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Abstract

This thesis evaluates the use of kernel-based methods in tbentext of power
trace classi cation/identi cation.

Most previous works regarding the classi cation of power &ces involve only com-
mon methods from statistical learning theory. These methadexploit similarities

within power traces in a linear fashion. This work however,epresents the rst

approach to this topic by analyzing nonlinear similaritieswith a speci c tech-

nigue, more precisely, we utilize kernel methods. With thispproach one can
construct a more useful representation for power traces, wh then can be used
for the actual identi cation of the power trace. Compared tothe use of the pre-
viously mentioned common methods, kernel methods yield, general, a visible
improvement regarding the success rate of classi cation.e¥this approach also
yields a high computational complexity, within this thesiswe present methods to
reduce this drawback by utilizing the features of modern GPUs

We show how di erent kernel-based methods perform on the dsi cation of

power traces and we evaluate the bene t of applying GPUs for ¢k processing.
Additionally we developed a method which is capable of improw the results of
common kernel methods.
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1. Introduction

The term side channel attackis very unspecic. It can refer to many di erent

scenarios, e.g., one could measure and record the electrgredic emissions of
an electronic car key and use this recorded information to pgss the car lock.
This bypassing can also be done in many di erent ways, e.g.,sample replay of
the emission could be su cient or one might analyze the recding and reverse
engineer the communication protocol, thus gaining the alty to generate new
messages.

The scenario which will be addressed in this thesis is as @ils. The device to
be analyzed is a common PIC microcontroller. During its opation the resulting

electrical power is recorded. The goal is to reconstruct thastructions executed
by the controller using only the recorded data. Approachinghis task can be
done in following steps:

" record enough data (power traces),
learn patterns in the data,
" use the gained knowledge to reconstruct instructions fromew data.

This is a pretty abstract view on the problem as it leaves morquestions than
answers, how should the patterns bkearnedand how can this knowledge after-
wards be used on unknown data? The form of a power trace depsnoh the
instructions executed during the measurement, e.g., &DD instruction yields a
di erent power pattern than a SUB command. One possibility would be using
techniques from statistical learning theory , e.g., a comtation of principal com-
ponent analysisand linear discriminant analysis (both terms will be explained in
later chapters). This approach has been evaluated by [Wed0®ho gained rst
results with the use ofhidden Markov models

This thesis evaluates the application of so-called kernebbed methods which
could be described as improved methods from statistical i@éng theory. The
term improved refers to a higher success rate in learning patterns. We wilbw
translate the problem stated above into terms of learning #ory. The recorded
data is called training data . It is used totrain an algorithm in terms of determin-
ing certain constants within this algorithm. Such an algothm is called a classi er
which, as its name indicates, classi es the given data intgsci c classes. In our
case this corresponds to classifying the unknown data inteayips of instruction
types, e.g., 25 instruction types a&\DD,SUB,etc., yield 25 corresponding classes.
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A goodclassi er could enable us to reverse engineer the program amicrocon-
troller, it may even expose constant and variable data useditwin this program.
Kernel methods have proven to be very e ective in a variety aflassi cation tasks,
e.g., image classi cation [SG10], OCR [TKCO07] or noise ckigation [Tha06].
These methods are able to determine the nonlinear correlati between random
variables and thus allow a new approach to classi cation t&s. Yet this e ec-
tiveness comes with a price in the area of computational e brKernel methods
require a great amount of computation power compared to thremon-kernel coun-
terparts. Thus one major task is to nd and implement algorihms which solve
the underlying problem e ciently. The algorithms used in this thesis have been
chosen according to their potential in parallel executiorthe implementation uti-
lizes the capabilities of modern GPUs to gain a great speed upgéomparison to
the standard CPU implementations.

1.1. A Short Outline of this Thesis

As described above the following chapters will gradually inbduce/construct the
concepts needed for a deeper understanding of the work inwed in this thesis.
Due to the nature of the topic, these chapters use a precise thematical nota-
tion. Within all the upcoming detalils, it is easy to loose fogs on the main goal
or the motivation behind these needed steps. Thus this semti will give a brief
and abstract outline of the whole thesis and describe the maation behind the
content of each chapter.

Our main goal is to construct an algorithmic solution for theproblem of identi-
fying power traces of unknown instructions. A power traceniit's original form,

is nothing more than a series of numbers. Thus to recognize kmown traces,
one could compare these numbers to a power trace of a knowntinstion. Yet

this approach contains a certain instability, two traces fom the same instruction
type do not need to be absolutely identical. There is always small amount
of uctuations involved, additionally power traces of di erent instruction types

may look very similar, thus variations within the measuremat can increase the
di culty to successfully compare and identify those traces

The solution to this problem is to nd a more sophisticated rpresentation for
traces, in other words, the numbers representing a singlewer trace must be
exchanged forsomethingdi erent. The method within this thesis uses statistical
characteristics within a set of recorded power traces to @& a meaningful rep-
resentation for each trace type, i.e., the traces for a certainstruction type. In a

nutshell explained, the numbers representing a single traevill be mapped onto a
mathematical function. Thus a function will represent a poer trace and we will
essentially compare functions to recognize the correspamgl instruction type.
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An example would be the following situation. Let us assume weave recorded
many traces for theADD instruction type, i.e., we have measured the power val-
ues during the execution of manADD commands (with varying operands). The
mentioned statistical properties within all these traces W then be exploited to
create astablerepresentationP,pp for the ADD type. This representation will be
an abstract mathematical function. During the construction of this representa-
tion we additionally gain an algorithm which allows us to crate representations of
the same kind for unknown power traces. Thus we obtain the dity to transform
given power traces to abstract functions, which then can beompared against
Papp - Of course this view is a very macroscopic one; the whole pess is more
complicated. Yet the goal still remains the same, the consiction of an alter-
nate, more practicable representation for power traces. @p. 2 introduces the
techniques behind this approach in great detail.

Although the approach from above supports us on the way to rea@ur main
goal, it also brings certain mathematical problems with it. The algorithm which
transforms the traces into abstract mathematical functioa needs the eigenvectors
of a speci ¢ matrix. This matrix will be described very detalied in the mentioned
chapter. For now let us say that this matrix can reach huge diensions. Thus
determining the eigenvectors becomes a less trivial taslkyeowill face numerical
instabilities and long computation times. This problem musbe solved in order
to increase our chances of recognizing unknown traces. Wadlwitroduce two
methods from numerical mathematics which both are able to alate the de-
sired eigenvectors. Each method brings bene ts and drawbacwith it, yet both
of them have one common problem: the computation time. For th thesis, both
algorithms have been implemented with GPU support, increasy their e ciency
in that way. These algorithms will be introduced in Chap. 3.

Increasing the e ciency of these two methods is not an easy $&, our developed
acceleration techniques seek to exploit parallelism withithem. Modern GPUs
allow the parallel execution of many threads, thus paralledegments within the
mentioned algorithms could bene t from the use of a GPU. Yet GBs also provide
an additional obstacle. The architecture of a GPU requiresi @rent approaches
for implementing these parallel segments. To enable the e of this thesis to
understand our implementation, Chap. 5 provides a short inbduction into the
structure of modern GPUs and describes important optimizatin techniques used
within this thesis.

Up until now, only the transformation of power traces and therivolved problems
have been mentioned. The transformation was introduced witthe motivation
to enhance the recognition of unknown traces, i.e., increashe chance to rec-
ognize a trace correctly. But how can one recognize an unknoyower trace?
How can one assign the correct instruction type to a given tra® We are left
with these questions once we have solved all previous probke e.g., calculating
the eigenvectors e ciently with the help of a GPU. The problemof recognizing
unknown power traces can be interpreted as a classi catiorrgblem, where one
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tries to assign a power trace to a certain instruction type. \thin this thesis we
have utilized di erent classi cation techniques from statstical learning theory to
solve the recognition task. Chap. 4 will introduce each of #se methods and
explain the theory behind them.

Thus the way to our main goal consists of

1. nding a robust representation for power traces

2. choosing/developing suitable classi cation methods tecognize power traces
with a high success rate

3. developing an e cient implementation of all involved mehods (e.g., with
the help of a GPU)

The implementation of most algorithms was speci cally deveped for this thesis,

as for most of them currently no previous work exists for a GPbased acceler-
ation. Additionally, regarding the algorithms for recogniton, no previous work
exists which evaluates their potential for the recognitiorof power traces. Fur-
thermore we have developed new methods to enhance the redtigm rate, these

methods will be explained in Sect. 6.6. Chap. 6 describes omplementation of

each involved algorithm.

Following the explanation of our implementation, Chap. 7 Wi present the cor-

responding results, e.g., computation times or recognihaates.



2. Kernel Principal Component
Analysis

This chapter introduces the concept ofeature extraction and explains princi-
pal component analysigPCA) as a common method to perform this extraction.
Furthermore we will see how kernel methods work and how theywr be applied
to enhance PCA. In preparation for chapter 6 we will also addss the major
practical problems (e.g. algorithm complexity and numera stability) that arise
when considering the actual implementation of PCA.

The following de nitions, theorems and algorithms are baseon or cited from
[SS02],[Wis10].

2.1. Introduction

The general approach to classi cation tasks can be describa two phases. First
the so-called feature extraction and second the actual cta€ation task.
Feature extraction refers to the process of either seleafjror creating signi cant
values of the data which help to characterize the underlyindistribution, irrele-
vant information is discarded in this process. The terroreating refers to mapping
the given data onto another set.
This chapter introduces the principal component analysiswhich represents a
standard method for feature extraction. Afterwards, to ovezome certain limi-
tations of PCA, the Kernel-PCA (KPCA) will be introduced. Before we begin
with the precise mathematical description of PCA, we will lok at an example
of feature extraction. Let us consider a single power tracg as shown in Fig.
2.1. Additionally we assume that Fig. 2.1 shows a complete pewtrace. Let
be the set of power traces and N a mapping which counts all maxima
above the threshold# (as indicated by the dashed line). Thus we have x;» 2.
Every element of © e is called a feature of one or more corresponding traces.
is called a feature extractor .

Further we assume that the amount of maxima above the threstballows us to
characterize the power trace, e.g.,”x;* is su cient enough to distinguish certain
trace types. Therefore classi cation can be carried out on” « instead of , i.e.,
it is computationally easier to work on integer values instd of vectors (a power
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Fig. 2.1.: Possible feature extraction of a power trace

trace can be described as a vector of measurement samples, Bg. 2.2). In
praxis of course such a feature extraction is not a very febk approach, because
the number of peaks will not characterize the trace type, e,gve peaks above a
threshold will not be a very reliable indicator for a speci adnstruction.

f(t)

A

t t2 {3 b 15 o

Fig. 2.2.: Representation of a power trace as a vector

2.2. Principal Component Analysis

PCA is a very well-established method for feature extractio In this chapter we
will rst precisely de ne the PCA concept and afterwards deelop an intuitive
understanding of the mathematical concepts. Roughly desiced PCA works by
mapping the data points™x ¢ .-1...n. into a new coordinate system and zeroing

.....

out certain elements of each new coordinate vect&r. The vector x represents
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the feature(vector) for the data pointx and can be used for classi cation instead
of x .
A very precise de nition for the PCA problem is given by [WisD]:

De nition 2.2.1. Givenaset'x S 1;:::;;Me of N-dimensional data points
X "Xy;Xy;unXye! with zero mean, i.e,E X 0, nd an orthogonal matrix Q
with determinant det” Qe 1 generating the transformed data point®  Qx

such that for any given dimensionality? the data projected onto the rstP axes,

~ . N T
Xos  X13Xp::5Xp; 0,507, have the smallest

. 1M
reconstruction error E o Q S8 %8S (2.1)
1

among all possible projections onto B-dimensional subspace.
The row vectors ofQ de ne the new axes and are called the principal components.

Let | be the input space consisting of data points/samples’ >R"; i > M .
Furthermore we assume that the underlying data distributia has zero mean,
eg.,E X 0, with X as the corresponding random variable which indicates
the appearance of a data point. Otherwise we center the datay lapplying the
transformation x; X; E X . We de ne the covariance matrix

1 M
C MQXXT >RN N (2.2)
1

For a deeper and intuitive understanding ofC one should consider the data
distributions visualized in Fig. 2.3.

e ke t -'

Fig. 2.3.: examples for 2-dimensional data distributions

De nition 2.2 is equivalent to

M
Q X X (2.3)

1
Ci; M L j
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thus we have the varianc&/ ar"x;» C;; and the so-called covarianc€ov x;; X; *
Ci; . The covariance is a measure for the linear correlation beten the involved
dimensions. On closer inspection of Fig. 2.2, one can verihe following approx-
imated covariance matrices:

0:37 0:004 . 037 02, 05 0 .

C1 (Eo:oo4 Q012 C. CE0:2 011 Cs GEo 05

(2.4)

The covariance matrix has diagonal form if and only if the rathom variablesX;
are linearly independent, i.e.C;; 0, i Xj. The core of the PCA algorithm needs
diagonal covariance matrices, yet as shown above, not alvaodance matrices are
diagonal. It is obvious that C; already has diagonal form regarding the bade,
thus the question emerges if generally a base transformatioan be found which
diagonalizes the covariance matrix.

Theorem 2.2.1 (Diagonalization of symmetric matrices)
Let C >RN be a real valued symmetric matrix with eigenvalues and correspond-
ing eigenvectorsy’, i 1;::;;n. C can be orthogonally diagonalized by

C Qdiag 1;::; QT (2.5)

whereQ “v! v? ::v"e is an orthogonalN N matrix (e.g. Q1 QT) con-
sisting of C's normalized eigenvectors. FurthermoB “vi;v?;::;v"e forms an
orthonormal base ofRN.

This theorem (2.2.1) from linear algebra states that everyysnmetric real ma-
trix can be orthogonally diagonalized by calculating its gienvalues and eigen-
vectors. Taking into account that covariance matrices arehaays symmetric
(see Eq. 2.3), we are always able to nd a bad€®, so that a covariance Ma-
trix C (currently expressed regarding a basB;) will take diagonal form. For
reasons of simplicity we temporarily assume that the follawg symmetric ma-
trix C is already diagonalized regarding the basB, “vi; v2;::;vhe (e.g.
C vl v2::vhediag 45 petveov2 ovneT) Without loss of generality
we additionally assume thatB; E (where E denotes the canonical base dR")

. The theoretical and practical techniques for diagonalizion will be discussed
in Chap. 3.

PCA projects the given data pointsx into a p-dimensional vector subspace
V b RN. More preciselyV "2b' S?b' >B,; i >71;:::;;pe with pBN. Fig. 2.4
visualizes this projection forN 2. For example if we want to project the point
X onto the x; axis, we simply setx, 0, the resulting vectorx has the form
"x,;0T and lies in a 1-dimensional subspace B?. Of course we need an algo-
rithm to achieve this projection for an arbitrary subspacelwice. To achieve this,
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T2 T2

\
xH xH
—+eo o 4 ° -+ 1
[
° L] o © ' X2
1 Xili 1

Fig. 2.4.: Projection of 2-dim data onto a 1-dim subspace

the PCA algorithm utilizes the base transformation matrixQ in the following way

Q"x “vlv2yneTx (2.6)
@lx A
- @t A @2.7)
"@vmix A*
3 (2.8)

One should remind himself thatQx is an element of spafB e, thus if we leave
out several columns fromQ, i.e., we construct@ “v;: viz I viee, we get a
projection matrix Q which projectsx onto sparivit viz ::: vire, This holds for
arbitrary orthonormal basesB;, e.g., it is not needed that'b’ &' (where €

denotes thei th canonical unit vector of RN).

The solution to the PCA problem can be algorithmically solvé through following
steps:

1. given the data points™x e« .y , form the covariance matrixC
2. diagonalizeC yieldingC QTDQ

3. choose needed dimensions and fokph

4. extract featuresx for a given test pointx by calculating x Qx

With this approach, if i, @N, certain dimensions are discarded and information
is lost. We will discuss the resulting error shortly. But rd, for a better un-
derstanding of this dimensionality reduction, we are gointp visualize the PCA
concept in a less formal way.

Let us have a look on Fig. 2.5, it is important to distinguish letween the terms
data point and coordinates. The arbitrary pointx "1;2¢T has the coordinates
"1;2e, yet these coordinates have no meaning unless we specify aebalt is a
common assumption to considekE as this base and we denote that by writing.
Now consider another orthonormal basB A%A 1;1eT; %A 1;1eTe, the point x
can also be expressed as linear combination of those basdarsc To determine
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Fig. 2.5.: Example for 2-dimensional projection and di enat coordinate systems

the coordinates ofxg regarding this base one simply has to projecte onto the
base vectors, i.e., calculate

1 1

O—E@IEi‘,xEA O—E@CEi‘;cE;‘A 2.9)
% (2.10)
%1 2.11)

%@CEll‘,XEA %@Ell‘;CE;‘ A (2.12)
% (2.13)
X, (2.14)

Thus we have determined the coordinates¢;; X T %“3; 1T of x in B. This
transformation can also be written in a more compact way

1 ]

3, 1 1, .
LS EG EL QTxe (2.15)

ol 1
XB é E 5 1
where the columns of) consist of the base vectors @&. BecauseQ is an orthog-
onal matrix the transformation back into the original coordnate system can be
achieved by
1,
2

1 1
1 1

With this example it should be clear that (Eq. 2.7) actually epresents two
operations, rstly it transforms xg xg, into xg, and secondly it reduces the di-
mensionality ofxg,. Thus the vectorx is a representation ok in a p-dimensional
subspace oRN, expressed in coordinates regarding the baBe. We refer to the
transformation back into the original space, i.e., calcutang Qx, as reconstruc-
tion of the projected data point, with @ as de ned in the solution of the PCA

3 1

1 1
Xe @, °SE SE (2.16)
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problem.

