf movf movlw movwf nop rlf rrf subwf swapf xor lw xorwf

addwf 1,5 1,5 7,5 3 0 0 0 11,5 5,5 0 7 0,5 16,5
andlw 1 1,5 1 0,5 0 1,5 0 0,5 1 0 2 0 2,5
andwf 0 0,5 6,5 0,5 0 3 0 1 0 0 0 0 2

bcf 0,5 0 4,5 3 0 0,5 0 0,5 0 0 0,5 0 2,5
bsf 11 4 2,5 2,5 0 1 0 2 2,5 0 4,5 5 8

btfss 0,5 3 1,5 1 1 0 0 1 1 0 1 0,5 4
clrf 0 0,5 5 3 0 20,5 0 5,5 4,5 0 0 0 4

clrw 0 0 0 0,5 0 1,5 0 0 0 0 0 0 0
comf 0 0 1 0 0 1,5 0 0 0 0 0 0 0,5
decf 0 0 1 0,5 0 0 0 0 0,5 1,5 0,5 0 0

decfsz 1,5 0 0 0 0 0 0 0 0 0,5 0 0 0
incf 12,5 0 5 1,5 1 3 0 1 2,5 0 1 0,5 7,5

incfsz 43,5 2,5 2,5 1 0 0 0 0,5 1,5 0 3,5 3 2,5
iorlw 1,5 52 1 0,5 13,5 0 0 1 1 0 1 20,5 0,5
iorwf 0,5 0 28,5 25 0,5 5 0 1,5 1,5 1 2 0 11
movf 0,5 1 16,5 40,5 1,5 6 0 6,5 2 0,5 2,5 0 8

movlw 0 18 0 0,5 71 0,5 0 2 3 0 1 1 2
movwf 0,5 0 7 1 0 48,5 0 2,5 3,5 0 1 0 6,5

nop 0 0 0 0 0 0 100 0 0 0 0 0 0
rlf 3,5 0 3,5 4 0,5 0,5 0 27 16 0 15 0 9,5
rrf 3 1 3 2,5 0 3 0 21,5 24 0 16 0 10,5

subwf 0 0 0 0 0 0 0 0 0 87 0 0 0
swapf 5,5 0,5 1 2 0,5 0 0 19,5 18 0 32 2 7,5
xorlw 2,5 17,5 0 0 2,5 0 0 1 1,5 0 1 72 0
xorwf 0 0,5 11 13 0,5 3,5 0 14,5 10,5 0 7 0 19,5



84 Results

7.3.3. Support Vector Machines

The SVM approach only involves two sets, a training-setT and a test-setU.
Also in this case Gaussian kernels yielded the highest average recognition rates.
Polynomial kernels peaked around 14% and sigmoid kernels at4%. Thus a grid
search was executed forC and � , the results are depicted in Fig. A.6. The
maximal recognition rate was further increased to 64:1% with the use of� � 25

and C � 24. This result was also the motivation for developing and applying the
boosting technique onto the SVM approach. A look on the corresponding confu-
sion matrix in Table 7.3, shows that one can now classify theCLRW instruction
type with a probybility of 100%. Compared to the LDA approach, the rate for the
NOP command was slightly reduced to 99:2%. Yet this is a negligible descrease.
Allthough the average rate peaks at only 64:1%, the corresponding SVM enables
us to classify 4 instruction types with at least 90% certainty.
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Table 7.3.: Results for a SVM with a Gaussian kernel

addwf andlw andwf bcf bsf btfss clrf clrw comf decf decfsz incf

addwf 44,4 0 1,6 2,4 2,4 1,6 0,4 0,8 0 0 4,8 2,8
andlw 0 92 0,8 0 0,8 0 0 0 0 0 0 0,4
andwf 3,2 0,4 73,2 7,2 0 0,4 1,2 0 3,2 1,2 0,4 4

bcf 0,4 0 4,8 85,2 0 1,2 0 0 0 2,8 2 0
bsf 2,4 1,6 0 1,2 68 0 0 0 0 0 0 3,6

btfss 3,6 0 2,4 2,4 0,4 82 0 0 0 1,6 0,4 2,4
clrf 5,2 0 1,6 0 0,8 0 48,8 0,4 1,6 0 0 1,6

clrw 0 0 0 0 0 0 0 100 0 0 0 0
comf 0 0 2,4 0 0 0 6,4 0 75,6 9,2 2,8 0
decf 0 0,4 1,2 0 0 0,8 0 0 20,8 56,4 16,4 1,2

decfsz 1,6 0,4 1,2 0 0 3,2 0 0 8,4 8,8 69,2 4
incf 2 6 4,8 0 8,8 0 3,2 0 2,8 1,6 2 47,6

incfsz 2,8 2,8 0 0 16 0,4 0,8 0 1,2 0 2,4 7,2
iorlw 6,8 0 0,4 0,8 0 1,6 0 0 0 0 0 0
iorwf 8 0 2,4 4 0 0 2,4 0,8 0 0,8 2,4 0,4
movf 4 0 2,4 1,6 0 0 2,4 1,2 0 0 0,8 0

