
Practical Evaluation of DPA Countermeasures on
Reconfigurable Hardware

Amir Moradi, Oliver Mischke, and Christof Paar Fellow Member, IEEE
Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

{moradi, mischke, cpaar}@crypto.rub.de

Abstract—In CHES 2010 a correlation-based power analysis
collision attack has been introduced which is supposed to exploit
any first-order leakage of cryptographic devices. This work
examines the effectiveness of the well-known DPA countermea-
sures versus the correlation collision attack. The considered
countermeasures include masking, shuffling, and noise addition,
when applied in hardware. Practical evaluations, which all have
been performed using power traces measured from an FPGA
board, show an increase in the number of required traces, e.g.
from 10,000 to 1,500,000, when combining different counter-
measures. This study allows for a fair comparison between the
hardware countermeasures and helps identifying an appropriate
key lifetime.

I. INTRODUCTION

Physical attacks have become one of the major challenges
that designers of cryptographic hardware are concerned about.
For example, power analysis attacks, namely DPA [10],
can easily break security features of unprotected implemen-
tations [7]. During the last years several countermeasure
schemes, e.g., [9], [13], [17], in different levels of abstrac-
tion have been proposed. On the other hand, the research
community has put considerable efforts into either improving
attack methods or defeating the countermeasures, e.g., [8],
[11], [16]. One of the attack schemes is known as side-
channel collision attack [15] which mainly aims at detecting
two identical intermediate values by means of comparing their
corresponding side-channel leakages. This family of attacks
which mostly focused on software implementations, e.g., [3],
seem inefficient in the presence of randomizing-like counter-
measures. However, a recent work [12] (so-called correlation
collision attack) gets the benefit of correlation attacks to
efficiently detect the collisions and overcome countermeasures
in which even a small first-order leakage still remains.

The target device of [12] was an 8-bit serialized masked
implementation of the AES computing one S-box per clock
cycle which provides a suitable situation for a collision attack.
A question may arise on the efficiency of such an attack having
different architectures in addition to different countermeasures.
Although some notes about a 32-bit architecture have been
given by [12], it seems necessary to have a comprehensive
study on the influence of different randomizing and noise-
additive countermeasures. Two different architectures are con-
sidered in this paper. The first one, which has a 32-bit data
path, in contrary to the architecture of [12] does not employ
any shift register and implements four S-box instances. Both
masking and shuffling schemes are the options which can

be enabled in this architecture. The second architecture is
based on the unrolling scheme, proposed in [2], as a DPA
countermeasure. Using this approach, we are able to execute
a whole AES encryption in 10, 5, 4, and 3 clock cycles.

We investigate the efficiency of the correlation collision
attack when masking, shuffling, unrolling, and their possible
combinations are enabled in our target architectures. The
practical evaluations are performed using power consumption
traces measured from the same platform as in [12], i.e., a
Virtex-II Pro FPGA. The result of these investigations can be
summarized as: non of the previously mentioned countermea-
sures can perfectly provide resistance against the considered
attack. The reasons, which are well-known to the community,
are that (i) implementing masking in hardware still leads
to a kind of first-order leakage caused by glitches in the
circuit that is detectable by our considered attack, (ii) shuffling
which does randomization in the time domain is also defeated
by increasing the number of traces or using a “windowing”
scheme, and (iii) unrolling, which seems to have the most
effect on collision-like attacks, adds noise to the measurements
and is overcome by averaging, which is done inherently by
the correlation collision attack. However, enabling each (or a
combination) of these countermeasures leads to an increase
in the number of required traces. Depending on the target
application this can be considered as an important parameter
helping to define the key life time of the device under
evaluation.

The remainder of this article is organized as follows: Sec-
tion II provides a short description of the correlation collision
attack. The different implemented designs and countermea-
sures are presented in Section III. The evaluation results of
the attack on the 32-bit architecture employing masking and
shuffling are shown in Section IV, while the results of the
attack on the unrolled architectures are depicted in Section V.
A conclusion is finally given in Section VI.