Similar to points we have to distinguish between a linear mgging RV RN
and its matrix form , for better readability we will use the same symbol for
both. A linear mapping can be described by a matrix if we focusn a specic
base, also here we normally considé&ras this base. Let us assume we are given
an arbitrary mapping

X1 22Xz,

2 2. “ve
CR Rs: C'x GEZXl Xy

(2.17)
As mentioned before we assurmie as the base for this mapping and denote this
by Ce (we use the terms linear mapping and corresponding matrix o inter-
changeably). ThusC takes the following matrix form

1 2,

Ce CE21

(2.18)
which is a symmetric matrix. We now want to nd Cg , i.e., the matrix form of
C regarding the baseB. The desired matrix has the form (without proof)

3 0,

CB QT CEQ CEO 1

(2.19)

Thus the matrix we have looked for takes diagonal form, we sdhat Cg has

been diagonalized. This procedure can not be applied to atrigiry matrices, yet

for symmetric matrices we can nd an orthogonal matrixQ such that Cg takes

diagonal form (see theorem 2.2.1). To solve the PCA problemewook for a

matrix Q such that Cg, i.e., the covariance matrix calculated from transformed
data points x QTx takes diagonal form. FurthermoreQ needs to have a
determinant of 1, i.e.,Q represents a transformation into a (positively) rotated
coordinate system as depicted in Fig. 2.5.

At this point we can nally analyze the reconstruction errorE. To minimize

this error, we have to nd a new coordinate system such that # loss through
projection onto the axes is minimized. This problem is visliaed in Fig. 2.6. In

the left picture we see the projection of one point onto the rst axis %, of the

new (i.e. rotated) coordinate system. The reconstructionrer of x is denoted

by r. One can see that following equation holds

2 @ V2 (2.20)

whered stays constant in both cases, i.e., projection ontq, or x,. The value ofv?

contributes to the variance of the data distribution in the rew coordinate system
while r? contributes to the total reconstruction error E. Thus it seems that
minimizing the error is equivalent to maximizing the variace of the projected
data, which has been proven in [Bis06].

Following theorem has been proven by [Wis10]:
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.CUQ - $2
A ~ T2 A

Fig. 2.6.: Reconstruction erromr through projection onto 1-dim subspace

Theorem 2.2.2. Let @ “v; vy i vpe be the projection matrix constructed
from C's eigenvectorsv; with corresponding eigenvalues;. Furthermore let the

eigenvalues be sorted in descending order. The resultingomstruction error for

the projected data is given by

N
E Q (2.21)
p

Thus the projection onto subspaces of KéQe (where Ker Qe denotes the
nullspace ofQ) does not increase the error. As of this, leaving out the eigeattors
vi which correspond to an eigenvalue; 0, during the construction of Q, will
not increase the error. Yet, leaving out the eigenvectong' which correspond
to an eigenvalue ; x 0, will increase the projection error. Although we may
have reduced the dimensionality of the input data, it is not ageneral result in
feature extraction. An example would be Kernel-PCA which caincrease the
dimensionality of the input data, i.e., it can extract more han N features from
each data sample.

From a statistical point of view, PCA can be described to nd anew coordinate
system in which the given data points become nearly uncoragéd (which is

indicated by a nearly diagonal covariance matrix). In such aoordinate system
the projection on the axis can yield a good characterizatioof certain data classes,
I.e., the variance is maximized along these axis. Although PCalways nds such

a system, there exist data distributions for which the comped solution yields

no bene t at all, or in other words, for which the extracted fatures will not help

in a classi cation task. Yet there exists a more powerful vaant of PCA for such

data distributions, the so-called kernel principal compaent analysis.
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2.3. Kernel Principal Component Analysis

Kernel principal component analysis (KPCA) works in its corgust like PCA,
the main dierence lies in using a nonlinear mapping which ns each given
data point onto an abstract function. In other words, KPCA pa&forms PCA with
functions. We will see that the actual algorithm completelycircumvents the use
of abstract data structures for function handling. To undestand KPCA one has
to understand the principles of kernels or kernel functions

Let us consider the following mapping

X H (2.22)

whereX represents the set of given data points and an abstract function space.
We will refer to them as input and feature space , respectiyglwhere in our case
the feature space will always be a Hilbert space. An actual exaie for this
mapping could be

X H; x( expCES(z—z:Sg’$ K™X; e (2.23)

which maps every given vectox onto a Gaussian function . This is visualized
in Fig. 2.7 for a dimensionality of one. A is a Hilbert space, it is equipped

Fig. 2.7.: Mapping data points onto Gaussian functions

with a dot product @;: Ay which could be de ned, forw, DA Tye >
H; x;y >X ag

@wy; Wy Ay @K"X; ¢ Ky e Ay (2.24)

K'X;ye (2.25)

One might recall that the standard euclidean dot produci@x;y A xTy can be
interpreted as a similarity measure. If two normed vectorg;y are very similar
regarding their orientation or position, the value®X;y ASwill be close to 1. This
view holds for arbitrary dot product spaces, e.g., if we restt to normed

IThe proof that this de nition ful lls the requirements of ad ot product can be seen in [Vas09].
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functions in H, we receive a way to measure the similarity of! and x? in H.
For convenience it is possible to de ne a function

kK'x;x2e @ “xle; "x2Ze A (2.26)

which is also called a kernel (function). In other words a kael measures the
similarity of two given data points in an abstract function gace. It is important
to note that the restriction to normed functions is only one bmany possible
ways to de ne a similarity measure. One might ask why this appach should be
considered, it would also be possible to measure the simitain the input space.
One benet of using kernels lies in the fact that a nonlinear mpping/transfor-
mation of the given coordinates is applied, we will see an aeil example for the
practicability of this mapping later in the current section Another advantage
of kernels is the possibility to avoid computation inH, all calculations can be
carried out in X.

Kernel PCA utilizes this concept to carry out PCA inH without actually enter-
ing H. Due to the complexity of the derivation of KPCA, this sectionwill only
explain the basic concepts required to perform KPCA. Proofoif the following
claims can be found in [SS02] and [Bis06]. For now we assumattthe given
data points x' are centered in feature space.

De nition 2.3.1  (Gram matrix) .

Let X H be a nonlinear mapping andX  “x%;::;;xMe * |, The Gram
matrix K >RM M s de ned by
Ki;j @ Axio; AXj.AH (227)

The Gram matrix can be constructed directly in input space i& corresponding
kernel function exists, as with the covariance matrix the Gam matrix is always
symmetric. A kernel is called positive de nite if it gives rée to a positive de -
nite Gram matrix. To perform KPCA one has to solve the followng eigenvalue
problem

M K K2 (2.28)

which is the analogy to the eigenvalue problem in standard PC Yet as shown
in [SS02], it is equivalent to solve the following eigenvatuproblem

M K (2.29)

which is more convenient than (2.28). Let; C , C::: C , denote all solutions to
(2.29), i.e., all solutionsM with , being the last nonzero value and 1;:::;p.
The acquired eigenvectors ,, have to be normalized so they ful ll the equation

1 ,@" "A (2.30)
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In KPCA we are interested in projecting a data pointx in feature space (i.e.
“xe) onto the eigenvectorsv” of (2.28), i.e., computing@v"; “xe Ay. Also
here the computation insideH can be avoided by

M
@"; "xeAy Q K'x';xe (2.31)
i1

wherek represents the corresponding kernel. It is important to netthat KPCA

can extract feature vectors with up toM (the number of data points) elements,
thus it is able to extract statistical correlations of highe order, compared to
standard PCA where each feature vector has an amount of maxamN (the

number of dimensions of each point) elements.

So far we have assumed that the mapped data points are centéna feature

space, yet this does not hold in the general case and thus thata points need to
be centered after they have been mapped into feature spaceor@eniently this

can be done after we have used them to create the Gram matrihi$ centering
is also referred to as centering the Gram matrix .

Theorem 2.3.1. Let X H be anonlinear mapping ancK “x1;:;;xMe ™ |,
Centering “Xe before creating the Gram matrixK can be avoided and carried
out after creation of K by calculating the centered Gram matrixX

Ki;j K 1M K K 1|\/| 1M K 1|\/| ®ij (232)

wherely >RM M; "1, Ml The matrix K represents the Gram matrix

based on the centered set” Xe.

All properties of standard PCA also hold for KPCA especially e error func-
tion. For an illustration of the projection onto a principal componentv2 one can
refer to Fig. 2.8. Four data pointsx'; i > 4 are being used here for KPCA, each
data point represents a single trace in input space.

2 X}

PTACN.
k k k k

\T\T/T i
AANCTHINAA/ NS

/

M~ X

Fig. 2.8.: KPCA with 4 data points (traces)x' for a given tracex
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First the new trace x will be compared with the existing data points in feature
space. The weighted sum of the comparison output, forms thegpection onto a
principal component in feature space, i.e., the coe cientdr a linear combination
of functions.

In this thesis following kernels have been used

K°X;ye @x;y A%; d>Nf0e polynomial kernel
862 Z 7 >Rf70e Gaussian kernel
K°X;ye tanh™ @x;y A #e; #>Rf0» sigmoid kernej

KX;ye expE

where the gaussian and polynomial kernel are positive detri i.e., yielding only
positive eigenvalues. There is no general rule which kernsdrforms better re-
garding a speci c problem. Polynomial kernels have shown toe very e ective
in OCR tasks ([SS02]), whereas Gaussian kernels yielded gaesults in image
classi cation ([SG10]). As mentioned at the beginning of tls section, the non-
linear mapping has some interesting properties regardinghe alignment of the
data in feature space. This can be visualized for a not very stibact mapping.
Fig. 2.9 shows a set of given data points on the left side, onelright side we
have the mapped datapoints. The mapping used here is
[0}
Xe  "xZx3; 23X3e (2.33)

A

A L2
e e Vo
o _.... L
[ J * .,
0" + + ’¢ . -
o4 | 4+
[ J ‘.. + + "~ °® R > ajl
.. * ". .0.
. " aa l‘.‘ . .~
[ [ o
° i H

Fig. 2.9.: Alignment of data in feature space and a possiblepsgation plane

The di erent symbols for the data points represent di erentclasses, i.e., we
have data points representing two classes. To classify ankmown data point
one might draw a " tting' separation line through the data ard assign the new
data point to the class in which region it lies. In the input spce this separation
line takes the form of an ellipse, while in the feature spacéis ellipse becomes
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a hyperplane. These results can also be deduced by only azalg the mapping
of Eq. 2.33. All points within the ellipse will be mapped to thevolume V; (due

to squaring the coordinates). The outer points of the elligswill be mapped in
the same way to the volumeéV, which lies side by side with the aforementioned.
No single point ofIm~ e« can become negative in his coordinates, the points of
the ellipse fulll ax?> by? c, in feature space they become linearly depended
by x2 ca bay?andy? cb a-bx? thus they form the line h. This line
can be extended to a separating hyperpland. Such an approach allows one
to use linear classi ers in feature space (or transformedpnt space) instead of
nonlinear classi ers in input space, which reduces the comtational e ort.

Fig. 2.10 and 2.11 show another example of KPCA for arti ciatlata, the kernel
used here was a Gaussian one with 1.

Fig. 2.10.: Data samples of two Fig.2.11.: Data samples of two
classes in input space classes in transformed in-
put space






3. The Symmetric Eigenvalue
Problem

If we think about the actual implementation of (K)PCA we will have to solve the
symmetric eigenvalue problem (SEVP).

De nition 3.0.2 (Symmetric eigenvalue problem)

Let Q >RN N be a symmetric matrix, nd all eigenvalues; and corresponding
eigenvectorsv;.

The SEVP can also be written in one equation

vy unvpetdiagt g pe QT (3.1)
TV L pVpe! (3.2)
Q (3.3)

The theoretical solution is quite simple, rst we need to caulate the zeros of
e defQ Iy (3.4)

which is equivalent to nding the zeros (eigenvalues) of a-th polynomial func-
tion. Yet there exist no algebraic solution fom A4, thus we have to resort to
approximation methods. Secondly we have to nd the correspding eigenspaces
and their bases (eigenvectors) for each eigenvalue by sotyia (possibly underde-
termined) system of linear equations. For this thesis two v popular algorithms
have been chosen and implemented on GPU as well as on CPU, bothhem are
iterative methods. Two important aspects arise when consdng any of these
algorithms, rstly computational complexity (how long will it take to solve the
problem regarding the size of the input data) and secondly merical stability
(i.e. how accurate are we regarding a speci ed/limited madhe precision). The
computational complexity will be viewed separately for e&calgorithm when we
discuss it in detail. To address the severity of numerical stability one should
consider the following example which was encountered dugitcPU implementa-
tion of the QR-algorithm.
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Let Q be a symmetric matrix of the form

1 2 3 e N “
-2 N 1 N 2 @ 2N 1—

Q -2 3 N i 3N 3 — (3.5)
"N 2N 1 3N 3 :: NN -°

A naive implementation yielded maxfase 1:462 1P while the correct value is
maxcorrect 2. 708 1B for N 800. This miscalculation resulted from calculating

PA "Iy w'eA; Iy N-dimensional unit matrix (3.6)

instead of
PA A w', w ATy (3.7)

during the implicit QR algorithm. Although both equations are mathematically
equivalent, they yield di erent results due to severe candation in Eqg. 3.6.

The notation in following sections is borrowed from [GHG96]ral basically iden-
tical to the matlab language. A matrix element will be addresed by m”i;j e,

similar for vectorsv”ie, a complete row of a matrix is addressed via“i;  analo-
gously for columns. With respect to a better readability, vetors x inside a listing
will be denoted asx. One important remark regarding indexing: we will start
counting from 1! Thus boundaries in the code of the actual ingpmentation in

Chap. 6 will be shifted accordingly.

3.1. The Implicit QR Algorithm

This section describes the implicit QR algorithm which basally consists of two
other algorithms:

" Tridiagonalization of a matrix (Alg. 2)
" Classic QR algorithm (Alg. 4)

We will brie y discuss the concepts of this algorithm, for a dtailed explanation
one might refer to [GHG96] or [aHS88]. The following de nitiog, theorems and
algorithms are based on or cited from [GHG96].

De nition 3.1.1. Letv >RN be a nonzero vector. The symmetrisl N Matrix

2
P, | w'; — 3.8
A" N VTV ( )
is called a Householder matrix or Householder re ectiory is called the corre-
sponding Householder vector and the corresponding Householder coe cient
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A Householder matrix calculated from a vectow has the ability to mirror v,
ie., Pyv v thus it is called a re ection matrix. For a givenx >RN with x x 0
it is possible to calculate a Householder vector x S&®! such that Pyx

S&8!. An example for this would bex °3;1;5;1sT andv "9;1;5; 1T
x 6e! which yield

. 27 9 45 9« )
o 1- 98 5 1_
V 54— 45 5 29 5=

"9 1 5 53°

Pyx — (3.9)

© OO g

Algorithm 1 calculatesv for a given vectorx. Additionally this algorithm nor-

malizesv such thatv; 1. This reduces the needed memory to stoke by one
unit (e.g. one double value). The following algorithms usehis fact to to save up
%NAN 1. units in the representation of the end result.

Algorithm 1 v; house”Ae
Input: A real vector x >RN

1: X"2 NeTx"2 Ne

if x"1e BO then
Vil x 1
else

3

4

5

6: X" 12

7.

8

9:

10: V' 1e

X" 1e
V™ 1e2
V' 1e2

11: end if
12: 2

13: \Y —
V' 1e
14: end if

The application of a Householder matrix to a set of vectors'; i 1;::;;N, i.e.,
calculating PyA where the columns ofA consist ofx; must be done carefully due
to the possibility of numerical cancellation. It holds that

PA "I wTeA A vw': w ATy
11111111111 iﬂﬂiii“ﬂ 1311314313143
2 5

f1

(3.10)
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Yet the rst method, i.e., £, su ers from severe cancellation for bad conditioned
matrices whereas the second method, i.g:;, provides a numerical stable com-
putation.

To enhance the execution speed of the QR method one can sirfypthe structure
of the given problem. Although the QR algorithm has not been gsented yet it
should be mentioned that the execution speed increases witte number of zero
elements in the given matrixA.