movlw 0,8 0 0 0,4 0 1,6 0 0 0 0 0 0
movwf 3,2 1,2 3,2 0 0,8 0 21,2 3,2 0,4 0 0 0,4

nop 0 0 0 0 0 0 0 0,8 0 0 0 0
rlf 8,8 2,4 0 0 2 0,4 0 0 0,8 0,4 0,8 1,6
rrf 5,2 3,6 0 0 1,2 0 0,4 1,2 1,6 0,4 0,4 4,4

subwf 0 0 0 2,8 0 0 0 0 0 4,8 0,8 0
swapf 8 2 0 0 1,6 0 0 0 1,6 0,4 0,8 1,6
xorlw 2 0 0 0 1,2 0 0 0 0 0 0 0
xorwf 17,2 0 2 2 0,8 0,4 1,6 1,2 0 0,8 1,6 2

incfsz iorlw iorwf movf movlw movwf nop rlf rrf subwf swapf xor lw xorwf

addwf 1,2 2,4 4 2,4 0 0,8 0 6,4 4,4 0,4 4 0,4 12,4
andlw 1,2 0 0 0,8 0,4 1,2 0 0,4 1,2 0 0 0 0,8
andwf 0 0 2,4 0,8 0 2 0 0 0 0 0 0 0,4

bcf 0 0 0,8 0,4 0 0 0 0 0 2,4 0 0 0
bsf 8,4 3,2 1,6 3,2 0 1,2 0 0,8 0 0 1,2 3,2 0,4

btfss 1,2 0,8 1,2 0,4 0,4 0 0 0 0 0 0 0,4 0,4
clrf 0 0 0 6,8 0 23,6 0 0,8 4,8 0 0,4 0 3,6

clrw 0 0 0 0 0 0 0 0 0 0 0 0 0
comf 0 0 0 0 0 3,6 0 0 0 0 0 0 0
decf 0 0 0,8 0 0 0 0 0 0 1,6 0 0 0,4

decfsz 0 0 0,8 0 0 0 0 0,4 0 2 0 0 0
incf 13,6 0 0 0 0 2 0 0,8 2 0 0,4 0 2,4

incfsz 57,2 2 0 0 0 0 0 2 0,8 0 0 3,2 1,2
iorlw 2 80,4 0 0 6,4 0 0 0,8 0,4 0 0,4 0 0
iorwf 0 2 36 20 1,6 2,8 0 1,6 4 2 2,8 0 6
movf 0 1,2 18,8 47,2 2,4 1,2 0 2 7,2 0,8 2 0 4,8

movlw 0 8,8 0 1,2 85,6 0 0 0,4 0,4 0 0,4 0 0,4
movwf 0 0 0,8 8 0 54,4 0 0,4 0,8 0 0 0 2

nop 0 0 0 0 0 0 99,2 0 0 0 0 0 0
rlf 2,4 0 0,4 3,2 0,4 0,4 0 28,8 22,8 0 22 0 2,4
rrf 2,4 0 0,4 5,2 0,4 0 0 18,4 33,2 0 16 0 5,6

subwf 0 0 0 0 0 0 0 0 0 91,6 0 0 0
swapf 5,2 0,4 0,8 1,6 0,8 0 0 20,8 14,8 0 38,4 0 1,2
xorlw 2,4 1,2 0 0 0 0 0 1,6 0,4 0 2,4 88,8 0
xorwf 0 0,4 8 9,6 2 2 0 8,4 17,2 0,4 3,2 0 19,2



86 Results

7.3.4. Comparison

We conclude this chapter with a comparison of all three classi�ers. Fig. 7.1
shows the average recognition rates of the previously mentioned KKNN, LDA
and SVM classi�er. The common parameter, on the x-axis, is theexponent
of � the sigma rangeduring the grid search. In other words, the grid search
sampled the range�2� 4; 210� of � via 2� 4; 2� 3; 2� 2; :::;210. The x-axis shows the
corresponding exponent of the base 2.
One can see that the KKNN and KLDA results are very similar, butonly for
higher values of� . For lower values, the KLDA shows improvements of up to
10%. This indicates that the traces could be normally distributed in the feature
space.
Regarding the best average recognition rate, the SVM approach shows the best
results. As it improves the highest KLDA rate by nearly 10%.
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Fig. 7.1.: Comparison of the recognition rates for the classi�ers used in this thesis. Only the best classi�ers are depicted
in this comparison.
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7.3.5. Boosting

We will now take a look on the results after applying the boosting method onto
the SVMs from the previous section. Fig. A.7 shows the average recognition rate
of a SVM committee with the one dimensional decision process.By studying
Fig. A.7 one can see that the success rate is dramatically reduced for several
instructions, e.g., the committee has a chance of 0% to recognize the ADDWF
instruction type. Yet the chance for theDECFSZ is increased by more than 20%
from 69:2% to 95%. This enables us to �nd another instruction type with almost
perfect certainty.
Fig. A.8 shows the boosting results for the 2-dimensional decision process. This
method boosts the rate for theBCF type from 85:2% to 91%. Regarding the
'COMF' type, the rate has been increased from 75:6% to 90%. Additionally
several other types are boosted by a small amount. Thus theanswersof the best
SVM, i.e., the one presented in the previous section, should not be considered for
the instruction types BCF and COMF. Instead the committee should be asked
for its opinion. Either it veri�es the SVMs answer or it falsi� es it. Additionally
classi�cation should be carried out in parallel by the committee and the best
SVM. This approach enables one to classify 8 instruction types with at least 90%
success rate.