II. CORRELATION COLLISION POWER ANALYSIS

The correlation collision attack has been introduced in [12].
In contrary to classical power analysis attacks which need
to employ a hypothetical power model, e.g., in CPA, or a
distinguisher, e.g., in MIA, the correlation collision attack
needs neither a hypothesis for the power model nor an offline
profiling phase. Also, unlike other collision attacks, it works
well against certain masked implementations which still have
some kind of first order leakage.

Similar to other collision attacks, it recovers the differences
between the parts of the secrets, e.g., the xor between the
key bytes in the case of AES, which finally allows an easy
key recovery. Since the big combinational circuits, e.g., AES
S-boxes, are usually shared in the computation of a cipher
round because of area constrains, the collision attacks can
compare the side-channel leakage of the same instance of the
circuit in two different instances of time. Due to the bijectivity
of the AES S-box, output collisions, i.e., two different S-
box computations in time t1 and t2 taking the same value,
require input collisions. Means, ∆ = i1 ⊕ i2 = k1 ⊕ k2 when
Sbox(i1 ⊕ k1) = Sbox(i2 ⊕ k2), which is known as linear
collision attack on AES [3]. The advantage of the correlation
collision attack in comparison to the other collision attacks is
that it tries to detect the case when maximum collisions occur
selecting the correct ∆.

In order to perform the correlation collision attack the power
values corresponding to time t1 are sorted based on the input
byte value i1 such that all traces where i1 = α are summed
and averaged to an average power consumption M1(α). Hence,
due to the 256 possible values that α can take for AES,
we get 256 different M1(α). Repeating the same procedure
for input byte value i2 on power values at time t2 leads to
256 different M2(α). The attack now assumes that the power
consumption of the S-box computation for two different bytes
at t1 and t2 has the same leakage if the same values are
processed. For a known key difference ∆ = k1 ⊕ k2, the
S-box inputs are the same if i1 = i2 ⊕ ∆, and hence the
average power consumptions M1(α) ≈M2(α⊕∆) should be
highly similar. Such a similarity can be detected computing
the correlation between all possible (M1,M2)-pairs for all
possible key differences ∆. The correlation for a correct key
difference ∆ is very high, as each (M1,M2)-pair is a direct
collision, while for false ∆’s the correlation is low as unrelated
computations are correlated. Repeating the same scheme for
different S-box computations corresponding to different input
byte values recovers sufficient ∆’s to reveal the complete
secret.

Since this attack compares the power consumption charac-
teristics of two combinational circuits, as illustrated in [12], the
best result is achieved by comparing the power consumption
of one instance of the target combinational circuit, e.g., an
S-box, in different clock cycles. Therefore, the best target
for this attack is when only one instance of the S-box is
implemented and shared in all S-box computations. If there
are more instances of the S-box, e.g., a 32-bit architecture
where four instances of the S-box are implemented and four
S-box computations are performed in a clock cycle, the attack
should compare the power consumption of each instance of
the S-box in different clock cycles. If the architecture does
not share any S-box for a round computation, and comparing
the leakages of the same instance of the circuit in different
clock cycles is not possible any more, the effectiveness of
such an attack depends strongly on the similarity of power
consumption characteristics of different instances of the S-box
whose leakages are compared.

III. ARCHITECTURES AND MEASUREMENT SETUP

This section gives an overview of the architectures used
to evaluate the countermeasures, and provides characteristics
of our implementation platform and the setup used for side-
channel measurements.

A. 32-bit Architecture

The objective by choosing a 32-bit architecture was to use a
real-world scenario during our measurements. While choosing
an 8-bit architecture would be the best choice from an attackers
point-of-view because of the reduced amount of noise and the
option to observe each processed byte independently, selecting
a 32-bit architecture provides a good compromise between size
and throughput while still enabling us to use countermeasures
like shuffling.

The 32-bit architecture in this context means that all module
interconnections are using a 32-bit datapath including the out-
side ports. Module internals are not bound to this restriction,
so the ShiftRows transformation and the key scheduling are
performed in a single clock cycle using an internal 128-bit
datapath.