De nition 3.1.2. A matrix T >RN N of the form

! dl up 0 O
|1 d2 U- 0
0 |2 d3 Us
0 0 I3 dg

O O OO

(3.11)

0O 0 0 O :: dy

is called a tridiagonal matrix .

The following theorem gives rise to an algorithm which tridigonalizes an ar-
bitrary symmetric matrix.

Theorem 3.1.1. Let A be a symmetric matrixA >RN N. Then A can be tridi-
agonalized by applying Householder transformatio; i 1;::;N 2

"Q1Q2:Qn 22 TATQ1Q2Qn 2 T (3.12)
The resulting matrix T is symmetric and tridiagonal. Additionally it holds that

QiiiQn 2 GEI(; gi ‘ (3.13)

whereQ; isa"N ie¢ "N ie Householder matrix.

As stated in the theorem, exactlyN 2 Householder transformations are ap-
plied. Each Householder matrix can be represented by a singlector v. The
product of these matrices also has a speci ¢ structure whiatan be exploited to
represent each matrixQ; by a"N 2 ie-dimensional vector (one should be re-
minded that the rst element of a Householder vector is alway$ and thus needs
not to be saved).
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Algorithm 2  Tridiagonalize A
Input: A symmetric Matrix A >RN N

1. for k 1toN 2do

: [v, ] bhouse(Ak 1 n;ke)
p A"k 1 nk 1 nev
W p "IpTvev

© No Gk b

A’k 1ke S5k 1 n;keSS

A'k:k 1o Ak 1;ke

Ak 1 nnk 1 ne Ak 1 nk 1 ne vw' wv'
- end for

Alg. 2 stores the Householder vectors in the subdiagonal paifttbe tridiagonal
output matrix T. This approach saves half the space one would need if every
Householder vector would be stored separately.

For initialization the nal version of the QR algorithm demands one single
tridiagonalization matrix Q (i.,e. QA T). Yet the algorithms above never
calculated such a representation for the applied Househotdeatrices, in theory
the desired matrixQ can be calculated from all single Householder vectors which
are stored in the output of Alg. 2. One simply has to calculate

Q Q1Q2:Qn (3.14)

However, this approach yields a complexity o®"N“e, thus it is not very useful
for a practical implementation. Therefore Alg. 3 should be ecwsidered.

Algorithm 3 Backward Accumulate’A;
Input: Output matrix A >RN N and coe cient vector from Tridiagonalize(A)

1:Q In;v O
2. for j N toldo
A 1 [
33 V'] Ne CEAAJ. 1 N:je
4 Q7] N;j Ne "Iy jV7j Nev'j NeTeQ"j N;j Ne
5. end for

This algorithm o ers a complexity of O°"N 3« and thus is a more realistic ap-
proach to computeQ.
To get a basic understanding of the operations within the QRIgorithm we de ne
the QR decomposition
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De nition 3.1.3. Let A >RN N be an arbitrary matrix. A can be decomposed
into

A QR (3.15)

whereQ is an orthogonal matrix andR is an upper-right matrix.

All the previous algorithms have been exact solutions to theivggn problems.
The QR algorithm is an approximation method that iteratively creates a matrix
D >RN N which, in the end, holds all desired eigenvalues on its diagal. Most
algorithms regarding the SEVP are unable to e ciently compue the correspond-
ing eigenvectors. The computation of eigenvectors oftenvimives the solving of a
system of linear equations. The QR method inherently allowthe computation
of the corresponding eigenvectors. We will now give the madsasic and abstract
version of the QR algorithm and enhance it with the concepts evhave de ned
before.

Algorithm 4  ClassicQR™As
Input: Real matrix A >RNXN
1.k 1

2: repeat
3: Zy AQg 1
4

5

QkRk Zk (QR factorization of Zy)
- until result is accurate enough

Algorithm 4 has a complexity ofO"N #e, additionally its convergence rate is at
most linear. Therefore this algorithm is not suitable for pactical considerations.
The QR factorization (O"N3¢) represents the major performance brake in this
approach. To overcome this obstacle we introduce the contey Givens rota-
tions. A Givens rotation G™j;k ¢ is a rotation matrix which allows to zero the
element”k;j « in an arbitrary matrix A.

Givens rotation will play a fundamental role in Sect. 3.2, wére we discuss them
in greater detail. Regarding the QR factorization it is su cient just to note that
for tridiagonal matrices this decomposition can be done i@ N2 using Givens
rotations. The standalone QR factorization has not been inipmented in this
thesis. The implemented algorithms will be explained in Chla 6. To conclude
this section we take a look at the nal form of the QR-algorittm which has been
used in this thesis. This algorithm needs aboutN®® ops to solve the SEVP and
uses a subroutine 'QRSub D; Q; g’ (see [GHG96] Alg. 8.3.3).
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Algorithm 5 QR A
Input: Real matrix A >RN N

1: compute tridiagonalization ofA

22T "Q1Q2::Qn 22TA™Q1Q2::Qn 2°

3D T

4:Q "Q1Q2::Qn 2°

59 0

6: repeat

7. fori 1toN 1do

8 if 71 Liie D7iji 1S& "1 1;iSBtol "P7i;ieS ®i 1;i 1eSe
then

o: D71 1;ie 0 setvalues to zero if below thresholtbl

10: D7i;i 1+ O

11: end if

12: end for

13: QR_Sub'D;Q;qQe;

14: until g=n

The choice of the termination valuetol will be discussed in Chap. 6. The
subroutine performs the actual QR decomposition using Gime rotations and
several other subroutines. Because of the complexity of shinethod and the fact
that it was not implemented in this thesis we will not analyzeit any further.
Very detailed information regarding this routine can be fond in [GHG96] and
[aHS83].

3.2. The Two-Sided Jacobi Method

The two-sided Jacobi method (TSJM) represents an algorithiwhich is inherently
parallel and works by applying orthogonal transformation ratricesQ onto a given
matrix A in the following form:

A; QTAQ (3.16)

The orthogonal transformations are applied on both sides &f. In [JD92] it has
been shown that the Jacobi methods in general yield a highemmerical accuracy
than QR methods. Although there exist one-sided versions ohis algorithm,
for this thesis the two-sided approach has been chosen duehigher numerical
accuracy for a given amount of iterations ([JD92]).
The goal of TSJIM is to reduce the following quantity
AN N
o’As AQ Q & (3.17)

i 1j Ljxi
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i.e., the 'norm' of the the o -diagonal elements. The redudbn is done through
so-called Givens rotations.

De nition 3.2.1. A matrix G"i;k; «>RN N: j:k >N; >R is called a Givens
rotation if it satis es the form

1 0 0 = 0 2 O u
go ¢ ioos i O ig
Giyk; o go S c 0 kg (3.18)
;0 0 0 1 ;
3 i k .

withc coS ;s sSin e

A Givens rotation can be completely represented by the tupde’i;k; « or
“i;k; c;se. Algorithm 6 computes a Givens rotationG”i;k; « for 1 Bi @k BN
with the property that bk b Owith B GTijk; *TAG”i;k; . For a given
input of "A;i;k e the output is a Givens rotation represented byc;s. The re-

Algorithm 6 Givens'A;i;ke
Input: Real symmetric matrix A >RN N
1: if A”ijke x 0 then

). “ATK ke ATiiee
' 2A%0 ke
3: if COthen
1
4: t —o
1 2
5. else L
6: t —
1 2
7:  end if
8 ¢ ¢
1 t2
o: s ftc
10: else
11: ¢ 1
12: s O
13: end if

sulting matrix enables one to zero out speci ¢ elements &. This leads to the



3.2 The Two-Sided Jacobi Method 31

classic Jacobi method which is described by Alg. 7. The parateetol repre-
sents the termination criteria and determines the accuracgf the approximated
eigenvalues and eigenvectors. We will discuss its seleatio Chap. 6. The clas-

Algorithm 7  ClassicJacobiA;tol ¢
Input: Real symmetric matrix A >RN N

1.V IN

2. eps tol S&SS

3: while o "Ae Aepsdo

4: choose’i;ke so that $x S maxpq Bp;qS
5 "c;s»  GivensA;ijke
6

7

8

A Gliik; TAGTi;k;
V VGik; e
: end while

sic Jacobi algorithm basically thinsA out until it reaches nearly diagonal form.
The o -diagonal elements will be regarded as zeros while tltkagonal elements
represent the desired eigenvalues. Additionally we get an@pximation V of the
corresponding eigenvectors.

Yet the search fori; k has not been speci ed, a naive approach would be to check
every element ofA against all others which results in a complexity ofD"N 2e.
This problem will be handled by the cyclic-row extension ofhie classic Jacobi
algorithm. But before that we take a look on both matrix updaes. These up-
dates do not involve complete matrix multiplications, a Giens rotation can be
applied in 8N ops. Analyzing the form of a Givens rotation one can see that
it only a ects two rows or two columns regardingGi;k; *TA or AG™i;k; -,
respectively.

A]_A;' AA,'
A, Glik: «TA . T 3.19
! Avike e &S S ATike; . (3:19)
S C
A" e AT
A; AGTik; A ickee A ikes E CS z (3.20)

[GHG96] shows that the convergence rate is linear. Additiorgl[GHG96] shows
that it can reach quadratic convergence after enough iterains. The amount of
N while-iterations in Alg. 7 is called a (Jacobi) sweep.

The main problem with Alg. 7 is the search-complexity for apmpriate indices
i; k. One solution to this problem is the so-called cyclic-row &nsion where the
symmetry of A and the structure of Givens rotations is exploited. Insteaddf

nding the maximal value of A, one can try to zero out the upper diagonal part
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(which also a ects the lower diagonal part in the same way). Aius one can cycle
the elements row by row, e.g., foN 4

“ijke  T1;20;71;30;71;40;,72;30;72;40; 73,471, 20 10 (3.21)

until the terminations criteria is satis ed. [GHG96] shows hat this method
reduces 0~ Ae with every iteration. The complete extension is describedybAlg.
8 and will be further extended to the nal form of the Jacobi ajorithm used
in this thesis. As mentioned before, Jacobi methods are inlegtly parallel, yet

Algorithm 8 CyclicRowJacobiA; tole
Input: Real symmetric matrix A >RN N

1.V IN

2. eps tolSSSS

3: while o "Ae Aepsdo
4: fori 1to N 1do

5 for k i 1to N do

6: “c;s»  Givens Al ke
7: A Gliik; *TAG™i;k; »
8 V VGik;

9 end for

10: end for

11: end while

the listed algorithms do not exploit this parallelism. Let s take a look on a
single sweep foN 4. From now on we will refer to each choice 6fi;ke as a
subproblem. If we partition all subproblems in a single swpanto 3 sets

S1 "1 20,7 3; 4o (3.22)
Sz "1 30,7 2; 4o (3.23)
S3 "7 147 2; 30 (3.24)

we can see that all subproblems within each of these sets cam éxecuted in
parallel, e.g., we can updaté simultaneously for"i;ke "1;2¢ and"i;ke "3;4e
(the same holds for V). Subproblems which can be executed sitaneously are
called independent subproblems. From now on we assume thdtis even (the
case whereN is odd will be handled later).

It is possible to create such a partition for all values oN. The procedure is
visualized in Fig. 3.1 forN 8. We start with s;, S, is created by shifting all
values except 1 clockwise, this procedure is repeated 5 tsnén the general case
this procedure yields a total ofN 1 sets each containind% pairs"i; ke of indices.
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)
)

Fig. 3.1.: construction of subsets containing independestibproblems

We now de ne the complete version of the two-sided Jacobi agthm, as it
has been implemented.

Algorithm 9 TwoSidedJacobiA; tole

Input:
1.V
2: eps

Real symmetric matrix A >RN N

In

tol S8SS

3: while o "Ae Aepsdo

4
5
6:
-
8
9

10:
11:
12: end

for set

1to N 1do

for sub 1to % do

“iike

PROBLEM _LUT “set; sub

“c;s»  GivensAi ke

A Gl

'k; o TAGTi k; o

V VGik; »

end for

end for

while

Alg. 9 utilizes a lookup table PROBLEM _LUT' to determine the needed
indices, the creation of this table and its structure will beexplained in detail in
Chap. 6. The inner for-loop can be executed in parallel as aubproblems in
each set are independent, this fact will used in a later chagit So far we have
assumed thatN is an even number, this assumption is very convenient for the
algorithms above, yet it represents a practical restrictio for them. The case
whereN is odd can be handled by adding a new zero lled row and a zerded
column to the given matrix A.






4. Classi cation

So far we have only explained coordinate transformations the input space,
which yield a more feasible representation in the context aftatistics. Yet our

goal is the classi cation of unknown traces. For this task wevill use three popular
concepts and corresponding algorithms. These concepts dhese of nearest
neighbour classi cation (KNN), linear discriminant analyss (LDA) and support

vector machines (SVM). The KNN and LDA will be explained in thai non-

kernelized version, i.e., their formulation in terms of inpt space. As [aAFF05]
points out, the kernelized version of both algorithms can b®rmulated in terms

of a transformed input space.

4.1. Kernel k-nearest Neighbors Classi cation

The k-nearest neighbors approach to classi cation is one tife most simple so-
lutions to this task, as it makes no assumptions about undgihg distributions.
The following derivation is based on [Bis06]. Let us suppose are givenN; data
points of classG fori 1;::;K and have to constructaclassief | “1;::;;Ke.
For a given pointx one could draw a sphere around it in way that it containg
other points (disregarding their class membership) of the\g@n data samples and
exactly ki data points of the class whichx belongs to. The conditional density
of each class can be estimated with

. ki
P XE; NV (4.1)
whereV denotes the volume of the sphere. The unconditional densitgkes the
form

K K
'Xe ———; N N; 4.2
p X NV 1 in | ( )
with prior estimations
N.
"Ge — 4.3
PG (4.3)
Combining these equations one can formulate the posteriorgbabilities
- Ki
PG - (4.4)

k



36 Classi cation

Minimizing the risk of misclassi cation can be done by simpl assigningx to
the class which minimizes the posterior probability. In othr words, x will be
assigned to the class with the majority of points inside theptere (as depicted
in Fig. 4.1). In algorithmic terms, this corresponds to anaking the k nearest

samples tox and assigningx to the class with the most samples under thode
neighbors.

ve d
[ ) [ )
x —> x
[ ) [ )

Fig. 4.1.: KNN algorithm fork 6

4.2. Kernel Linear (Fisher) Discriminant Analysis

In linear discriminant analysis one tries to nd a so called gcriminant function
of following form

f 1 R f'xe wix w (4.5)

The vector w is called a weight vector and the numbewy is the bias. For now,
let us assume that we only have to distinguish between two skesC, and C,.
Furthermore we assume that "xe« CO if f "x* belongs toC, andf "xe @D if x lies
in C,. This discriminant is visualized in Fig. 4.2, one can see th#e decision
boundary between the two classes is nothing more than™&  1e-dimensional
hyperplaneH “x$°xe 0 (hessian normal form). It is not always possible to

Cl.

.G e

C

} % o ©
x

H = {x|w"x —wy = 0}

Fig. 4.2.: Example of separating hyper-
plane in input space Fig. 4.3.: Non-separable data set
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create a perfect class separation. This case is visualizad-ig. 4.3. Additionally
Figs. 4.4 and 4.5 show the resulting overlap of the projectedhlues, i.e., the
projection of each data point onto the weight vector (exempéd by W). We
will refer to this overlap as class overlap. But how do we chse the right weight
vector and bias to get the best possible class separation. f&& we address the
problem of nding these parameters, we shall ask the questiavhat characterizes
the separability of two given data sets. If we take a look at i 4.4 it is obvious
that a small variance within each dataset and a large variaecbetween both data
sets yields a smaller class overlap. Thus one should take gheproperties into
account when looking for optimal valuesv and wp.

