Publications

2025

Simon Damm, Mike Laszkiewicz, Johannes Lederer, Asja Fischer

AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2 Proceedings Article

In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2025.

Links

Simon Heilig, Alessio Gravina, Alessandro Trenta, Claudio Gallicchio, Davide Bacciu

Port-Hamiltonian Architectural Bias for Long-Range Propagation in Deep Graph Networks Proceedings Article

In: The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Links

2024

Jonas Ricker, Dennis Assenmacher, Thorsten Holz, Asja Fischer, Erwin Quiring

AI-Generated Faces in the Real World: A Large-Scale Case Study of Twitter Profile Images Proceedings Article

In: International Symposium on Research in Attacks, Intrusions, and Defenses (RAID), 2024.

Links

Jonas Ricker, Denis Lukovnikov, Asja Fischer

AEROBLADE: Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error Proceedings Article

In: IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), 2024.

Links

Sina Mavali, Jonas Ricker, David Pape, Yash Sharma, Asja Fischer, Lea Schönherr

Fake It Until You Break It: On the Adversarial Robustness of AI-generated Image Detectors Artikel

In: arXiv Preprint, 2024.

Links

Mike Laszkiewicz, Jonas Ricker, Johannes Lederer, Asja Fischer

Single-Model Attribution of Generative Models Through Final-Layer Inversion Proceedings Article

In: International Conference on Machine Learning (ICML), 2024.

Links

Jonas Ricker, Simon Damm, Thorsten Holz, Asja Fischer

Towards the Detection of Diffusion Model Deepfakes Proceedings Article

In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), 2024.

Links

Joel Frank, Franziska Herbert, Jonas Ricker, Lea Schönherr, Thorsten Eisenhofer, Asja Fischer, Markus Dürmuth, Thorsten Holz

A Representative Study on Human Detection of Artificially Generated Media Across Countries Proceedings Article

In: IEEE Symposium on Security and Privacy (S&P), 2024.

Links

Dmytro Velychko, Simon Damm, Asja Fischer, Jörg Lücke

Learning sparse codes with entropy-based ELBOs Proceedings Article

In: International Conference on Artificial Intelligence and Statistics (AISTATS), 2024.

Links

Matías Pizarro, Mike Laszkiewicz, Dorothea Kolossa, Asja Fischer

Single-Model Attribution for Spoofed Speech via Vocoder Fingerprints in an Open-World Setting Artikel

In: arXiv Preprint, 2024.

Links

Karla Pizzi, Matías Pizarro, Asja Fischer

Reassessing Noise Augmentation Methods in the Context of Adversarial Speech Proceedings Article

In: Symposium on Security and Privacy in Speech Communication (SPSC), 2024.

Links

Matías Pizarro, Dorothea Kolossa, Asja Fischer

DistriBlock: Identifying Adversarial Audio Samples by Leveraging Characteristics of the Output Distribution Proceedings Article

In: Conference on Uncertainty in Artificial Intelligence (UAI), 2024.

Links

Linara Adilova, Bernhard C. Geiger, Asja Fischer

Information Plane Analysis for Dropout Neural Networks Proceedings Article

In: International Conference on Learning Representations (ICLR), 2024.

Links

Sidak Pal Singh, Linara Adilova, Michael Kamp, Asja Fischer, Bernhard Schölkopf, Thomas Hofmann

Landscaping Linear Mode Connectivity Artikel

In: arXiv preprint, 2024.

Links

Yulian Sun, Li Duan, Ricardo Mendes, Derui Zhu, Yue Xia, Yong Li, Asja Fischer

Exploiting Internal Randomness for Privacy in Vertical Federated Learning Proceedings Article

In: European Symposium on Research in Computer Security (ESORICS), 2024.

Links

Nils Philipp Walter, Linara Adilova, Jilles Vreeken, Michael Kamp

The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective Artikel

In: arXiv preprint, 2024.

Links

Thomas L. Salazer, Naitik Sheth, Avais Masud, David Serur, Guillermo Hidalgo, Iram Aqeel, Linara Adilova, Michael Kamp, Tim Fitzpatrick, Sriram Krishnan, others

Artificial Intelligence (AI)-Driven Screening for Undiscovered CKD: TH-PO009 Artikel

In: Journal of the American Society of Nephrology, 2024.

Links

Yulian Sun, Li Duan, Yong Li

PSY: Posterior Sampling Based Privacy Enhancer in Large Language Models Artikel

In: arXiv Preprint, 2024.

Links

2023

Simon Damm, Dennis Forster, Dmytro Velychko, Zhenwen Dai, Asja Fischer, Jörg Lücke

The ELBO of variational autoencoders converges to a sum of entropies Proceedings Article

In: International Conference on Artificial Intelligence and Statistics (AISTATS), 2023.