The complete datapath of the AES engine excluding the key
schedule and key registers are masked. Similarly to the scheme
used in [12], we apply the additively masked AES S-box by
Canright and Batina [5] that uses a tower-field approach [14]
to implement the inversion in GF (22). Each S-box operation
needs two mask bytes, one for the input masking and one
to mask the output byte. These mask values are independent
of each other, and are generated by a PRNG with uniform
distribution. The general order of mask switches is as follows:
in the beginning of an encryption each input byte is masked
by the corresponding input mask (let us call it m for one input
byte)1. While passing trough the inversion part of the S-box
the input mask is replaced by the output mask n. This process
is reversed by the masked MixColumns module while in the
last round, where no MixColumns operation is performed, the
S-box output mask n is removed after the final AddRoundkey
operation, and the final result of the AES operation is stored
unmasked in the state register. An overview of this architecture
is depicted in Fig. 1

Since the S-boxes are shared between the normal data
operation and the key schedule, and four instances of the S-
box are implemented in our target architecture, each round
of the AES needs five clock cycles. During the first clock
cycle the S-boxes are used by the key schedule unit. Since
the key schedule is not masked, the input and output masks
of the S-boxes are set to all zero by means of AND gates.
Simultaneously, while the S-boxes are utilized by the key
schedule, the ShiftRows transformation is performed both
on the data state and the mask m registers. This is nec-
essary because the data state is masked by the m masks
which therefore have to be transformed as well to keep the
accordance between the mask bytes and the data state. In

1No mask reuse is applied in a computation of a cipher round; two 128-bit
masks are required for each encryption or decryption run.

2

Data

AddRoundKey

Add Mask m

State

Registers

Mask m

Registers

ShiftRows

Key

Registers

Masked

MixColumns

AddRoundKey

Remove Mask n

Final Round

Final Round

!KeySch

KeySchedule

0 1

0 1

ShiftRows

AddRoundKey

32

32

32
32

32

32

32

32

32

32

32

32

32

32

1

0

Decrypt

32

KeySchedule

MixColumns

32

Mask n

Registers

KeySchedule

0 1

Instance

Shuffling

Output

Sel_Col

Sel_Col

Switching Matrix

Switching Matrix

8

Masked

S-Box

Masked

S-Box

Masked

S-Box

Masked

S-Box

8

Sel_Col

32 32

32

Fig. 1. Architecture of the 32bit Implementation, allowing masking as well
as column-wise and S-box instance shuffling

the next four clock cycles the SubBytes, MixColumns, and
AddRoundkey transformations are applied on one column at
a time. This allows implementing the second countermeasure,
i.e., shuffling, which needs each column of the data, mask,
or key registers to be selected and stored independently. It
is therefore possible to switch the processing order of the
columns during each encryption (we call this option column-
wise shuffling). We also implemented another option to switch
which byte of each column is processed by which S-box
instance (we call this option instance shuffling). It should
be noted that the same procedure and options have been
considered for the decryption operation which shares some
building blocks with the encryption unit.

Our final architecture has different options, i.e., masking,
column-wise shuffling, and instance shuffling, which can be
selected during the operation of the target device. Based
on these options we define five different profiles, and later
investigate the efficiency of each to a correlation collision
attack. These profiles are as follows:

• Profile A: no countermeasure, using always zero for all
the masks and turning off both shuffling options

• Profile B: column-wise shuffling only
• Profile C: masking only
• Profile D: masking and column-wise shuffling
• Profile E: masking, column-wise shuffling and instance

shuffling

B. Unrolled Architecture

In addition to the masking and shuffling schemes we have
tried to examine the effectiveness of unrolling, which has been
explained in [2], counteracting correlation collision attacks. An