This strategy is applied in a speci c variant of LDA called Fsher LDA (FLDA),
where it is proposed to carry out the optimization in the hypglane H with xed
wo 0. First a few words about notation. Letm®;m2 >RN be the class means for
C, and G,, respectively. Furthermore we havee >C;; y >C,; >71;:5Me; >
~1;:::;Pe. To maximize the global variance one has to maximize the vadu

~Wh
m
38SS
For mathematical convenience the weight vector shall be noed. In other words,

the global variance will be maximized for the projected poita x andy . To
minimize the within-class variance, the following value teato be minimized.

mlee? “m, mye? (4.6)

M P
I 2 Q™xi mpe? Qlyi mpe? (4.7)
il il
M WT i ) P WT .
~ Woe  Mjye ~ ' wpe my? (4.8
O sesd Mt MU R gegy W Mt @9
Both problems can be formulated in one equation
"My, mye? wTSw
mWaxﬁ mWaxWT S, (4.9)
where
S "m? miem2 mteT (4.10)
and
S\N Q “xi ml.’*xl ml.T Q ’*yl m2.’*y| mZ.T (411)
i1 i1

are symmetric positive de nite matrices. As noted in [BisO6the solution w is
proportional to S,'"m, mye, i.e.,

w ES, ' m2 ml. (4.12)

Thus only a matrix inversion (in praxis, the solution of a lirear equation sys-
tem with LR/Cholesky decomposition) is needed to compute #direction ofw.
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[Wis10] gives an alternative derivation using a diagonakzl average covariance
matrix, yet this approach is computationally too expensive

We now have determined the optimal direction for the weight ector with xed
biaswy 0, in general this bias does not have to be the optimal value.oTcon-
struct an appropriate bias [Bis06] suggests the use of clagmditional densities

pf ieEe (4.13)
while [Kuh06] proposes
“m?2 1le
w, o~ m° me (4.14)
2
Cl o
Co f{ = {x|wTx — wy =0} C o
. c

H = {xjwTx —wy =0}

Fig. 4.4.: Projected data points in  Fig. 4.5.: Class overlap in the case
case of perfect separable of non-optimal parame-
classes ters

For better accuracy we will use the rst proposition. The dewation of following
bias can be found in [Bis06], [LiO8] and [Igel10]

1

wo log— }‘ml m2T "m! m2 (4.15)
2

2
Where 1, , represent the prior probabilities (i.e. ; p~Ge) for classC, and C,,
respectively. is the covariance matrix of both classes, &., we assume that both
data sets have an underlying normal distribution with an inéntical covariance
matrices. The prior probabilities can be approximated with

# of samples in class

. 4.16
' total # of samples (4.16)
Approximating the gaussian distribution can be done via
2
Q "X miex mieT (4.17)

M P 2in><>Q
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So far we only considered two classes of data points, in prsvane often has to
classify with more than two classes. As mentioned in [BisO6]faasible way to
classify with K classes is the construction of multiple discriminant§,. Which
yield a measure of class membership. Classi cation can bengoby assigningx
to classj through

j arg mkaxf K X® (4.18)

The above derivation for a two class problem can be generalizfor K classes.
Yet at this point, only the nal derived discriminants fy; k >"1;:::;; Ke should be
given. The reader interested in the complete proof shouldfez to [Bis06], [Li08]
and [lgel0].

1
fi”xe xT ImK Em"T Imk log (4.19)
with estimations
1 K K
——Q Q "x m*x mkeT: | Q #samplesinclassk  (4.20)
I Ky 1x5G, k 1

In this thesis, the kernelized version of LDA consists of appng LDA to the
KPCA-transformed spaceRM M (as motivated and researched by [aAFF05]). As
mentioned above, the KNN classi er does not take probabilitglistributions into
account. Thus the above made assumption of normal distribetl data sets will
proof wrong, if KLDA produces worse results than KKNN.

4.3. Support Vector Machines

In this section a di erent approach to classi cation will be presented. So far
we have used KPCA as a tool to enhance standard classi catianethods (i.e.
KNN and LDA). We have reduced or increased the dimensionalityf ahe space
in which we carried out the classi cation. We will now preseina way of perform-
ing linear classi cation entirely in the feature space, i.e without changing the
dimensionality or approaching classi cation in a transfamed input space. From
now on we again assume that only two class€}; C, have to be distinguished.
The technique described next, consists of separating dataipts in the feature
spaceH by a hyperplane.

Let

H "xS@w;xAy b O (4.21)

be a hyperplane inH, with weight vector w >H and biasb>R. We will classify
according to decision functions

f"xe sgnm@w;xAy b (4.22)
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Let ™ xi;y,es be a family of M data points with corresponding class labels
yi >7 1;1e, which we will refer to as training points. To nd the best sep-
rating hyperplane we assume that the training points are learly separable, i.e.,
a separating hyperplane exists. The not linearly separabtase will be handled
later. The optimal hyperplane maximizes the margin (i.e. tb shortest distance
of a point to the hyperplane) of each training point. In mathenatical terms

max min"S® x'SSSX>H; @wv; xAy b O i 1;::Me (4.23)
w>H ;b>R

This concept is visualized in Fig. 4.6. In the following devation (which bases
on [SS02] and [Bis06]) we requir@@w;x' Ay bS 1 for the closest points toH .
With this, the minimal margin becomes +$835 This can be seen by considering
two points, e.g.,x1;x2 with minimal distance to H

@w;x* Ay 1 (4.24)
@w;x* Ay 1 (4.25)
@wv; " xt xZ%e Ay 2 (4.26)
W a1 g2, 2
@STSS Xt X% Ay 3655 (4.27)
x| <x,w>y +b=1}
L ]
K
\\
® N\
N H

Fig. 4.6.: Visualization of a hyperplane in feature space
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We now de ne

De nition 4.3.1  (Canonical hyperplane )
Let T " xi;yies be a training set. The pairw;b» >H R is called a canonical
form of a hyperplaneH with respect toT if

min S@w;x' Ay bC1 (4.28)

i 1;:5;m
and which yields '
yi @v;x' Ay bC1 (4.29)

Thus a canonical hyperplane is optimal in the sense that ita$si es all training
points correctly and has a lower bound AS&Sfor its margin. Maximizing this
lower bound corresponds to minimizin@8SS For mathematical convenience we
formulate this optimization problem as nding "w; b with

“w;b arg min%%sz_s (4.30)
w ;b
subjecttoy; @v;x' Ay bCLl i 1,:5M (4.31)

This is a typical problem of quadratic programming, its soltion can be obtained
by the minimization of following Lagrangian

M
L w;b;as %s&&s Q an"@wv; “x*Ay b 1, x>l;a,CO (4.32)
m 1
This formulation is called the primal problem. To calculate(i.e. approximate)

the solution another formulation is needed, the so-calledudl problem . The dual
problem arises from the above Lagrangian and requires the rvaization of

M 1 M M
Cas Q an 5Q Q @amtntmk™x";xMe (4.33)
m 1 2n Im 1

subject to the constraints
an CO m 1:5M (4.34)

M
Q Ymam O (4.35)
m 1

Although this represents again a quadratic programming préém, the amount
of variables has been reduced and we obtained a formulatiaonterms of kernel
functions. The training points x™ with a;,, AO are called support vectors. After
solving above the optimization problem, one can formulate @assi er f by

M
f'xe sgn Q amymk™x;xMe b (4.36)
m 1
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This kind of classi ers are called support vector machinesS{yM). At this point
it should be noted that by calculating©L"w;b;ae , it can be shown that the
weight vector can be expressed as

M
W Q mYmX™ (4.37)
m 1

Thus the weight vector is a linear combination of the supportvectors.

In praxis however, most problems are not linearly separableThis requires a
relaxation of the constraints we have made above. To accomdaie this fact one
can introduce so called slack variables

m>R;m 1,:5M (4.38)
with following property
Ym @w; “xMe A, bCl1 (4.39)

SVMs that use these variables are called soft-margin SVMs. Tly@ometric in-
terpretation of the slack variables can be summarized as:

“if 2 @™ @0, we demand that the sample "x™e has a hyperplane margin
greater than the minimal distance of 1, i.e., it still has to b classied
correctly.

if0 @™ @1, we allow the sample "x™Me to have a hyperplane margin
smaller than 1. Yet it still has to be classi ed correctly.

if0O @™ B1, we allow the sample “x™Me to have a hyperplane margin
smaller than 1. Yet it can lie on the hyperplane itself, yieloshg no clear
classi cation.

ifO @™ @2, we allow the sample "x™e to be misclassi ed, i.e., we
tolerate an error regarding “x™e during training of the SVM.

The introduction of slack variables changes the optimizain problem which was
described above. One possible way to formulate a new objeetifunction (i.e. a
function which has to be minimized to solve an optimizationfwblem) is described
in [SS02]. Where the following function has to be minimized

. 1 cM
f°x; » 29835 —Q = (4.40)
2 M "1

The last term in this function describes a trade-o between @rgin maximization
and training error. The constantC regulates this ratio. As in the separable case,
the soft-margin problem yields a weight vector which can bepressed as a linear
combination of support vectors (see Eq. 4.37). To obtain theoe cients , one

has to solve "

argminQ ~m :_2L

im mn 1

M . .
Q ~iyVYiyjk'x';xe (4.41)
n
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subject to the constraints

0B mB%; m 1;:5M (4.42)

M
Q Ymam 0 (4.43)
m 1

The proof for this statement can be found in [SS02] and [BisPp8One important
note should be taken regarding the constant, which is no variable in the op-
timization problem. Yet C is a variable in the overall training of a SVM. After
determining one can calculate the hyperplane o set via

# of SVs”; (?AO

M
Yi Q Ym mkAXm;Xj’ (4.44)
m 1 °

We will not cover the numerical solution to this problem as ithas not been
implemented during this thesis. The reader might conside6502] and [aCJL11]
for implementation details.

A SVM is a binary classi er, using the above formulation it is mpossible to
distinguish between more than two classes. Yet there existamy approaches to
extend the use of SVMs to multi-class problems, i.e., classation tasks with
p C2 classes. The most simple one is the so called one-vs-one@Dapproach.
Where training data is splitted regarding the classes, bafthe actual training
begins. Let us assume that we are given training samples frgomclasses. In
OvO, the data is segmented intg parts. Each part consists only of data from
the corresponding class. Afterwardp p 1e~2 SVMs are trained on all possible
pairs of classes, e.g-,1;2¢;"3;pe; 12 5. To classify a given test pointx each
SVM will classify it and make a vote for the correct class. In th endx will
be assigned the class with the most votes. The case where twonmre classes
have the same vote can be handled by assignirg to the rst class encountered.
[aCJL11] points out that this method is a competitive approeh regarding other
solutions like, e.g., one-vs-all. The OvO method has beeneasin this thesis.

4.4. Grid Searching

Let us assume that we have a method to solve all optimizatiorrgblems which
were mentioned in the last section. We still need to tune sena external pa-
rameters, like multiple kernel parameters or the trade-o onstant C. A common
method to locate the optimal range of parameters is the soit=d grid search
During a grid search the whole possible parameter range issdietized into an
exponential grid. For example, the range o >R would be™ 2 ;2  which could
be sampledvia ::;;b 2;b 1; P; b; ?; ::: with b>N. Of course one will not sample
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the complete range. Instead a subset of the range will be cbasand discretized,
e.g., 2;10* for C. Once a subregion has been sampled one can train a SVM for
each sample point and afterwards evaluate the overall clasation performance.
According to the results afterwards, a more speci ¢ subset die previous subset
can be chosen. On which in turn a grid search can be performethis technique
narrows the optimal parameters down.

The training of a SVM involves at least two parameters: at leaone kernel pa-
rameter and the trade-o constant. Thus the grid search regues a sampling
of the euclidean plane (as depicted in Fig. 4.7). The SVMs uséd this thesis
involve kernel functions with only one parameter.

RQ

Fig. 4.7.: SamplingR? for a local grid search

At this point we can precisely de ne the goal of this thesis: He construction
of a so-called template

De nition 4.4.1 (Template).

Let I p be a classier working onC and T, with C  "Cy;:i;;Ge a
set of classes,T ~ | a set of training data. Furthermore it should hold that
I x>T8li>p x>C. ThetupleT =~ ;C;T; < is called a template where
denotes the classi er parameters that are independent Gf

which minimizes

%0 x 0

AVEr“Us i "Sxe kSPU T I; U9T g; “xe |
ol else

VS

for an arbitrary choice of U, where k, denotes the class index ok. Regard-
ing above de nition the classi er must not be of a specic type, e.g., a single
SVM. It would be also possible to use a classi er array, consigg of a KLDA, a

k-nearest neighbors and a SVM classi er. The set holds the pameters which

(4.45)
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are required to optimize , e.g., the trade-o constant C within a SVM.

The function AVEr represents the average recognition error, thuAvEr"Use
stands for the classi cation error on a setJ of data points. Furthermore we
de ne the actual recognition rate onU.

De nition 4.4.2  (averate recognition rate)

Av'Us 1 AVEr-Us (4.46)

Thus a template attack, in the context of this thesis, involes the construction of
atemplateT, using a sefl of power traces and an arbitrary classi er , which has
been trained onT. This classi er has to be ne-tuned with an appropriate chate
of . Enabling it to correctly identify many instruction typ es from unknown
power traces.






5. The CUDA architecture

The last chapters covered the key concepts for this thesis. dst methods de-
scribed in Chap. 2 and 4 have a complexity dd"N3e, whereN stands for the
dimensionality of the input spacel . One method to approach this complexity
is the use of heuristics or approximation methods (e.g. cdnsction of kernel
classi ers by approximating the gram matrix). Yet the focusin this thesis lies
on the direct solution of the described problems. Acceleraty the algorithms
can be done by utilizing parallel computation in terms of symetric multipro-
cessor (SMP) architectures. The CUDA architecture provideshassively parallel
computation power, e.g., as of today up to 448 computation ces per CUDA
device. This chapter will provide a very brief introductioninto CUDA, including
important hardware speci cations and implementation aspas.

5.1. A Brief Introduction to CUDA

Modern graphic cards utilize so-called shader units whichlew a graphics de-
signer to implement custom computation routines. For exani@, enhancing the
look of a texture by adding special e ects after it has been g@fied to the sur-
face of a polygon. A shader unit can be described as a resteidt(in terms of
functionality) CPU core. A GPU features a high number of suctunits, thus
they are also called a shader array. NVIDIA cards provide anogéh abstraction
layer, called CUDA, to this shader array. CUDA enables the dewaber to use the
GPU nearly in the same way as a SMP system. Yet there are severaportant
restrictions to this access. Let us rst take a look onto the ODA architecture
and the developers view onto it.

Fig. 5.1 shows the view onto a CUDA enabled device. The GPU isgseented
into so called streaming multiprocessors (SMs), which in to consist of streaming
processors (SPs). A SP is also called a CUDA core. The SP is ot@nac com-
putation unit in CUDA, i.e., one processor which executes a pgoam. The GPU
used in this thesis is a GTX470 which provides a total of 448 SRsd belongs to
NVidias Fermi GPU generation. Those CUDA cores are grouped intt4 SMs,
each of them incorporating 32 cores. The developer can notcass these cores
directly, the execution of a CUDA program will be managed by th GPU itself.
The management of program execution is clearly de ned and ¢hprogrammer
must use this to his advantage. In most literature (e.g. [aEKO] or [aWmH10])
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[ ] []
[] []
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Fig. 5.1.: CUDA architecture of a GPU

this programming model is introduced by an implementation fothe well-known
matrix multiplication. For reasons of simplicity we will introduce the concepts
with an example of computing the sum of two real valued quadtia matrices
A;B >R" ", This operation has a complexity 0of0"n?e.

The sum of two matrices is de ned as

"A Bey Ay By (5.1)
An ordinary single threaded implementation would have a forriike
void main()

f
for (int i=0;i<n;i++)
f
for (int j=0;j<n;j++)
f
Cli,jl =ATli,jI+B[i,j1;
g
g
g

One might notice that the instructions inside the inner fodoop are independent
of each other, thus they can be executed in parallel. The optal case would be
if we had n? cores available, such a system would reduce the complexity®" 1-.
Yet for arbitrary matrix sizes, no such system exists. Evernbugh one might not
have the required number of cores to execute all instructisrsimultaneously, the
usage of more than one core is still a major benet, as it redas computation
time by at least half.

The CUDA approach to this algorithm consists of launchingn? threads, each
computing one element ofC. At this point thread scheduling becomes relevant.
Before we take a look on scheduling we shall explore how thdsaare ordered
and executed in general. CUDA groups threads into three dimsional thread
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blocks T;; . Those blocks are in turn ordered in a so-called two dimensial grid
G. This concept is visualized in Fig. 5.2. Let us further simfly the situation by

T4

)

1N ¢

Ty, Tk 1

1,2
tl,:,lj tm,1,1

tl,n,l tm,'n.l

Fig. 5.2.: Thread grouping in CUDA

assuming that each blocKT;; is quadratic and its size divides. The program
which will be executed by every thread is called a kernel (wdti should not be
confused with kernel functions). The kernel in our case calhave following form,
which is similar to, e.g., an OpenMP approach.

__global__ kernelForMatrixAddition( double * A, double * B,
double * C, int DblockSize)

f

/Iblock coordinates

int blockX = blockldx.x;

int blockY = blockldx.y;

/Ithread coordinates inside the block

int threadX = threadldx.x;

int threadY = threadldx.y;

/[lactual indices for memory access

int 1 = blockX *blockSize+threadX;

int j = blockY *blockSize+threadY;

Cli,jl =A[i,jl+B[i,]];

g

Every thread entering the kernel computes its indiceisj and accesses the corre-
sponding matrix elements. A kernel launch is always asyn@mous, i.e., once the
GPU has received the command to launch a kernel, it returns ewol to the host
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thread. Thus the host must take care of synchronization bewen GPU and host
application segments. GPU threads can communicate with daother in terms
of data exchange and synchronization. Yet this is limited tdhreads within a
block. The synchronization of all GPU threads can be done bymaethod called
'host synchronization' which holds the host thread until dl GPU threads have
nished execution. This method can be explained with the fidwing example.
Let us assume that we want to synchronize all threads on the @Pduring the
execution of a kernel. To achieve this, we have to split the keel into two new
kernels. The rst one will hold all instructions before the gnchronization point,
whereas the second one holds all instructions after the symonization point.
The rst kernel will be launched and the host thread will waituntil the GPU has
nished computation. In other words, until all GPU threads have reached the
end of the rst kernel. Afterwards the host will launch the seond kernel, thus
we achieved the desired synchronization of all GPU threads.