8. Conclusion

The goal of this thesis was to evaluate the usage of kernel-based methods for
the classi�cation of power traces. Agoodclassi�cation method/result would give
rise to a variety of side channel attacks, e.g., a disassembler for recorded (i.e.
unknown) power traces. It was uncertain if kernel methods would outperform
the �rst results of [Weg09], who used a Markov-chain approach. Additionally the
usage of kernel methods always yields a high computational e�ort. Thus two ma-
jor problems had been addressed with this thesis: �nding a suitable kernel-based
method for classi�cation and an e�cient implementation.
As this thesis represents the �rst approach on this �eld, i.e., kernel methods for
power trace classi�cation, there was no last point to start from. Thus the decision
was made to start with the most simple methods available, implement them as
e�cient as possible (with respect to the available time) andevaluate their results.
The �rst method of choice was, as always in applied statistical learning theory,
the principal component analysis. Yet in our context its main purpose was not
the dimensionality reduction, it was the extraction of goodfeatures. In other
words, the creation of a better description for power traces. We have shown that
a kernelized PCA (i.e. KPCA) in combination with LDA, yields results compa-
rable to the Markov-chain approach.
There was also no prior knowledge about the appropriate kernel choice. Thus
we evaluated the most popular types of kernel functions. Gaussian kernels have
yielded superior results compared to other kernel types, i.e., sigmoid or poly-
nomial. The results from KNN classi�cation suggest that the KNN approach
should not be considered for power trace classi�cation at all. Additionally it has
been shown that the assumption of a Gaussian distribution infeature space is
appropriate.
Before looking on support vector machines we shall discuss the e�ciency of our
implementations. All implementations showed a signi�cant bene�t through the
use of a GPU. Yet it has been shown, that the use of the GPU shouldbe re-
stricted to problems above a certain size. Our hope that the TSJM would yield
better recognition rates, as it has better numerical properties, was disproved. In
general, the QR algorithm has shown to be considerably faster than the TSJM.
We have shown that its speed can be doubled by the use of a hybrid algorithm.
Both algorithms address the SEVP within KPCA, yet there are other parts of
KPCA which also bene�t greatly from the use of a GPU. The projection onto
the principal components and the creation, as well as the centering of the Gram
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matrix, have shown signi�cant improvements regarding their execution speed.
The GPU port of the KNN algorithm also showed a major increase in execution
speed. Additionally the LDA could be further accelerated. Its speed could be
further improved by porting not the matrix inversion to the GPU, but by carry-
ing out the actual classi�cation in parallel.
Support vector machines represent one of the most powerful methods on the �eld
of kernel-based methods. Yet they also involve a high computational complexity.
We have evaluated the use of a speci�c SVM type, the OvO SVMs. Dueto rea-
sons of time, considering the algorithmic complexity of a GPU port, we have used
an existing implementation. Yet the algorithms behind the SVM classi�cation
contain segments which are good candidates for a GPU port.
The use of SVMs yielded further improved results, outperforming even the Markov-
chain approach in terms of average recognition rates. Motivated by these results
and the concept of the grid search, a new boosting technique was developed. The
main goal of our boosting technique was not to increase the average recognition
rate, but to increase the recognition rate for single instruction types. The com-
putational e�ort of our boosting technique is pretty much non-existing, as we
only need to keep the SVMs from a concluded grid search. Yet theresults have
shown that this approach yields satisfying results, i.e., boosting a small amount
of instructions beyond the 90% barrier.
The perfect classi�er would yield an average recognition rate of 100%, i.e., 100%
for each class. The results of this thesis indicate that thisgoal can not be achieved
by a single kernel-based classi�er, e.g., a single SVM or LDA. Aside channel at-
tack on a microcontroller requires a template, which is nothing more than a setup
of trained classi�ers. These classi�ers do not need to be of the same kind. Our
results have shown that a SVM in combination with the aforementioned boosting
methods can yield a major bene�t for a side channel attack. As it provides us
with more instruction types which we can recognize with nearly perfect certainty,
i.e., above 90%.
Thus one may speculate, with good reasons, that techniques like the ADA-Boost
could further increase the amount of recognizable instruction types. A choice of
di�erent kernel functions may also improve the results, as well as a di�erent setup
of classi�ers, i.e., a di�erent template.
We would like to end our conclusion with a sentence from [SS02] motivated by
the work of [DW96], which �ts the problems encountered during this thesis pretty
well.

...there is no free lunch in learning and there is no free lunch in
kernel choice...
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