Plaintext Key

Roundkey

Computation
S-BoxesS-BoxesS-BoxesS-Boxes

ShiftRows

MixColMixColMixColMixCol

AddRoundkey

R
o

u
n

d
F

u
n

c
tio

n

Key StateData State

AddRoundkey

Init 0 1 Init 1 0

Roundkey

Computation
S-BoxesS-BoxesS-BoxesS-Boxes

ShiftRows

MixColMixColMixColMixCol

AddRoundkey

R
o

u
n

d
F

u
n

c
tio

n

Ciphertext

Fig. 2. Architecture of the unrolled designs

overview of an unrolled design is shown by Fig. 2. In order
to reduce the required area of our unrolled architecture, we
chose the very compact unmasked S-box by Canright [4] in an
encryption only scenario. Since the key scheduling is unrolled
as well, twenty S-boxes are needed to implement each round
function.

We implemented four different designs, varying the number
of rounds which are computed per clock cycle. In the smallest
design only one complete round is computed at each clock
cycle. The second design features two complete rounds, the
third computes three and the last design computes four com-
plete rounds of the AES at each clock cycle creating a highly
glitching circuit.

C. Target Platform and Measurement Setup

All designs have been implemented on a Xilinx Virtex-II
Pro FPGA (xc2vp7) of a SASEBO circuit board which is par-
ticularly designed for side-channel attack experiments [1]. All
experiments are performed on the power consumption of the
Virtex-FPGA containing our implementation. Measurements
are performed using a LeCroy WP715Zi 1.5GHz oscilloscope
at a sampling rate of 1GS/s and by means of a differential
probe which captures the voltage drop over an 1Ω resistor
in the VDD (1.6V) supply path of the FPGA. In all the
experiments the clock signal of our cryptographic engine is
supplied by a stable oscillator at a frequency of 3MHz.

IV. EVALUATION OF THE 32-BIT ARCHITECTURE

The later parts of this section deal with evaluating the
resistance/vulnerability of different profiles of the 32-bit ar-
chitecture addressed in Section III-A to correlation collision
attacks.

A. Profile A: No Countermeasures

Performing the correlation collision attack described in
Section II, we start by creating two sets of 256 mean traces
according to the plaintext byte values corresponding to the
target S-box instances. As explained in [12], the best situation
for a collision attack is when the side-channel leakages of an
S-box instance in two different clock cycles are compared.

3

(a) (b)

Fig. 3. Profile A: the result of an attack (a) using 1, 000, 000 traces and (b)
over the number of traces

We therefore have selected two plaintext bytes which are
processed by the same S-box instance. Looking at the variance
traces computed over a set of mean traces, e.g., Fig. 12(b),
clarifies in which clock cycle the corresponding plaintext byte
is processed.

In order to perform the attack, aiming at recovering the
relation between two key bytes, the mean traces must first be
aligned to have both S-box executions – virtually – at the same
instance of time. Though 1, 000, 000 traces have been used for
the attack result depicted in Fig. 3(a), plotting the result over
the number of traces, i.e., Fig. 3(b), shows that for this case
even 10, 000 traces are sufficient to mount a successful attack.

B. Profile B: Column-wise Shuffling Only

When the column-wise shuffling is enabled the target S-box
computation does not take place at a specific clock cycle while
always the same S-box instance performs the computations.
Therefore, as an example is given by Fig. 12(d), the variance
over the mean traces shows high values in all four clock cycles
when the S-boxes are computed. This can be in fact considered
as an evidence of the existing time-randomization countermea-
sure. Without taking this countermeasure into account and just
performing the last attack2, as depicted in Fig. 4(a), the correct
difference between the target key bytes is still detectable and
appears in all four mentioned clock cycles. It however requires
a higher number of traces here, i.e., 50, 000, since on average
only one fourth of the mean traces are aligned to each other.

As mentioned in [12], one can divide a trace into clock
cycles and sum them up to have a sum trace with a length of
one clock cycle, which is known as “windowing” (integration
over a sliding comb) [6]. Doing so on the traces of this
profile considering those four clock cycles where the SubBytes
transformations of the first round are performed, guarantees
that the mean traces, which now are as long as a clock cycle,
are aligned and contain the desired information. Performing
the same attack on the combined traces reveals the correct
secret and decreases the required number of traces to 20, 000,
as depicted in Fig. 4(c) and Fig. 4(d).