Only a specic (GPU dependent) number of blocks can be assiggh to a SM,
e.g., up to 8 on a GTX470. It should be noted that this number degnds on
the total count of threads residing in these blocks, e.g., aTX470 can assign up
to 1536 threads to a single SM. Each SM also has a limited nunmnba internal
resources, which could further reduce the maximal number agsignable threads
during runtime. Each SM divides its blocks into so called was of threads. This
segmentation of blocks into warps is visualized in the Fig®.3 to 5.5 for a warp
size of 32 threads within quadratic blocks. For reasons ofgilicity these gures
do not take into account GPU speci c limitations regarding he maximal thread
number. On a GTX470 a warp contains 32 threads, which will be eguted in
parallel by the SPs of the SM.

111

Y
w1 w32

t1A4 32 t391,32

W1024
t32,32 132732 32

Wo992

Fig. 5.3.: Warps inside a three dimensional thread block
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t1,1 || t2.1 t32.1

w32
t1,32] | t2,32 t32,32

Fig. 5.4.: Warps inside a two dimensional thread block

11 4

J

t to t32 t33 || t34 tea

w1 w2

Fig. 5.5.: Warps inside a one dimensional thread block

The GPU uses these warps as an atomic schedule unit. Up to 48 psmay

be active on a SM for the mentioned GPU. This means that the GPUckedules
actively between those 48 warps, which are chosen arbitigrirom the assigned
thread blocks.
The limitations for, e.g., assignable threads per SM or thdapal thread limit for
the GPU, are speci ed in the CUDA capability levels . These leve are de ned
in [NVI10b]. For a GTX470 (CUDA capability level 2.0) the limitations are
summarized in Table 5.1

Table 5.1.: Important limitations for the GTX470 GPU

Maximum x- or y- dimensions of a grid of thread blockg 65535

Maximum number of threads per block 1024
Maximum x- or y- dimension of a block 1024
Maximum z- dimension of a block 64

Warp size 32

Maximum number of resident blocks per multiprocessor 8
Maximum number of resident warps per multiprocessor 48
Maximum number of resident threads per multiprocessar 1536

Maximum number of instructions per kernel 2 100
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Up until now only the computational aspect of CUDA has been disssed. The
actual data was considered a given constant in the explanatis above. A GPU
can access data in several ways, the most important for us are

1. copying data from host memory to GPU memory
2. accessing data on the host directly via the PClexpress bus

Before analyzing both methods it should be stressed out thabne of both meth-
ods is superior to the other. For every given problem is muselcarefully decided
which approach would yield the best performance.

The GPU memory, also called global or device memory, is codsrably faster
than the host memory . Yet its size is often much smaller tharhe host memory.
It might not be possible to t all the data into GPU memory at once and incre-
mental copying might be necessary. Many copy operations Wihuge data chunks
between host and GPU can reduce the bene ts of using CUDA codsrably. The
use of GPU memory is recommended when many operations will é&eecuted on
a relative small amount of data, i.e., data that ts completdy into GPU memory.

It is also possible for the GPU to access the hosts memory ditly. This may

reduce the size restrictions considering GPU memory. Thewnbside to this lies
in the transfer speed of the data. If a kernel accesses the tsosiemory many
times during his execution, the algorithm will be slowed dowto a large extend.

5.2. Optimization Methods

In the previous section we have developed an understandingaat the basic
CUDA concepts. We will now brie y review important optimization strategies
which have been considered in our implementation.

5.2.1. Coalesced Memory Access

Under certain conditions the GPU can optimize the memory acse to device
memory. The requirement for such an optimization is a coalesd memory access
by the kernel. Coalesced memory access refers to a speci cess pattern by the
kernel. Again for reasons of simplicity, let us assume the kel will be executed
by 128 threadst,;:::;t1o8 in @ one dimensional block, inside a 1x1 grid. Addition-
ally the kernel shall work on a 128 byte array, residing in gh@l memory. This
memory can be linearly split into segmentsg; :::; s4 of size 32. The GPU threads
will be linearly scheduled into warpsws; :::; w, of size 32. For coalesced memory
access, each threat]; i 1;:::;16 in a half warpwy;; kK 1;:5;4; ] 1,2 hasto
access thé]j 1« 16 i-th byte in segmentsi. This concept is visualized in Figs.
5.6 and 5.7.
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Fig. 5.6.: example of coalesced mem- Fig. 5.7.: example of non-coalesced
ory access memory access

The explanation above refers to the basic principle as intduced in the spec-
i cation of CUDA computability level 1.0 (see [NVI10a]). The requirements are
relaxed with increasing level and one should refer to the afgpriate documenta-
tion regarding the device's level.

5.2.2. Pinned Memory & Zero-copy

Pinned memory refers to page locked host memory, i.e., memavhich will not
be swapped by the operating system. The use of pinned memongreases the
transfer rates for data copying between host and GPU. This spé up results
from the fact that the basic data copying from host to device emory involves
the following stages: copy data from non-pinned host memoty pinned host
memory and afterwards to device memory. The usage of pinnecemory does
not require an additional transfer to pinned host memory. Yeone should use
the allocation of pinned memory with caution as is reduces ¢hoverall memory
available to the system.

The GPU can also access host memory directly, this is refedréo as zero-copy
memory access. The GPU can only access pinned memory on hadé.s Zero-
copy memory access allows a GPU to overcome the size resioies of its own
memory. In other words, the GPU can access large data amounisthin the
hosts memory. Yet this access is a high latency operation astiould be used
with caution.
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5.2.3. Block dimensions & Thread Resources

The choice of the thread block dimension is very important, sait can be used
to control the thread scheduling and thus the performance adhe algorithm. As

described above, each SM consists of multiple SPs. Every SMsha limited

amount of resources, this includes limited memory to exeaita kernel using the
assigned threads. Each thread incorporates his own copy tfetkernels data,
e.g., if the kernel declares 10 double variables, each theesbf 64 bits and the
SM will be assigned 1000 threads, the SM has to provide 80 kBraeEmory. If

the requirements are not met, the kernel will not be launchedt all. Thus the

developer has to be careful when designing kernels.

5.2.4. Thread Divergence

Another crucial aspect in kernel design is the problem of thael divergence. The
CUDA architecture is not driven by the SIMD (single instruction, multiple data)
paradigm. Where data is prefetched and afterwards used by pexi ¢ instruction,
e.g., instructions in SSE in Intel CPUs. The GPU executes keefs by following
the SIMT (single instruction, multiple-thread) approach. It executes a (common)
instruction for all threads within the same warp before combuing with the next
instruction. Let us now consider the kernel in Listing 5.1. Tis kernel obviously
splits the control ow during execution. The GPU will require multiple execution
passes to execute each warp involved in this kernel. One pdss the threads
which handle the if-part and one pass for the else-part, thysarallelism will be
reduced. The homogeneity of a kernel, i.e., the amount of doml ow splits, is
a measure for the divergence of the control ow during exedon.

Listing 5.1: Kernel yielding thread divergence

__global__ inefficientKernel (double * someArray)
f

/Ithread coordinates inside the block

int threadX = threadldx.x;

int threadY = threadldx.y;

if (threadX>=2 && threadY <=15)
f
someArray|[i,j]
g

else

f
someArray[i,j]

g
g

i+ ;

1
—
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Control structures as if-else blocks should be avoided as chuas possible. A
kernel yielding no thread divergence at all, will be called homogeneous kernel.
Otherwise we will call the kernel inhomogeneous.






6. Implementation

This chapter explains the implementation of the algorithmgrom Chaps. 2 and
4. At the time this thesis was written, many frameworks for nmerical linear
algebra existed. Yet most of them represented simple wrapp&PIs for the well-
established framework LAPACK. This library provides a wide &riety of numeri-
cal methods from linear algebra, yet it is written in Fortranand does not include
SMP or even GPU support. Regarding an implementation in the IC++ lan-
guage, theGNU scienti c library (GSL) represents a popular framework. NVidia
also provides its own version of the LAPACK libraries, yet trs framework is
closed source and only commercially available. Thus it is dear what algo-
rithms have been used and how e cient their implementations. Additionally it
provides only a tiny fragment of the LAPACK functionality. For this thesis the
GSL has been choosen due to following reasons:

~ It provides access to the source code, thus fragments can keed and en-
hanced for, e.g., SMP

" ltis still in development, thus new features might be availale in time, e.g.,
new algorithms

Whenever possible, methods which were already present iretleSL, have been
used to solve subproblems in our implementation. In other sas, GSL routines
have been enhanced by replacing subroutines with CUDA counparts. Not ev-

ery such replacement was implemented from scratch, i.e., lbyriting a custom

kernel for it. CUDA also includes basic functions for computeons in linear alge-
bra. These functions are bundled under the so called CUBLAS gimmn of CUDA.

In speci ¢ cases, the usage of CUBLAS can yield a major performze gain. To
understand these speci ¢ cases one has to consider the caamfly of basic cal-
culations from linear algebra. These are grouped in three-salled BLAS levels.
The rst level includes all scalar-vector operations, e.gthe scaling of a vector
by multiplying each element with a real number. Level two cagists of vector-
vector operations ,e.g., adding two vectors or the euclideacalar product. Level
three incorporates all matrix-matrix operations, e.g., tB matrix multiplication.

As shown in [aWmHZ10] it is unwise to move all BLAS calculations tthe GPU.

The reason for this is quite simple, the overhead of compugnsmall problems
on a GPU outweighs its bene ts. Small calculations, like theomputation of a
scalar product with two 5-dimensional vectors, are carriedut faster on the host
side. Additionally Chap. 7 will verify these facts through bechmarks of basic
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CUBLAS and GSL methods for di erent problem sizes.

Our implementation consists of so-called hybrid-algoritlms, which execute sub-
routines on the GPU only if it yields a massive speedup compt to the host
side. The functions in level three can reach a complexity of,g.,O"N 3¢, thus if
a parallel approach exists for them, the speed-up will be imense. Especially the
ordinary matrix multiplication bene ts greatly for huge valuesN. Thus certain
parts of the algorithms from the chapters above will be refarulated to use level
three routines.

In the following sections we will omit code fragments as farsapossible, list-
ings will be given only if they are self-explanatory or intuively to grasp. The
major implementation concepts and their bene ts as well asrdwbacks, will be
explained. Additionally the encountered problems and theisolutions will be
addressed. If not mentioned otherwise, all given numbersfee to the GTX470
GPU.

Before we start, an important aspect must be mentioned. Thedst and device
memory is organized in a one dimensional fashion, i.e., bymbering the mem-
ory slots Yet a matrix is a two dimensional structure, thus the indice must be
mapped onto the corresponding memory addresses. This mapgpican be done
in two ways, either as column- or row-major mapping. The di eence between
both methods is visualized in Fig. 6.1. The column-major farat sequentially
aligns the columns of a matrix in memory, while the row-majoformat does the
same for the rows of the matrix. The conversion between botbrinats can not
be done by a simple call tanemcpy The data needs to be copied by a single
for-loop, i.e., regarding aN N matrix, N2 for-loop iterations are required for
this.

Matrix A Matrix A
][] B | 1 |
| r2 |
C1]|C2 e o o CN]| ¢
°
°
'N
|01|CQ| e o o |CN| |T1|T2| e o o |’I”N|

Fig. 6.1.: mapping a matrix onto host/device memory
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One problem lies in the di erent philosophies of CUDA and GSLwhile CUDA

(and Matlab) uses the column-major alignment, GSL uses romajor alignment.
This requires some overhead during data exchange betweenhofoameworks, yet
this poses no major problem in the following implementatia The reason for
this is the fact that such a data exchange (e.g. the conversimf a CUBLAS
matrix to a GSL matrix) only occurs in the initialization or the end phase of an
algorithm. The conversion times (up to 20ms) are relativelgmall compared to
the involved computation time (up to 5 minutes).
Additionally an interface for Matlab was required, thus a exble matrix class
(Listing 6.1) was developed. It can be used for GSL and CUDA (imat conver-
sion is performed in the background) and provides methodsrfdata import/ex-
port from/to Matlab.

Listing 6.1: the main data structure used in this thesis
template <class T> class Matrix f

public :
Matrix(int type);
Matrix (Matrix <T>* matrix, int type);
virtual ~Matrix () ;
void initMatrix( int rows, int columns, bool pinned
=false);
void setData(int i, int j, T value);
T getData(int i, int j);
T* getDataPtr();
int getRowCount();
int getColumnCount() ;
void readMatrixFromFile(std:: string filename);
void writeMatrixToFile(std:: string filename);
void exportMatrix(std:: string filename);
void readMatrixFromMatlabFile(std:: string filename
,std :: string varName) ;
void writeMatrixToMatlabFile(std:: string filename,
std :: string varName, bool compressed);
int getType();
private :
int type;
int rows;
int columns;
bool pinned;
T* data;
bool readCSVValue(FILE** pFile, std::string* s);
g;
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Additionally this data structure provides pinned memory if desired, the details
of each method can be viewed in the documented source les.

6.1. QR Algorithm

The implementation of the QR algorithm involved the followng tasks:

1. extending the GSL routines with an interface which allowsommunication
with CUDA methods

2. implementing Alg. 2 and the required subroutines with CUDA @hance-
ment

3. ensure the correctness of the implementation

The GSL already provides the QR algorithm as described in Cha2, yet it does
not utilize SMP. For this thesis the GSL implementation has ben modi ed. More
precisely, the matrix tridiagonalization has been portedd the GPU. An interface
has been created which allows injection of an already tridianalized matrix into
the QR routines within GSL. This concept is visualized in Figre 6.2.

symmetric matrix A symmetric matrix A

' '

tridiagonalize A —
y e
QR_Sub L QR-Sub

eigenvectors v; eigenvalues A; eigenvectors v; eigenvalues \;

Fig. 6.2.: Modi cation of the GSL to allow injection of an already tridiagonalized
matrix

The original GSL function gsleigensymmvconsists of the matrix tridiagonal-
ization and QR steps. In our implementation this procedure &s been reduced
to only incorporate the QR steps, yet this requires the inpubf an already tridi-
agonal matrix. This matrix will be provided by a subroutine vhich utilizes the
GPU to tridiagonalize the given matrix. The reason for not pding the QR_Sub
procedure to the GPU as well, lies the algorithms internal sticture, which does
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not allow parallelization.

We will now look in detail onto the implementation of the matix tridiagonaliza-
tion. The tridiagonalize function follows the GSL convention, i.e., it splits the
actual algorithm into two parts. One handles the tridiagonazation (algorithm
2) and creates a compact representation of the matricds Q in just one matrix.
The other part expands this compact representation into twdull size matrices.
This parts are handled by the functionssymmtd decompand symmtd.unpack re-
spectively. Before we continue with the details of those fations, we shall look
on the compact representation >RN N of the tridiagonalized matrix T and the
corresponding tridiagonalization matrixQ. Fig. 6.3 shows the form of such a

matrix .
(4 \

5
5_2
hq *
ha dn_1
\_ | BN-1 dN/

Fig. 6.3.: Representation of a tridiagonalizatiotA QT T Q with just one matrix

The diagonal elementd; represent the matrix T, under each of these entries
lies one Householder coe cient and the corresponding Housdtler vector. Tridi-
agonalization of aN N matrix requiresN 1 Householder re ections. At this
point is should become more clear what was meant in chapter ¥ b... saves
half the space ...". The rst element of the Householder veatas always 1. h;
is of dimensionN 1. Leaving out the rst element, we need to save only the
remaining N 2 elements. Yet the rst column hasN 1 slots left under the
diagonal element, this allows us to save even betweenh; and d;. Additionally
it should be noted thathy ; 1 thus we only store y 1 underdy ;.

Now to the methodssymmtd decompand symmtd.unpack symmtddecompcom-
putes the tridiagonalization and creates . It is basically Alg. 2 which is already
rich in BLAS-3 routines and thus needs no reformulation. Yet involves the sub
routine housewhich only incorporates the euclidean dot product. This opation
(taking the remaining structure of the algorithm into accomt) can not be ex-
tended to a higher BLAS level. Our implementation works neaylcompletely on
the GPU, only the scalar routines inhouseare executed on the host. Thus only
"N 1 double values (i.e. the values) are exchanged between host and device
within the inner part (i.e. omitting initialization) of one tridiagonization.
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Once the matrix has been createdsymmtd unpackcan create the matricesT
and Q. The creation of T is straight forward as is only consists of copying the
diagonal values of into an empty matrix, this requires N 1 copy operations.
The important step is the creation ofQ, this was done completely on the GPU
by using Alg. 3 which consists of level 3 routines. No custom kels have been
developed for these functions, only routines from CUBLAS haveeen used. It
would be di cult to create a homogeneous kernel which provies the computa-
tion of a Householder vector and corresponding coe cient.