Links

Linara Adilova, Maksym Andriushchenko, Michael Kamp, Asja Fischer, Martin Jaggi

Layer-wise Linear Mode Connectivity Proceedings Article

In: International Conference on Learning Representations (ICLR), 2023.

Links

Maximilian Münch, Manuel Röder, Simon Heilig, Christoph Raab, Frank-Michael Schleif

Static and adaptive subspace information fusion for indefinite heterogeneous proximity data Artikel

In: Neurocomputing, 2023.

Links

Linara Adilova, Michael Kamp, Gennady Andrienko, Natalia Andrienko

Re-interpreting rules interpretability Artikel

In: International Journal of Data Science and Analytics, 2023.

Links

Linara Adilova, Konstantin Böttinger, Vasilios Danos, Sven Jacob, Fabian Langer, Thora Markert, Maximilian Poretschkin, Julia Rosenzweig, Jan-Philipp Schulze, Philip Sperl

Security of AI-Systems: Fundamentals Artikel

In: BSI, 2023.

Links

Linara Adilova, Amr Abourayya, Jianning Li, Amin Dada, Henning Petzka, Jan Egger, Jens Kleesiek, Michael Kamp

FAM: Relative Flatness Aware Minimization Proceedings Article

In: ICML Workshops: Topological, Algebraic and Geometric Learning Workshops, 2023.

Links

Maximilian Poretschkin, Anna Schmitz, Maram Akila, Linara Adilova, Daniel Becker, Armin B. Cremers, Dirk Hecker, Sebastian Houben, Michael Mock, Julia Rosenzweig, others

Guideline for Designing Trustworthy Artificial Intelligence Artikel

In: Fraunhofer IAIS, 2023.

Links

Tianxiang Dai, Li Duan, Yufan Jiang, Yong Li, Fei Mei, Yulian Sun

Force: Highly Efficient Four-Party Privacy-Preserving Machine Learning on GPU Artikel

In: Cryptology ePrint Archive, 2023.

Links

2022

Simon Heilig, Maximilian Münch, Frank-Michael Schleif

Memory Efficient Kernel Approximation for Non-Stationary and Indefinite Kernels Proceedings Article

In: International Joint Conference on Neural Networks (IJCNN), 2022.

Links

Yulian Sun

Federated Transfer Learning with Multimodal Data Abschlussarbeit

Technical University of Darmstadt, 2022.

Links

2021

Matías Pizarro, Dorothea Kolossa, Asja Fischer

Robustifying Automatic Speech Recognition by Extracting Slowly Varying Features Proceedings Article

In: Symposium on Security and Privacy in Speech Communication (SPSC), 2021.

Links

Florian Linsner, Linara Adilova, Sina Däubener, Michael Kamp, Asja Fischer

Approaches to Uncertainty Quantification in Federated Deep Learning Proceedings Article

In: Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2021.

Links

Linara Adilova, Siming Chen, Michael Kamp

Novelty Detection in Sequential Data by Informed Clustering and Modeling Artikel

In: arXiv preprint, 2021.

Links

2019

Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim Wirtz, Stefan Wrobel

Efficient decentralized deep learning by dynamic model averaging Proceedings Article

In: Machine Learning and Knowledge Discovery in Databases (ECML PKDD), 2019.

Links

Linara Adilova, Nathalie Paul, Peter Schlicht

Introducing noise in decentralized training of neural networks Proceedings Article

In: ECML PKDD Workshops: DMLE 2018 and IoTStream 2018, 2019.

Links

Siming Chen, Natalia Andrienko, Gennady Andrienko, Linara Adilova, Jeremie Barlet, Jörg Kindermann, Phong H. Nguyen, Olivier Thonnard, Cagatay Turkay

LDA ensembles for interactive exploration and categorization of behaviors Artikel

In: IEEE Transactions on Visualization and Computer Graphics, 2019.

Links

Linara Adilova, Julia Rosenzweig, Michael Kamp

Information-Theoretic Perspective of Federated Learning Proceedings Article

In: NeurIPS Workshops, 2019.

Links

2018

Linara Adilova, Sven Giesselbach, Stefan Rüping

Making Efficient Use of a Domain Expert's Time in Relation Extraction Proceedings Article

In: ECML PKDD Workshops: DMLE, 2018.

Links

Phong H. Nguyen, Siming Chen, Natalia Andrienko, Michael Kamp, Linara Adilova, Gennady Andrienko, Olivier Thonnard, Alysson Bessani, Cagatay Turkay

Designing visualisation enhancements for SIEM systems Proceedings Article

In: IEEE Symposium on Visualization for Cyber Security (VizSec), 2018.

Links