C. Profile C: Masking Only

While column-wise shuffling had low area and power over-
heads, implementing the masked S-boxes (as explained in
Section III-A) needs significantly more area and leads to a
high power consumption. This can be seen when comparing

2It is not needed to shift the mean traces and align them in this case.

(a) (b)

(c) (d)

Fig. 4. Profile B: the result of an attack (a) using 1, 000, 000 traces, (b)
over the number of traces, (c) using windowing, and (d) over the number of
traces using windowing

(a) (b)

Fig. 5. Profile C: the result of an attack (a) using 5, 000, 000 traces and (b)
over the number of traces

the sample power traces of these two architectures in Fig. 12(c)
and Fig. 12(e).

Since no shuffling is enabled in this profile, the mean traces
must be aligned according to the clock cycles reported by the
variance traces, e.g., Fig. 12(f). It should be noted that as
expressed in [12] and can be seen in the variance trace, the
masked S-box implementation still has a first order leakage
which is due to the glitches that occur in the combinational
functions. The fact that the variance is lower than that of the
previous profiles implies that a higher number of traces is
necessary to reveal the correct key relation. The result of the
attack using 5, 000, 000 traces is shown in Fig. 5(a), but based
on Fig. 5(b) 150, 000 measurements are sufficient in our case
to reveal the desired secret.

D. Profile D: Masking and Column-wise Shuffling

Attacking an implementation that combines both of the pre-
viously applied countermeasures proves to be highly resistant
against the correlation collision attack. Observing the variance
traces, e.g., Fig. 12(h), shows that the dependency of the mean
traces on the plaintext byte values is decreased because of the
used masking scheme, and is spread over four clock cycles
because of the column-wise shuffling. Fig. 6(a) shows the
result of the attack using 10, 000, 000 traces. As expected after
comparing the variance traces to those of the previous profiles,
Fig. 6(b) reports around 4, 500, 000 as the number of traces
we required which is considerably higher than in the previous
cases. If the same windowing scheme is used to overcome
the time-randomization effect of the shuffling, the number of

4

traces here decreases to 700, 000 as depicted in Fig. 6(c) and
Fig. 6(d).

(a) (b)

(c) (d)

Fig. 6. Profile D: the result of an attack (a) using 10, 000, 000 traces, (b)
over the number of traces, (c) using windowing, and (d) over the number of
traces using windowing

E. Profile E: Masking, Column-wise and Instance Shuffling

As stated before, the correlation collision attack works best
if the target plaintext bytes are processed by the same S-
box instance. Randomizing which of the four S-box instances
compute which bytes of a column (called instance shuffling
in Section III-A) should further increase the resistance of the
implementation. This is confirmed comparing a variance trace
over the mean traces of this profile (Fig. 12(j)) and that of
profile D. The results of the attack using 10, 000, 000 traces
in both cases with and without windowing in addition to their
required number of traces are shown by Fig. 7. While around
5, 500, 000 traces are necessary to distinguish the correct guess
when performing the considered attack in a straightforward
way, employing windowing reduces this number to 1, 500, 000
which is significantly higher than of previous profiles.

(a) (b)

(c) (d)

Fig. 7. Profile E: the result of an attack (a) using 10, 000, 000 traces, (b)
over the number of traces, (c) using windowing, and (d) over the number of
traces using windowing

V. EVALUATION OF THE UNROLLED ARCHITECTURE

The same attacks, which have been done on the 32-bit
architecture, are performed on the traces measured from the
unrolled implementations. Since in our smallest unrolled ar-
chitecture one round of the cipher encryption is performed
per clock cycle, there is no shared hardware unit during the
computation of a round. Therefore, one cannot compare the
side-channel leakage of an unit in different clock cycles,
and needs to consider different S-box instances to perform
a collision attack. This, of course, decreases the efficiency
of the attack since two different circuits are compared which
even with the same netlist have been differently placed and
routed by the synthesizer. Moreover, the switching noise
level generated by the other parts of the circuits, e.g., S-
boxes, which are not considered in the attack is considerably
higher than the case of 32-bit architecture. We therefore have
expected a higher number of required traces and have collected
more traces compared to the 32-bit cases. The results of this
attack on different unrolled implementations are given by this
section.