Testing the implementation of numerical methods can be a dicult task, cancel-
lation can stay undetected for small matrix dimensions. Tisiwas also the case
in this thesis. Using the matrix (Eq. 3.5) cancellation becamevident atN  70.
Verifying the correctness of the implementation was done byomparing the re-
sults with reference implementations, i.e., Matlab and GSLThe results do not
have to be identical as Matlab uses di erent algorithms. Addionally the GPU
uses di erent representations of oating point numbers (g. di erent rounding
and cut-o policies). Thus comparison was done by calculatg the Frobenius
norm SSHBf the di erence matrices‘AgsL matlab ACUDA®-

6.2. Two-Sided Jacobi Method

The two-sided Jacobi method was implemented without the uga of CUBLAS
routines. The reason for this lies in the fact that the involed 2-dimensional
Givens rotations are not suitable (regarding their performnce) for CUBLAS
functions. Our implementation is inspired by the work of [G$0]. The possibly
easiest method to understand the program structure of our ipementation, is by
looking at Figure 6.4. We will omit the details of initializaion here, one might
refer to the source code to see the details. L&t bea™n 2+ "n 2 matrix.
The following explanations will refer to a dimensionality on, i.e., it will seem as
we try to diagonalize an n matrix. The reason for that will be discussed later,
at this point it is su cient to consider A temporarily as an n matrix.

First the matrix V will be settol,, this matrix will be holding our eigenvectors/'.
Additionally a matrix A is being initialized, this matrix will be explained later.
Afterwards the actual algorithm begins his work, 3n 13 Givens rotations
are carried out on the GPU. We will now take a more detailed lookn where
this number of rotations originates from. As described in Chma 2 the cyclic-
row extension works by grouping the rotations in a single sep into so called
subproblems. Each subproblem-set consists $fGivens rotations which can be
executed in parallel. There are exactlyn 1 subproblem-sets in a single sweep.
This translates into Fig. 6.4 as follows.5 rotations are applied on the rows of
A, yet these rotations also need to be applied on the columns &f Obviously
this can not be done simultaneously. One has to wait until alow operations
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symmetric matrix A

ﬂntialize V=I, \

initialize A
Y

apply 3(n — 1)% Givens rotations on the GPU

no apply row rotations on A

ves > host synchronization

apply column rotations
on A and V

Q check off(4) < eps | J

eigenvectors v* eigenvalues \;

Fig. 6.4.: Implementation outline of the two-sided Jacobi ethod

have nished before continuing with the columns. This stepan only be done by
synchronizing all threads on the GPU (e.g. by a thread barmg As described
in Chap. 5, the technique for this is host synchronization. Aus we have 3
applications of 5 Givens rotation for a singe subproblem-set. There ane 1
subproblem-sets, which implies a total of 31 1+3 Givens rotations in a single
sweep.

So far we have described the implementation in a macroscopiew, now we
take closer look on the developed kernels for executing teesotations. Again
a visualization, given by Fig. 6.5, will accompany us. We udecolumn-major
alignment on the device memory. Every thread on the GPU hanel$ a single
column of the matrix, e.g.,ty 1 executesy Givens rotations on columnc, which
consists of values;j; j > n . At this point the question arises about the amount
of threads to be launched and the dimensionality of the griG and the thread
blocks. The answer to this question lies completely in thersicture of the look-
up table LUT for the subproblems. Each column irL,UT represents a Givens
rotation, thus we split the table into segments of length 32chosen to be same
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Ci—1 | T1| T2 Tn—1| Tn|Ci+1

Uk | th+1 trtar

Fig. 6.5.: Threads executing Givens rotations

length as a warp). If the size oLUT is no multiple of 32 we pad the table with
enough additional columns. Each of them containing the nungosn 1 andn 2
in the rst and second row respectively (see Fig. 6.6).

1 3 5% n—1n+1f+++[(n+1
2 4 §) n |n+2--[n+2

Fig. 6.6.: Padded look-up table for subproblem-set 1

This approach allows us to launchiz5 1-dimensional thread blocks of size 32
whose threads execute a homogeneous kerrel (32 5 mod 32 stands for
the amount of padding). The choice for the content of the adtional columns is
motivated by the access onto the matrix data. The kernel doe®ot work on the
matrix A, for the strategy described so far to work, the matriA must be padded
with two additional columns and rows. Thus we work on the matk A given by

’A O 0“
A -0 0 O0—>R"" (6.1)
"0 0 O0°

At this point is should be visible that our additional columrs in LUT represent
dummy rotationson the added rows and columns of.

A naive way of implementation would be to pre-calculate thisook-up table and
store it in device memory. Each thread could then access thpmopriate indices
from global memory and start executing the rotation. Which ssentially, is noth-
ing more than a for-loop withn iterations. Yet, according to [NVI10a] a single
access to global memory takes400 600 clock cycles. Thus this approach would
yield a severe overhead. To overcome this obstacle each #dean compute the
appropriate table elementn-the-y during execution. [GS10] presented a simi-
lar approach, for this thesis a slightly modi ed version haveen developed. First
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it should be pointed out that the method to create a certain doproblem-set is
equivalent to the method depicted in Fig. 6.7.

~ )

Fig. 6.7.: Another approach to create a subproblem-set

The main di erences to Chap. 2 are the counting order and thexed element.
Additionally we start counting at 0. A table as the one in Fig. 67 can be linearly
mapped to the 1-dimensional structure depicted in Fig. 6.8.

— L]

[ ]

Fig. 6.8.: Mapping a subproblem-set onto a 1-dimensionalray

The shifting is needed only for the rstn 1 elements. It can be carried out
by simply calculatingx “n 2¢ mod"n 1e wherex >"1;::;;n 1 is the desired
position in our 1-dimensional structure. Because each looip table is a multiple
of 32, each 1-dimensional mapping will be one as well. Thusckahread can
access the mapping as depicted in Fig. 6.9. The numbers next the arrows
indicate corresponding elements, e.d.2; 5 indicated by the number 3 represent
one single subproblem.

R

(PR A

Fig. 6.9.: Thread accessing a mapped rst lookup-table i.esubproblem-set 1,
example forn 8

To understand the nal formula, one should rst refer to Fig. 6.10, where the
on-the-y computation of the look-up table is visualized. To access aip from
the subproblem-set 2 fon 8, one just has to carry out the depicted calculations.
Only the basic array from Fig. 6.7 is needed.
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Fig. 6.10.: Computing the subproblems for subproblem-set 8

Theorem 6.2.1 (On-the-y calculation of subproblem-sets)
Each subproblemp;;  “i;ke >70;:n 1e2; j >71; i 5e of subproblem-set
| >70;::;;n  1e can be calculated by

_ " 1 1 "'n 2¢mod°n Ile ‘
B €y i 1 1 °n 2¢mod n 1e (6.2)
with the exception of
“j 1o I "n 22 mod n 1e
Po; & ! 01 (6.3)

Both equations in a single kernel need an if-else structurtaus a homogeneous
kernel becomes impossible.
Additionally one might argue that this approach yields no sp&d-up by using coa-
lesced memory access. It would be possible to avoid the foop inside the kernel
and instead use much more threads, i.e., each thread wouldfoem one iteration
of the for-loop approach. This suggestion must be analyzedrefully, rstly it
still would yield the same amount of accesses to the device may. Secondly
only one kind of Givens rotations would bene t from coalesdememory access,
either the row rotations or the column rotations (dependingon how one aligns
the matrix in memory, either in row-major or in column-majororder). Thus only
one half of the algorithm would bene t from coalescing, yetHis is not the major
disadvantage of this approach. The kernel would need a cookstructure, e.g.,
an if-else block, to nalize the computation. Thus in the wost case the execu-
tion speed would be reduced by another half. Another inhererawback is the
subroutine Givens$A;i;k+ (Chap. 3) as it splits up the control ow twice.
Summarized it can be said that our approach allows up to 448 @ins rotations
to be executed in parallel while minimizing the thread divegence. A major bot-
tleneck in this solution is the host synchronization whichantributes a noticeable
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amount to the overall running time.
This bottleneck will become more evident in the extension tthe multi-GPU
version, depicted in Fig. 6.11. In the case of 2 GPUs, one mighandle the

—/ \

{1, 2, 3,4,5 6,7, 8,9, .., n—1}

\\\T%

Fig. 6.11.: Distributing subproblem-sets onto two GPUs

odd numbered subproblem-sets while the other one handlestbven numbered.
Yet the host synchronization from above, has to be extendedto multiple de-

vices. Every GPU needs the results of all the other ones. Theost reasonable
approach would be to either use a common host memory spaceg(ezero-copy
memory access) or copy the result back to the host memory, wantil all devices

have copied their results and then copy the complete data Hamto every device.
Both approaches have bene ts and disadvantages. Using a commhost memory
space allows the handling of very large matrices but slowsetkernel execution
down due to high latencies. The use of a temporary cache on tegle does not
slow the execution down. Yet the matrix size is limited by thdowest memory
capacity of the GPUs involved. Additionally the synchronizaibn procedure be-
comes more complex, as each GPU must copy only speci ¢ rowsdactolumns
back to the host.

The correctness has been veri ed in the same manor as with tigR algorithm.

6.3. Kernel Principal Component Analysis

In this section we will describe our implementation of the GB-enhanced KPCA.
Before describing the complete algorithm we will explain #gamajor improvements
and di erences compared to the standard (i.e. CPU based) KP&L The execution
of the KPCA has been enhanced by the usage of a GPU in multipleays, which
are speci cally:

" creating the Gram matrix on GPU

" performing matrix centering on the GPU
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" reformulating the projection of all data points in a single ratrix multipli-
cation

We will rst take a look on how the Gram matrix was created on tle GPU, a
new kernel has been developed for this. Considering a sepof-dimensional data
points x'; i > p, wherep is a multiple of 32, the strategy is as follows. Every
launched thread computes one single element of the Gram miatr This compu-
tation is basically a simple for-loop withn iterations. In general the assumption
regarding p will not hold, thus we will require some data padding. Befordiving
into the details of this padding, we shall take a look on Fig. .62, which visu-
alizes the concept described so far. The thredd; in block T;.; will compute

11,1

wll. ®
pZ1

Fig. 6.12.: Computing the Gram matrix by a kernel on the GPU

X1

elementK ;.; of the Gram matrix K, the needed data for this consists of the vec-
tor x1 >1. Each thread block has a dimension of 3232, as each thread computes
a single element oK. If p is not a multiple of 32, the described concept has
to be extended as follows. The working space, i.e., where tbemputed values
will be stored, has to be padded accordingly. To avoid controow splits e.g.
if-else segments, the number of input vectors has to be increased as well, Fig.
6.13 shows this approach. It depicts the case where the mema@pace has to
be padded by only 1 unit, thus only one row and one column is aed to K .
Every cell of the memory(-grid) holdingK will be handled by a unique thread,
thus all thread blocks cover this grid without an overlap. Tle thick black line
represents the border between elements Kf and dummy entries in the added
rows/columns. These dummy entries will be discarded aftehé computation has
nished. Their purpose is nothing more than the avoidance odf-else parts within
the kernel. As mentioned before, each thread computes a sigllementK;; by
using the input vectorsx';x!.

Once the matrix has been extended with one row and one columre wrill need
one additional vectorxP 1. The threads at the border of the extended matrix
can then usexP ! to compute the elementK, 1; k"xP %;xl+. Once the gram
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threads computing Xp +1
dummy entries -

—= ol «P+1
threads calculating M X Xp
entries of K / \

xP+1
/ dummy entries '/
Kihn

P

Fig. 6.13.: Padding the device memory according to the dimsion of the thread
blocks, here for the case where only one column and row havesihe
added

matrix has been computed and before solving the SEVP, it mustebcentered.
During implementation it became evident that this centeriig represents a major
bottleneck during the KPCA, as it requires 4 matrix multiplications. Considering
the matrix dimensions encountered in this thesis (up to 60Q0it is unfeasible to
execute these multiplications on the host side (as will be glwn in Chap. 7).
Thus the centering has been transfered to the GPU.

In chapter 2 it was explained how a single vectot >1 is being projected onto the
principal components ' in feature space. This was formulated by a single sum
for each input vector, for this thesis another formulation w&s developed. We will
give a projection formula that projects all desired vectorsnto a set of principal
components, in terms of a single matrix multiplication.

Theorem 6.3.1 (Projecting multiple input vectors).

Letx' >I; | > w be the training set for the KPCA. Furthermore lety! >I; j > n
be the set of vectors to be projected onto the principal compats '; i> m ; m @
w in feature space. The projectionst; j > n are given by

v kKoxtyte kKoxZyle i KOxWiyle «
— k™xty2e kTx2;y2e i KOxWiy2Ze .
- y y y = 15 me W I (6.4)

K*xL;yne Kk™x2;yne i K'xW;yne

The actual implementation precomputes the kernel matrix (e. the matrix with
kernel calls inside) using the same method as for the Gram miat Afterwards
the multiplication is again carried out through the CUBLAS framework. The
described projection method yielded signi cant speed impvements compared
to other implementations (especially Matlab). We will now Bow the complete
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implementation with the most relevant points, for more detds (e.g. initialization
procedures) one should refer to the provided source code.

Algorithm 10 KPCA

Input: Training set “xie;s,
Set of vectors to be projectedy's;. ,
Dimension countm

1: init memory for K, kernel matrix,

eigenvector matrixQ, eigenvalue vector

temporary buer Q

computeK on GPU

compute kernel matrix on GPU

center Gram matrix on GPU

compute eigenvectors and eigenvalues f using the GPU

sort eigenvectors according by their eigenvalues in desderg order
compute projection of yie onto rst m eigenvectors using the GPU

R

The sorting of the eigenvectors is a non critical task regairty the execution
time. Only the eigenvalues have to be sorted, e.g., far data points, w numbers
have to be sorted in descending order. As our experimerasly involve up to
6000 eigenvalues, this sorting will be carried out on the hHoside. Afterwards the
corresponding eigenvectors are sorted by copying them inttee right position in
a temporary bu er Q. From there the sorted vectors will be copied back into the
original matrix Q. This requires at most 2y memcpycalls, which in turn only
occupies a small fragment of the overall execution time (djanalization can take
up to 5 minutes for a 5000 5000 matrix).

One might argue that this copying is not necessary. It wouldlso be possible to
use a simple two dimensional look-up table which connectsalsorted eigenvalues
and the corresponding eigenvectors. Yet we require the eigectors to be aligned
in memory according to their eigenvalues, as we need to perfoan e cient
matrix multiplication.

6.4. k-nearest Neighbors & Linear Discriminant
Analysis

For this thesis only the KNN algorithm has been ported to the GB. The reason
for this is simply that only this algorithm can bene t signi cantly from parallel
computation. The LDA was carried out through Matlab, as its mplementation
utilizes SMP and the algorithm itselfonly involves a single simple matrix inver-
sion. The results from a KPCA have been exported to Matlab andsed there by
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the mentioned routines.
We will now explain our implementation of the KNN algorithm, t can be divided
into two parts:

1. compute the distances of every test point to all training pints and create
a distance matrix D

2. useD to classify all test points according to a given parametek

Let "x's;.,, be the set of training points and’y's;. ,, the set of test points. The
distance matrix D is de ned by

» 98 ylSS x8Sy2SS ;. S8 ym™SS

— S8 y!SS x8Sy?SS i S8 ymSS-

D (6.5)

S8 ylSS x8Sy?SS::: S& ymSS

The computation is carried out in exactly the same way as fohe Gram matrix.
Thus up to 448 elements will be computed in parallel. Consideg this matrix,
getting the k nearest neighbors of a test poiny' is equivalent with sorting the
i-th column of D in ascending order and get the test pointg! corresponding to
the rst k entries. This procedure represents again a candidate for agt side
implementation, as only up tom w distance values need to be sorted. We do
not need to sort any vectors in this case.

The classi cation was carried out on host side, yet it utilies SMP by using the
OpenMP framework. Our implementation classi es up tor given test points
simultaneously, wherer represents the number of available CPUs on the host.
We now summarize the complete algorithm

Algorithm 11 KNN

Input: Labeled Training set™x's;s
Set of unlabeled test vectorSy'e;.
Neighbors countk

init memory for D, temporary bu ers

computeD on GPU

DO IN PARALLEL

sort columns ofD in ascending order

get rst k values and corresponding vectorsi  for each columnj
assign each test poiny' to the class with most elements among
the last k corresponding vectors

7. OD IN PARALLEL
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6.5. Support Vector Machines

The implementation complexity of the underlying algorithns for SVMs is compa-
rable to the task of implementing QR or TSJM. Thus due to reasts of remain-
ing time for this thesis, it became unfeasible to further pwue a GPU enhanced
implementation of SVMs. As a result of this fact, two already eagting SVM
frameworks have been evaluated. These were tBhaarkand the LibSVM library.
Although both frameworks claim to provide SMP support, only ibSVM provides
it for SVM-based classi cation. Experiments with the Sharkibrary yielded very
poor performance for the OvO method (as it doesn't utilize SM in this con-
text). On the other side, LibSVM showed an acceptable perforamce for even
large classi cation problems. Thus it was decided to use L8V/M for evaluating
the OvO SVM classi cation.

Additionally the authors of LibSVM provide a Matlab-interface (in form of mex-
assemblies). For this thesis an interface has been develdpenich provides Mat-
lab with test and training data for the aforementioned LibSVMinterface.

6.6. Boosting

The term boosting refers to a powerful technique which can d¢rease recogni-
tion results by utilizing multiple classi ers (e.g. multiple SVMSs), these classi ers
are also calledbase classi ers [Bis06] introduces boosting algorithms like the
ADA-Boost, yet most of these approaches require a deep modita@n of existing
classi cation methods. For this thesis a new approach has &e developed and
successfully evaluated. We will introduce a committee of riple SVMs, which
utilize a voting system to further increase the recognitiomate of the optimal
SVM (i.e. the SVM, optimal in the sense of de nition 4.4.1, whis has been
determined through a grid search).

Before introducing our approach, we will explore the motiwson behind it. Let
us assume we have found a SVI8, that produces good recognition results.
The term goodrefers to an acceptable average recognition rate (i.e. thetd
mization criteria in our de nition of a template). Sy has been determined by a
grid search, meaning that several SVMs have been analyzedaefing their av-
erage recognition rates. Yet this process may skip SVMs witlogd local results,
l.e., SVMs able to classify only certain patterns with high msults. The following
gedankenexperiment illustrates this problem very diregtl Let us assume we are
classifying power traces of our microcontroller. The optiad SVM S, yields an
average rate of 65%, the instruction type®ADD,MUL and SUB can be recog-
nized with a success rate of 90% each, all other rates are be@0%. Thus the
remaining commands have a very low rate, yet if we are only irtested in the
three instruction types from above, this SVM represents an aeptable choice.
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Let us further assume that the process of ndind,: involved a grid search with
30 vertices, i.e., 30 SVM$;; ::;; S3o have been evaluated. The classi €8, had an
average rate of 48%, yet it showed a local rate of 80% for tA®DWF command.
A similar situation happened for several other of these SVMsThus it may be
wise, not to use onlyS,,; alone for our classi cation task.

We will now explain our boosting approach, yet another new ten must be ex-
plained before that.

De nition 6.6.1  (Confusion matrix).

Let | p be a classi er working onC and T, with C  "Cy;::;;Gye a set of
classes, T ~ | a set of training data, U = | a set of test data. Furthermore it
should hold thaty x >T8!i> p x>G as well asj x>US8li>p x>C.

The matrix Conf is de ned by

v g Ui Ui i gy U
conf = U @l Gl — oo (6.6)
Tl Uy i g Upe

whereU; ~ U represents the set containing only test samples from classthe
functionsg “Uj¢j>, R are de ned through

1
g."U.. i "STXe [Se (67)
l : $JiS(>Uj

Thus the entry Conf;; represents the percentage of how many samples from
classi have been recognized as samples from classt should be noted that

# U U (6.8)
i>p
and that L b
AVvEr-u. 1 minConfi;i (6.9)
and thus
Av”™Ue L 5 Confj; (6.10)
v o 1003 “OM '

Our boost concept can now be introduced. First we do not dis@hany SVM

obtained during the grid search. Every classi er and the coesponding confusion
matrix will be aligned in an sequence to form the aforementi@d committee.
Secondly we need a test set to obtain the confusion matricell these SVMs

will then be used as a new classi er in the following way. An umown test point

x will be presented to all aligned classi ers, each of them Wthen give his opinion
i for the right class. The details of this voting are presenteth Fig. 6.14.
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Fig. 6.14.: A committee of SVMs

Every SVM S, will classify the point x and tell us its opinioni, about the right
class. Once we have all opinions, we need to decide which siles tells the truth.
This will be done by considering the confusion matrix of eacBVM, depending
on its answer to the question after the right class. The entr€onf; ;, will now
be used as a measure for the probability thdttells the truth (as Conf; ., stands
for the recognition rate ofl for this particular classiy).

Yet this approach yields following problem, what if two clasi ers tell the truth
with the same probability? A decision has to be made in that c&, we propose
the following strategy:

" choose the classi el with the highest average rate regarding the corre-
sponding confusion matrixConf,

Additionally we propose another way of nding the right classer in the com-
mittee. For this we lift the decision problem into the 2-dimasional realm. One
dimension is made up of the average recognition rafev,"Ue, with | being the
number of the corresponding SVM, while the other dimension peesents the
recognition rate Conf; ., regarding SVM Is prediction i;. The SVM with the
largest distance to the origin"0; 0e, i.e., the largest euclidean norm, will be cho-
sen. Figure 6.15 visualizes this concept for 4 SVMs, i.e> 4 . The classier S,
will be chosen as it has the largest distance to the origin.

We added both strategies to a template consisting of ormtimal SVM, the cor-
responding results will be given in Chap. 6.

Our boosting concept has been implemented and evaluated pribr SVMs, yet
it can be applied to any array of classi ers (these classi ereven do not need to
be of the same kind). An additional bene t of this approach istie fact, that it
requires no adjustment of any involved classi er. It must bementioned again,
that this technique represents an add-on for a given templat The committee
should be considered only for classes withlaw recognition rate regarding the
template. Considering our previous gedankenexperimente usage of this boost-
ing technique can be indicated through the following situan. The SVM Sy
classi es a pointx as belonging to clas$, yet from Conf,y, we know that this
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Avl (U)

Fig. 6.15.: Two dimensional boosting

is true with a probability of 19%. It would be unwise to trust Sy in this case,
thus one could refer to the committee of multiple SVMs.






7. Results

This chapter presents and discusses the nal results. Whidilave been obtained
by the methods described in Chap. 6. We will rst show the pedrmance of
the numerical algorithms, i.e., the QR and Jacobi algorithm Afterwards the

environment for testing will be described, i.e., the setupfgower traces. The
last section nally presents the recognition rates for vadus instruction types of
our microcontroller.

Some of the plots which will be referenced in this chapter, eébe found in the
appendix. Only the most informative plots have been includkinto this chapter,

i.e., comparison of recognition rates and confusion mates.

7.1. BLAS & LAPACK Benchmark

We begin this section by listing all involved soft- and hardare. The important
hardware specs are as follows

" Intel Core 17 950 3.07Ghz (4 Cores, enabled Hyper-Threadindisabled
Turbo-Boost)

" 24GB DDR3 RAM (1066MHz)
~ X58 Chipset

" 2x GTX470 GPU (each 1.2 GB RAM) using 16x PCle 2.0, these cards nge
used exclusively for computation, i.e., the display imageas provided by a
separate card

The software setup can be summarized by
" Ubuntu 10.10 x64
" GSL 1.14
" Matlab 2009b
" GCC41
" CUDA 3.2

In Chap. 6 it has been mentioned that only problems of a certaisize should be
computed on the GPU. Additionally the claim was made that BLAS3 outines
are good candidates for GPU computation. Fig. A.1 veri es alhese statements
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by showing the computation times for di erent implementatons of the common
matrix multiplication. The upper curve shows the performane of the naive ma-
trix multiplication (i.e. the school method). Our classi cation setup will handle
matrices with a dimensionality up to 5250. It can be seen thahe computation
time would reach up to 200 seconds for a single mutliplicatio if we would stick
with this method. Another option would be to use Matlab, whichprovides a
SMP implementation. The computation time would be reduced®times to 10
seconds. Yet the GPU implementation provided by the CUBLAS likary reduces
the time to at most 2 seconds. Which corresponds to a factor 890 compared to
the naive implementation. One should note that below a dimeonality of 500,
the GPU implementation should be avoided.

Thus if an algorithm can be formulated in terms of BLAS3 routies, a major
performance gain can be expected when execution of the apgmiate segments
is ported to the GPU.

Let's take a look on Fig. A.2, which shows the computation tinee for two im-
plementations of the QR algorithm. The ordinary implementton provided by
the GSL library needs twice the time compared to our GPU implaentation. As
described before, we have only ported the tridiagonalizat to the GPU, which
is rich in BLAS3 methods. Thus again, one can see that our imph@ntation
yields a gain only for matrices with a dimensionality above55.

Fig. A.3 shows execution times of three implementations of ¢hTSIM. As GSL
provides no implementation of this method, a correspondingatlab version rep-
resents the naive (host) implementation. The rst observabn would be that our
implementation is up to 5 times faster than the ordinary Mathb version. Yet this
only holds if we use the GPU memory during computation. The ze-copy ver-
sion of our implementation yields a tremendous slow-down. A this a zero-copy
multi-GPU version was no longer pursued. We implemented thaulti-GPU ver-
sion without the use of zero-copy memory access. The synahmation between
all involved GPUs has been done in the following way. After all BUs have
nished their computation, each GPU copies all its procesderows or columns
to a memory block on host side. Once all GPUs have nished thisrgcess, the
complete memory block is copied to every GPU. Which then can g on with
the next computation step. Theoretically the execution sped should linearly
increase with each additional GPU. Yet the required synchraration yields a
serious slow-down. We used two GPUs for the benchmark depidtan Fig. A.3.
The aforementioned synchronization procedure slows thegalithm down to host
level, i.e., all bene ts of our GPU implementation disappea
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7.2. Classi cation Setup

The power traces were recorded with aecroy SDA 735Ziscope, at a sampling
rate of 1GHz and a shunt of 27 . The involved microcontroller vas aPIC16F54,
which provides 25 one-cycle instruction types, each with up two operands. Our
classi cation experiments will use only these types. The aces for each type had
been recorded in the following way. Let us take thELRF instruction type as an
example, only one operand is required in this case. The micamtroller executed
a test series with following structure

1. CLRF( randomizedvalue ); randomizedinstruction( randomized value );

2. CLRF( randomizedvalue ); randomizedinstruction( randomizedvalue );

3.
For each element in this series, the corresponding powerd¢ehad been recorded.
We will now describe the structure of training- and test-sat In the following
experiments each set consist of 6250 traces, for each instron type 200. Fol-
lowing this method, every type has the same amount of traces our sets. These
200 traces have been chosen in the following way. Again, we I§lexplain it by

using the CLRF instruction type. The corresponding 200 traces can be dedxd
by the following series

1. CLRF( randomized.value ); instruction;( randomizedvalue );

8. CLRF( randomized.value ); instruction;( randomizedvalue );
9. CLRF( randomized.value ); instruction,( randomizedvalue );

16. CLRF( randomizedvalue ); instruction,( randomizedvalue );
193. CLRF( randomizedvalue ); instructionys( randomizedvalue );

200. CLRF( randomizedvalue ); instructionys( randomizedvalue );

Where instruction; is an element of the enumerated 25 instructions, i.e., inskction;7
stands for instruction type 17. In that way the 200 traces has chosen for every

type.
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7.3. Classi cation Results

The sets in the following sections have been chosen as dématiabove. The sets
within each classi cation are disjoint, e.g., for the SVM clasi cation the test-
and training-set have no common traces.

7.3.1. Kernel k-nearest Neighbors

First experiments with sigmoid and polynomial kernels yieled very low recogni-
tion rates. Thus they have not been pursued any further. Ourx@eriments base
on Gaussian kernels. The Gram matriXX was created using a training set of
6250 traces. Afterwards this matrix was used for KPCA as desbed in chapter
2. Two test-setsU;; U, have been created, the traces ib); were projected onto
the principal components oK . While the elements inU, were used as unknown
traces in our classi cation task. Figure A.4 shows the best avage recognition
rate. This result was obtained by projecting onto the rst 5@0 principal com-
ponents and considering only 1 neighbor. One can see that trexognition rate
peaks at 46.4% for 2 3. The experiment was repeated with the same sets for
the KPCA using the TSJM.

No di erences between both algorithms have been found. In ath words, the
TSJIM vyielded no benet during the principal component analgis. The confu-
sion matrices are also identical, thus we only list one of thein table 7.1
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Table 7.1.: Confusion matrix for kernel k-nearest neighbsr
| | addwf  andiw  andwf bef  bsf  btfss  cf  crw  comf  decf  decfsz incf |
addwf 22 0 2 1 5 6 3 0,5 0 2 2,5 25
andiw 2 59,5 1,5 0 6,5 0,5 0 0 0 0,5 1 10,5
andwf 3,5 1 51 17,5 1,5 4,5 55 0 1 1 0 2,5
bef 1,5 0 10 68 0,5 0,5 0 0 0 2,5 1,5 0
bsf 2 2 0,5 0,5 48 1 2,5 0,5 0 0,5 0 4
btfss 3 0 3,5 1 0,5 71 0 0 0 2 5 15
clrf 8 1 1 0 1,5 0,5 41 0,5 2 1 0 15
clrw 0 0 1 0,5 0 0 2 84,5 0,5 0,5 0 0
comf 0 0 3,5 0 0 0 4,5 0,5 68,5 17,5 3 15
decf 2 1 2,5 2,5 0,5 6 0 0 10,5 43,5 21 25
decfsz 1 1,5 15 1,5 0 14 0,5 0 6,5 22,5 40 2
incf 2 55 4,5 0 13 35 4,5 0,5 2 1 2,5 275
incfsz 2 55 2 0 9,5 2 2 0 1 2 3 16
iorlw 1 0,5 15 0,5 3 1 1 0 0 0 0 0
iorwf 6 0 35 35 15 0,5 25 2,5 0 0,5 0 1
movf 2,5 0,5 1,5 1 15 0 1,5 1 0 0 0 0,5
moviw 1 0 0 0 1 0 1 0 0 0 0 0
movwf 6,5 2 15 0,5 15 0 18 3,5 1 0 0 6
nop 0 0 0 0 0 0 0 7,5 0 0 0 0
rlf 6,5 3 0 0 4,5 0 1 15 1 0 0 1,5
rrf 4 5 0 0 0,5 0 2 2 15 1 0,5 3
subwf 1 0 0 75 0 0,5 0 0 0 4,5 6 0
swapf 4,5 3,5 0 0 2,5 0 0,5 15 2,5 0 1 0,5
xorlw 2 0,5 0,5 0 55 0 0 0 0 0 0 0,5
xorwf 10,5 0 0,5 2 2 2 3,5 15 0 0 0 15
\ incfsz iorlw iorwf movf moviw movwf nop rlf rrf subwf swapf xor Iw xorwf \
addwf 3 4 7,5 3,5 0,5 2,5 0 9 55 0,5 6,5 2 9
andlw 6 0,5 0,5 0 0,5 2,5 0 15 3 0 2,5 0,5 0,5
andwf 0,5 15 2 15 15 0,5 0 1 0,5 0 0,5 0 15
bef 0 0,5 4,5 2,5 0,5 0 0 0 0 6 0 0 15
bsf 13 6 2 1 3 0 0 2,5 0,5 0 0 7 35
btfss 0,5 2,5 1 1 0,5 0 15 0 1 1 0 35
cirf 0,5 0,5 0,5 4 0 16,5 0 25 8 0 15 0 8
clrw 0 0 1,5 1 0 5 0 0 0,5 0 .5 0 2,5
comf 0,5 0 0 0 0 0 0 0,5 0 0 0 0 0
decf 1 0 2 0,5 0 0 0 0 1 2,5 0 0 1
decfsz 0,5 0 3 15 0 0 0 0,5 0 3 0 0 0,5
incf 12,5 1 1 1,5 0,5 4,5 0 0,5 2 0 3 1 6
incfsz 31 3,5 1 0,5 0 1 0 4,5 3 0 4 55 1
iorlw 25 44,5 3 2 17 0,5 0,5 1,5 0,5 0 1,5 15,5 2,5
iorwf 0,5 2,5 27,5 18,5 0,5 3 0 2,5 4 4 3 0,5 12
movf 0 4 16 31,5 75 3 0 3 9,5 0,5 6,5 0 8,5
moviw 0 16 15 4,5 64 0,5 1 1 3 0 1 3,5 1
movwf 0,5 1 5 2,5 0,5 30,5 0 3 8 0 3,5 0 5
nop 0 0 0 0 0 0 92,5 0 0 0 0 0 0
rlf 2,5 1 1 4 15 1,5 0 20,5 20 0 22 2 5
rrf 3,5 0,5 2,5 2,5 0,5 3,5 0 21 19,5 0 17,5 0,5 9
subwf 0 0 4,5 0 0 0 0 0 0 74,5 0 0 15
swapf 4,5 0,5 2,5 3,5 15 15 0 17 17,5 0,5 26 1 75
xorlw 5 21 1 1 15 0 0,5 15 15 0 15 56,5 0
xorwf 1 25 12 10,5 3 15 0 10,5 9 1 75 0 18
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7.3.2. Kernel Linear Discriminant Analysis

Also for the kernelized version of LDA, a training set was creatl which was used
for KPCA. The LDA utilized a training- and test-set U;; U,. respectively. The
traces in U; have been projected onto the principal components and useor f
training within the LDA. The data in U, was again used as unknown traces. Fig.
A.5 shows the best results, which have been obtained by the protion onto the
rst 500 principal components.