A. One Round per Clock Cycle

Observing a sample power trace of a whole encryption run
by our smallest unrolled implementation depicted in Fig. 13(a)
verifies the execution of one round per clock cycle3. The same
as before, two S-box instances and hence their corresponding
plaintext bytes have been selected to make two sets of 256
mean traces. Since both the selected S-boxes are executed at
the same clock cycle, their corresponding traces are already
aligned and when performing the correlation collision attack
we do not need to shift the mean traces. Fig. 8(a) shows the at-
tack result using 1, 000, 000 traces, and as depicted in Fig. 8(b)
the attack is still successful using 100, 000 measurements.
We should emphasize that the difference between the side-
channel leakage of the implemented 16 S-box instances varies
because of their different similarity in placement and routing.
Therefore, the efficiency of the attack also varies selecting
different S-box instances. The result shown in Fig. 8 is one of
the best cases.

(a) (b)

Fig. 8. One round unrolled: the result of an attack (a) using 1, 000, 000
traces and (b) over the number of traces

3In Fig.13(a) 11 clock cycles with high power consumption are detectable.
The last one is due to the case when the ciphertext is saved into the state
register and appears at the input of the combinational circuit again.

5

(a) (b)

Fig. 9. Two rounds unrolled: the result of an attack (a) using 7, 500, 000
traces and (b) over the number of traces

B. Two Rounds per Clock Cycle

When two rounds of the cipher encryption are unrolled, as
can be seen in Fig. 13(c), the whole of an encryption is per-
formed in 5 clock cycles. Comparing the variance traces shown
in Fig. 13(b) and Fig. 13(d) of one and two unrolled rounds
respectively, shows a significant increase of the noise level.
Repeating the same attack procedure as before on 7, 500, 000
traces collected from the two-round unrolled implementation
led to the result shown by Fig. 9(a) as amongst the most
successful cases. Also, Fig. 9(b) reports around 300, 000 as
the number of traces we have required to recover the correct
relation between the selected key bytes. Although evaluation
of the later rounds knowing their inputs when more than one
round is unrolled has been included in the original proposal
of the unrolling countermeasure [2], we have not reported the
results of the corresponding collision attacks because of their
similarity to the case when attacking the first round. Moreover,
knowing the input of the e.g., second round of the AES, in
contrary to the DES case, reveals all the secrets used in the
first round, and one does not need to perform the attack on
the second round.

C. Three Rounds per Clock Cycle

Fig. 10 shows the results of a similar attack on the first
round when three unrolled rounds are implemented, and the
whole encryption process is completed in 4 clock cycles. As
a reference, Fig. 13(e) and Fig. 13(f) respectively show a
sample power trace of this implementation and a variance
trace over a set of 256 mean traces. According to the low
variance (Fig. 13(f)) and unclear distinguishability of the
correct hypothesis amongst the others (Fig. 10(a)), a high
number of required traces is expected, e.g., around 3, 000, 000
as shown in Fig. 10(b).

(a) (b)

Fig. 10. Three rounds unrolled: the result of an attack (a) using 7, 500, 000
traces and (b) over the number of traces

(a) (b)

Fig. 11. Four rounds unrolled: the result of an attack (a) using 30, 000, 000
traces and (b) over the number of traces

D. Four Rounds per Clock Cycle

In our last unrolled architecture, where four unrolled en-
cryption rounds are implemented, every encryption run needs 3
clock cycles (see Fig. 13(g) as an example), and the switching
noise has the highest level compared to all previous examined
architectures (see Fig. 13(h) as a variance trace over the mean
traces). The results of the attack, which are shown in Fig. 11,
are practical evidence of the success of the correlation collision
attack using around 3, 500, 000 traces countering unrolling as
a countermeasure. Although the required number of traces is
comparably higher than in previous cases, since the correla-
tion collision attack employs the mean traces, increasing the
number of traces helps removing the switching noise effect
and finally recovers the relation between the key bytes.

VI. CONCLUSIONS

The results of correlation collision attacks on different hard-
ware countermeasures have been presented. We have chosen
this attack scheme for our investigations since no hypothetical
power model is required and its efficiency does not rely on
the leakage model of the target device which allows for a fair
comparison. It is not a surprise that each countermeasure alone
is not able to overcome the vulnerability against the attacks
since even (theoretically) perfectly masked implementations
still contain a slight first order leakage in practice due to
glitches in the circuit. Similarly time randomization or noise
addition countermeasures, which diminish the SNR, can be
overcome by increasing the number of measurements.

However, when different countermeasures are combined, it
is possible to significantly strengthen the resistance against
DPA attacks. Applying all implemented countermeasures of
the 32-bit architecture, the number of necessary traces for a
successful correlation collision attack can be increased from
10, 000 to 1, 500, 000. If the area constrain is not an issue
(e.g. unused FPGA resources) unrolling can further increase
the resistance. Increasing the number of rounds per clock cycle
from one to four increases the number of required traces
from 100, 000 to 3, 500, 000. The combination of unrolling
and masking has not been considered because of the rather
large and impractical area requirements.

Since our implementation platform has been specifically
designed for side-channel purposes considering an appropriate
measurement setup and a well-defined trigger point, in real-
world scenarios especially when the crypto cores are not
the only circuits computing at one instance of time even

6

more measurements will expectedly be required. However,
knowing the number of required traces for an attack on an
implementation in a low-noise environment helps choosing
appropriate key lifetimes to further protect the secrets.

ACKNOWLEDGMENT

The authors would like to thank Akashi Satoh and RCIS
for the prompt and kind help in obtaining SASEBOs.

REFERENCES

[1] Side-channel Attack Standard Evaluation Board (SASEBO). Further
information are available via http://www.rcis.aist.go.jp/special/SASEBO/
index-en.html.

[2] S. Bhasin, S. Guilley, L. Sauvage, and J.-L. Danger. Unrolling Cryp-
tographic Circuits: A Simple Countermeasure Against Side-Channel
Attacks. In CT-RSA 2010, volume 5985 of LNCS, pages 195–207.
Springer, 2010.

[3] A. Bogdanov. Multiple-Differential Side-Channel Collision Attacks on
AES. In CHES 2008, volume 5154 of LNCS, pages 30–44. Springer,
2008.

[4] D. Canright. A Very Compact S-Box for AES. In CHES 2005, volume
3659 of LNCS, pages 441–455. Springer, 2005.

[5] D. Canright and L. Batina. A Very Compact "Perfectly Masked" S-
Box for AES. In ACNS 2008, volume 5037 of LNCS, pages 446–459.
Springer, 2008. the corrected version is available at Cryptology ePrint
Archive, Report 2009/011 http://eprint.iacr.org/2009/011.

[6] C. Clavier, J.-S. Coron, and N. Dabbous. Differential Power Analysis
in the Presence of Hardware Countermeasures. In CHES 2000, volume
1965 of LNCS, pages 13–48. Springer, 2000.

[7] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and
M. Shalmani. On the Power of Power Analysis in the Real World: A
Complete Break of the KeeLoq Code Hopping Scheme. In CRYPTO
2008, volume 5157 of LNCS, pages 203–220. Springer, 2008.

[8] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information
Analysis. In CHES 2008, volume 5154 of LNCS, pages 426–442.
Springer, 2008.

[9] C. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Imple-
mentation Resistant to Power Analysis Attacks. In ACNS 2006, volume
3989 of LNCS, pages 239–252. Springer, 2006.

[10] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In
CRYPTO 1999, volume 1666 of LNCS, pages 388–397. Springer, 1999.

[11] S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking
Masked AES Hardware Implementations. In CHES 2005, volume 3659
of LNCS, pages 157–171. Springer, 2005.