The highest average recognition rate of 5% was obtained for 23, The
confusion matrix for these parameters is listed in Table 7.5tudying this table,
one can see that thé&NOP instruction type can be recognized with a probability of
100%. Additionally the CLRW instruction type can be indenti ed with a success
rate of 97%.
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Table 7.2.: Confusion matrix for kernel LDA

| addwf

andlw

andwf

bef bsf btfss clrf clrw comf decf decfsz incf
addwf 235 0 15 2,5 8 1 25 0 0 0,5 2 4
andlw 0 77,5 2 0 55 0 0,5 0 0 0 0,5 2,5
andwf 4,5 0 45,5 26 0 0,5 3 0 0,5 1 1 4,5
bcef 1,5 0 20 60,5 1 0,5 0 0 0 2,5 1,5 0,5
bsf 7 1 0,5 0,5 42 0 1,5 0 0 0 0 4,5
btfss 5 0 2,5 2,5 0,5 72 0 0 0 0 1 2
clrf 6 0 1 0 2 0 41,5 0 2,5 0 0 4
clrw 0 0 0 0 0 0 0,5 97,5 0 0 0 0
comf 1 0,5 3 0 0 0 8,5 0 57 17 75 2,5
decf 0 0 15 0 0 0,5 0 0 9,5 55,5 26 3
decfsz 0,5 0,5 0 1 0 2 0 0 7 21,5 62,5 3
incf 4,5 4 1 0 12 1 35 0 2,5 0 15 345
incfsz 4 3,5 0,5 0 14 1 1 0 0 0 15 14
iorlw 2,5 0 1 15 2 0,5 0 0 0 0 0 0
iorwf 10 0 3 4 0,5 0 2 1 0 0 1 2
movf 4,5 0 4,5 0,5 0 0 4 0 0 0 0 1
moviw 0 0 0 0 0,5 0 0,5 0 0 0 0 0
movwf 2,5 1 1,5 0 0,5 0 20,5 1,5 0,5 0 0 1,5
nop 0 0 0 0 0 0 0 0 0 0 0 0
rIf 7,5 2 1 0 6,5 0 0 0 1 0 0 2,5
rrf 5 0,5 0,5 0 2,5 0 1,5 0 0,5 0 0 5
subwf 0 0 0 1 0 0 0 0 0 7,5 4,5 0
swapf 3 2,5 0 0 2 0 1 0 0,5 0,5 0,5 1,5
xorlw 0,5 0 0 0 1,5 0 0 0 0 0 0 0
xorwf 9,5 0 1 3 0 0,5 3,5 0 0 0 0 2,5
\ incfsz iorlw iorwf movf moviw movwf nop rlf rrf subwf swapf xor Iw xorwf \
addwf 1,5 1,5 75 3 0 0 0 11,5 55 0 7 0,5 16,5
andlw 1 15 1 0,5 0 15 0 0,5 1 0 2 0 2,5
andwf 0 0,5 6,5 0,5 0 3 0 1 0 0 0 0 2
bef 0,5 0 4,5 3 0 0,5 0 0,5 0 0 0,5 0 2,5
bsf 11 4 2,5 2,5 0 1 0 2 2,5 0 4,5 5 8
btfss 0,5 3 15 1 1 0 0 1 1 0 1 0,5 4
clrf 0 0,5 5 3 0 20,5 0 55 4,5 0 0 0 4
clrw 0 0 0 0,5 0 15 0 0 0 0 0 0 0
comf 0 0 1 0 0 15 0 0 0 0 0 0 0,5
decf 0 0 1 0,5 0 0 0 0 0,5 15 0,5 0 0
decfsz 15 0 0 0 0 0 0 0 0 0,5 0 0 0
incf 12,5 0 5 15 1 3 0 1 2,5 0 1 0,5 7,5
incfsz 43,5 25 25 1 0 0 0 0,5 15 0 35 3 25
iorlw 15 2 1 0,5 13,5 0 0 1 1 0 1 20,5 0,5
iorwf 0,5 0 28,5 25 0,5 5 0 1,5 1,5 1 2 0 11
movf 0,5 1 16,5 40,5 1,5 6 0 6,5 2 0,5 2,5 0 8
moviw 0 18 0 0,5 71 0,5 0 2 3 0 1 1 2
movwf 0,5 0 7 1 0 48,5 0 2,5 3,5 0 1 0 6,5
nop 0 0 0 0 0 0 100 0 0 0 0 0 0
rif 3,5 0 3,5 4 0,5 0,5 0 27 16 0 15 0 9,5
rrf 3 1 3 2,5 0 3 0 21,5 24 0 16 0 10,5
subwf 0 0 0 0 0 0 0 0 0 87 0 0 0
swapf 55 0,5 1 2 0,5 0 0 19,5 18 0 32 2 75
xorlw 2,5 17,5 0 0 2,5 0 0 1 15 0 1 72 0
xorwf 0 0,5 11 13 0,5 35 0 14,5 10,5 0 7 0 19,5




84 Results

7.3.3. Support Vector Machines

The SVM approach only involves two sets, a training-set and a test-setU.
Also in this case Gaussian kernels yielded the highest avegagecognition rates.
Polynomial kernels peaked around 14% and sigmoid kernels4®#. Thus a grid
search was executed fo€ and , the results are depicted in Fig. A.6. The
maximal recognition rate was further increased to 64% with the use of 25
and C 2% This result was also the motivation for developing and apping the
boosting technique onto the SVM approach. A look on the cornesnding confu-
sion matrix in Table 7.3, shows that one can now classify theLRW instruction
type with a probyhbility of 100%. Compared to the LDA approachthe rate for the
NOP command was slightly reduced to 92%. Yet this is a negligible descrease.
Allthough the average rate peaks at only 64%, the corresponding SVM enables
us to classify 4 instruction types with at least 90% certaint
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Table 7.3.: Results for a SVM with a Gaussian kernel
| | addwf  andiw  andwf bef  bsf  btfss crf cirw  comf  decf  decfsz incf |
addwf 44,4 0 1,6 2,4 2,4 1,6 0,4 0,8 0 0 4,8 2,8
andlw 0 92 0,8 0 0,8 0 0 0 0 0 0 0,4
andwf 3,2 0,4 73,2 7,2 0 0,4 1,2 0 3,2 1,2 0,4 4
bcef 0,4 0 4,8 85,2 0 1,2 0 0 0 2,8 2 0
bsf 2,4 1,6 0 1,2 68 0 0 0 0 0 0 3,6
btfss 3,6 0 2,4 2,4 0,4 82 0 0 0 1,6 0,4 2,4
clrf 52 0 1,6 0 0,8 0 48,8 0,4 1,6 0 0 1,6
clrw 0 0 0 0 0 0 0 100 0 0 0 0
comf 0 0 2,4 0 0 0 6,4 0 75,6 9,2 2,8 0
decf 0 0,4 1,2 0 0 0,8 0 0 20,8 56,4 16,4 1,2
decfsz 1,6 0,4 1,2 0 0 3,2 0 0 8,4 8,8 69,2 4
incf 2 6 4,8 0 8,8 0 3,2 0 2,8 1,6 2 47,6
incfsz 2,8 2,8 0 0 16 0,4 0,8 0 1,2 0 2,4 7,2
iorlw 6,8 0 0,4 0,8 0 16 0 0 0 0 0 0
iorwf 8 0 2,4 4 0 0 2,4 0,8 0 0,8 2,4 0,4
movf 4 0 2,4 1,6 0 0 2,4 1.2 0 0 0,8 0
moviw 0,8 0 0 0,4 0 1,6 0 0 0 0 0 0
movwf 3,2 12 3,2 0 0,8 0 21,2 3,2 0,4 0 0 0,4
nop 0 0 0 0 0 0 0 0,8 0 0 0 0
rIf 8,8 2,4 0 0 2 0,4 0 0 0,8 0,4 0,8 1,6
rrf 52 3,6 0 0 1,2 0 0,4 1,2 1,6 0,4 0,4 4,4
subwf 0 0 0 2,8 0 0 0 0 0 4,8 0,8 0
swapf 8 2 0 0 1,6 0 0 0 1,6 0,4 0,8 1,6
xorlw 2 0 0 0 1,2 0 0 0 0 0 0 0
xorwf 17,2 0 2 2 08 04 1,6 1,2 0 0,8 1,6 2
| | incfsz jorlw  iorwf  movf  moviw  movwf nop rlf rmf subwf  swapf  xor w  xorwf |
addwf 1,2 2,4 4 2,4 0 0,8 0 6,4 4,4 0,4 4 0,4 12,4
andlw 1,2 0 0 0,8 0,4 1,2 0 0,4 1,2 0 0 0 0,8
andwf 0 0 2,4 0,8 0 2 0 0 0 0 0 0 0,4
bef 0 0 0,8 0,4 0 0 0 0 0 2,4 0 0 0
bsf 8,4 3,2 1,6 3,2 0 1,2 0 0,8 0 0 1,2 3,2 0,4
btfss 1,2 0,8 1,2 0,4 0,4 0 0 0 0 0 0 0,4 0,4
cirf 0 0 0 6,8 0 23,6 0 0,8 4,8 0 0,4 0 3,6
clrw 0 0 0 0 0 0 0 0 0 0 0 0 0
comf 0 0 0 0 0 3,6 0 0 0 0 0 0 0
decf 0 0 0,8 0 0 0 0 0 0 1,6 0 0 0,4
decfsz 0 0 0,8 0 0 0 0 0,4 0 2 0 0 0
incf 13,6 0 0 0 0 2 0 0,8 2 0 0,4 0 2,4
incfsz 57,2 2 0 0 0 0 0 2 0,8 0 0 3,2 1,2
iorlw 2 80,4 0 0 6,4 0 0 0,8 0,4 0 0,4 0 0
iorwf 0 2 36 20 1,6 2,8 0 1,6 4 2 2,8 0 6
movf 0 1,2 18,8 47,2 2,4 1,2 0 2 7,2 0,8 2 0 4,8
moviw 0 8,8 0 1,2 85,6 0 0 0,4 0,4 0 0,4 0 0,4
movwf 0 0 0,8 8 0 54,4 0 0,4 0,8 0 0 0 2
nop 0 0 0 0 0 0 99,2 0 0 0 0 0 0
rlf 2,4 0 0,4 3,2 0,4 0,4 0 28,8 22,8 0 22 0 2,4
rrf 2,4 0 0,4 52 0,4 0 0 18,4 33,2 0 16 0 5,6
subwf 0 0 0 0 0 0 0 0 0 91,6 0 0 0
swapf 52 0,4 0,8 1,6 0,8 0 0 20,8 14,8 0 38,4 0 1,2
xorlw 2,4 1,2 0 0 0 0 0 1,6 0,4 0 2,4 88,8 0
xorwf 0 0,4 8 9,6 2 2 0 8,4 17,2 0,4 3,2 0 19,2
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7.3.4. Comparison

We conclude this chapter with a comparison of all three classs. Fig. 7.1
shows the average recognition rates of the previously mesied KKNN, LDA
and SVM classier. The common parameter, on the x-axis, is thexponent
of the sigma rangeduring the grid search. In other words, the grid search
sampled the range 2 4;210 of via 2 4;2 3;2 2;:::;;2%0, The x-axis shows the
corresponding exponent of the base 2.

One can see that the KKNN and KLDA results are very similar, butonly for
higher values of . For lower values, the KLDA shows improvements of up to
10%. This indicates that the traces could be normally distbuted in the feature
space.

Regarding the best average recognition rate, the SVM apprdashows the best
results. As it improves the highest KLDA rate by nearly 10%.
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7.3.5. Boosting

We will now take a look on the results after applying the boostg method onto
the SVMs from the previous section. Fig. A.7 shows the averagecognition rate
of a SVM committee with the one dimensional decision proces8y studying
Fig. A.7 one can see that the success rate is dramatically rexhd for several
instructions, e.g., the committee has a chance of 0% to recize the ADDWF
instruction type. Yet the chance for theDECFSZ is increased by more than 20%
from 692% to 95%. This enables us to nd another instruction type wh almost
perfect certainty.

Fig. A.8 shows the boosting results for the 2-dimensional dsion process. This
method boosts the rate for theBCF type from 852% to 91%. Regarding the
'COMF' type, the rate has been increased from 76% to 90%. Additionally
several other types are boosted by a small amount. Thus tlaswersof the best
SVM, i.e., the one presented in the previous section, shouldtrbe considered for
the instruction types BCF and COMF. Instead the committee should be asked
for its opinion. Either it veri es the SVMs answer or it falsi es it. Additionally
classi cation should be carried out in parallel by the comntiee and the best
SVM. This approach enables one to classify 8 instruction tygewith at least 90%
success rate.



8. Conclusion

The goal of this thesis was to evaluate the usage of kernelseal methods for
the classi cation of power traces. Agoodclassi cation method/result would give
rise to a variety of side channel attacks, e.g., a disassembfor recorded (i.e.
unknown) power traces. It was uncertain if kernel methods wid outperform
the rst results of [Weg09], who used a Markov-chain approac Additionally the
usage of kernel methods always yields a high computationabe. Thus two ma-
jor problems had been addressed with this thesis: nding a gable kernel-based
method for classi cation and an e cient implementation.

As this thesis represents the rst approach on this eld, i.e.kernel methods for
power trace classi cation, there was no last point to startrom. Thus the decision
was made to start with the most simple methods available, ini@ment them as
e cient as possible (with respect to the available time) andevaluate their results.
The rst method of choice was, as always in applied statistad learning theory,
the principal component analysis. Yet in our context its mai purpose was not
the dimensionality reduction, it was the extraction of goodeatures. In other
words, the creation of a better description for power tracesMe have shown that
a kernelized PCA (i.e. KPCA) in combination with LDA, yields results compa-
rable to the Markov-chain approach.

There was also no prior knowledge about the appropriate kexhchoice. Thus
we evaluated the most popular types of kernel functions. Gasian kernels have
yielded superior results compared to other kernel types.ei, sigmoid or poly-
nomial. The results from KNN classi cation suggest that the KN approach
should not be considered for power trace classi cation atlalAdditionally it has
been shown that the assumption of a Gaussian distribution ifeature space is
appropriate.

Before looking on support vector machines we shall discusgete ciency of our
implementations. All implementations showed a signi cant bne t through the
use of a GPU. Yet it has been shown, that the use of the GPU shoulik re-
stricted to problems above a certain size. Our hope that the SIM would yield
better recognition rates, as it has better numerical propées, was disproved. In
general, the QR algorithm has shown to be considerably fasthan the TSIM.
We have shown that its speed can be doubled by the use of a hybalgorithm.
Both algorithms address the SEVP within KPCA, yet there are otler parts of
KPCA which also benet greatly from the use of a GPU. The projetton onto
the principal components and the creation, as well as the dening of the Gram
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matrix, have shown signi cant improvements regarding theiexecution speed.
The GPU port of the KNN algorithm also showed a major increase iexecution
speed. Additionally the LDA could be further accelerated. B speed could be
further improved by porting not the matrix inversion to the GPU, but by carry-
ing out the actual classi cation in parallel.

Support vector machines represent one of the most powerfuethods on the eld
of kernel-based methods. Yet they also involve a high comm@tional complexity.
We have evaluated the use of a speci c SVM type, the OvO SVMs. Due rea-
sons of time, considering the algorithmic complexity of a GP port, we have used
an existing implementation. Yet the algorithms behind the 8M classi cation
contain segments which are good candidates for a GPU port.

The use of SVMs yielded further improved results, outperforimg even the Markov-
chain approach in terms of average recognition rates. Mogted by these results
and the concept of the grid search, a new boosting techniquasweveloped. The
main goal of our boosting technique was not to increase theexage recognition
rate, but to increase the recognition rate for single instmtion types. The com-
putational e ort of our boosting technique is pretty much nm-existing, as we
only need to keep the SVMs from a concluded grid search. Yet tihesults have
shown that this approach yields satisfying results, i.e.,dbsting a small amount
of instructions beyond the 90% barrier.

The perfect classi er would yield an average recognition ta of 100%, i.e., 100%
for each class. The results of this thesis indicate that thigoal can not be achieved
by a single kernel-based classi er, e.g., a single SVM or LDA. ¢ide channel at-
tack on a microcontroller requires a template, which is nothg more than a setup
of trained classi ers. These classi ers do not need to be ofi¢ same kind. Our
results have shown that a SVM in combination with the aforemeioned boosting
methods can yield a major benet for a side channel attack. Ag provides us
with more instruction types which we can recognize with nebrperfect certainty,
l.e., above 90%.

Thus one may speculate, with good reasons, that techniqudsel the ADA-Boost
could further increase the amount of recognizable instruon types. A choice of
di erent kernel functions may also improve the results, as &l as a di erent setup
of classi ers, i.e., a di erent template.

We would like to end our conclusion with a sentence from [S§Q®otivated by
the work of [DW96], which ts the problems encountered durig this thesis pretty
well.

...there is no free lunch in learning and there is no free luman
kernel choice...
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