[12] A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power
Analysis Collision Attack. In CHES 2010, volume 6225 of LNCS, pages
125–139. Springer, 2010. The extended version is available on ePrint
http://eprint.iacr.org/2010/297.

[13] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel
Analysis Resistant Description of the AES S-Box. In FSE 2005, volume
3557 of LNCS, pages 413–423. Springer, 2005.

[14] C. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in
Galois Fields. PhD thesis, Institute for Experimental Mathematics,
University of Essen, Germany, 1994.

[15] K. Schramm, T. Wollinger, and C. Paar. A New Class of Collision
Attacks and Its Application to DES. In FSE 2003, volume 2887 of
LNCS, pages 206 – 222. Springer, 2003.

[16] D. Suzuki, M. Saeki, and T. Ichikawa. DPA Leakage Models for CMOS
Logic Circuits. In CHES 2005, volume 3659 of LNCS, pages 366–382.
Springer, 2005.

[17] K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential
CMOS Logic with Signal Independent Power Consumption to Withstand
Differential Power Analysis on Smart Cards. In European Solid-State
Circuits Conference - ESSCIRC 2002, pages 403–406, 2002.

APPENDIX

Fig. 12 and Fig. 13 show sample power traces and variance
traces computed over the mean traces of different profiles of
the 32-bit and unrolled architectures respectively.

0 0.5 1.5 2
20

120

V
ol

ta
ge

 [m
V

]

Time [µs]

(a) Profile A

0 0.5 1.5 2
0

1.9

V
ar

ia
nc

e
[m

V2] ×
 1

03

Time [µs]

(b) Profile A

0 0.5 1.5 2
20

120

V
ol

ta
ge

 [m
V

]

Time [µs]

(c) Profile B

0 0.5 1.5 2
0

400

V
ar

ia
nc

e
[m

V2]

Time [µs]

(d) Profile B

0 0.5 1.5 2
20

220

V
ol

ta
ge

 [m
V

]

Time [µs]

(e) Profile C

0 0.5 1.5 2
0

140

V
ar

ia
nc

e
[m

V2]

Time [µs]

(f) Profile C

0 0.5 1.5 2
20

280

V
ol

ta
ge

 [m
V

]

Time [µs]

(g) Profile D

0 0.5 1.5 2
0

35

V
ar

ia
nc

e
[m

V2]

Time [µs]

(h) Profile D

0 0.5 1.5 2
20

280

V
ol

ta
ge

 [m
V

]

Time [µs]

(i) Profile E

0 0.5 1.5 2
0

25

V
ar

ia
nc

e
[m

V2]

Time [µs]

(j) Profile E

Fig. 12. 32-bit architecture: (left) sample power traces, (right) variance traces
of different profiles

0 1.5 3.5 5
0

170

V
ol

ta
ge

 [m
V

]

Time [µs]

(a) 1 round unrolled

0 1.5 3.5 5
0

1800

V
ar

ia
nc

e
[m

V2]

Time [µs]

(b) 1 round unrolled

0 0.5 1.5 2
0

500

V
ol

ta
ge

 [m
V

]

Time [µs]

(c) 2 rounds unrolled

0 0.5 1.5 2
0

650

V
ar

ia
nc

e
[m

V2]

Time [µs]

(d) 2 rounds unrolled

0 0.5 1.5 2
0

500

V
ol

ta
ge

 [m
V

]

Time [µs]

(e) 3 rounds unrolled

0 0.5 1.5 2
0

250

V
ar

ia
nc

e
[m

V2]

Time [µs]

(f) 3 rounds unrolled

0 0.25 0.75 1
0

500

V
ol

ta
ge

 [m
V

]

Time [µs]

(g) 4 rounds unrolled

0 0.25 0.75 1
0

200

V
ar

ia
nc

e
[m

V2]

Time [µs]

(h) 4 rounds unrolled

Fig. 13. Unrolled architecture: (left) sample power traces, (right) variance
traces of different unrolled implementations

7

