Ruhr-University Bochum
Faculty of Computer Science
Symmetric Cryptography
Universitätsstr. 150

44801 Bochum

Room:  MC 1.42

Tel:      +49 (0)234 32-28402

E-Mail: gregor.leander@rub.de

Office hours: By Arrangement

Publications

Please consult my google scholar profile or my dblp entry for an up-to-date list of publications

 

My primary field of research is cryptography, more precisely symmetric cryptography. Symmetric cryptographic primitives protect a large percentage of today’s data, whether in transit or storage. Symmetric cryptography spans a wide range from theoretic considerations to practical impact in real world applications and I am interested in working on all ends. On the one hand, having a background in mathematics and a PhD focused on theoretical aspects of Boolean functions, I have certainly an intrinsic interest in the fundamental questions in symmetric cryptography. On the other hand, I have been involved in the design of ciphers and seeing them deployed massively in products as well as breaking and fixing ciphers already deployed in practice is a great experience.

I created the symmetric cryptography group at the Ruhr University Bochum in 2015 and since then my group has become a great place for new ideas, approaches, and fruitful discussions. We have regular visits that are a great source of collaboration and chances for the PhD students to build and deepen their scientific networks

  • I also like to mention that I am the founder and managing editor of the journal IACR Transaction of Symmetric Cryptography, that transformed the conference FSE into a conference/journal hybrid. I created this diamond open access journal, published by the Ruhr University Bochum, out of the strong belief that (i) it significantly improves the quality of the publications compared to a conference-only model and (ii) the fact that we write, review and layout the papers already does not justify the cost and business model of most of the professional publishers in the area.
  • 2024 EUROCRYPT , Zurich , program co-chair
  • 2022 Symmetric Cryptography Seminar, Dagstuhl, co-organizer
  • 2020 Symmetric Cryptography Seminar, Dagstuhl, co-organizer
  • 2019 FrisiaCrypt, Borkum, general co-chair
  • 2018 Symmetric Cryptography Seminar, Dagstuhl, co-organizer
  • 2016 Fast Software Encryption, Bochum, general chair
  • 2015 Fast Software Encryption, Istanbul, program chair
  • 2014 EUROCRYPT , Copenhagen , general co-chair
  • 2011 Workshop on Lightweight Cryptography, program co-chair
  • 2011 Fast Software Encryption, Copenhagen , general co-chair
  • 2011 Symmetric Key Encryption Workshop, general and program co-chair
  • Indocrypt 2022
  • Santacrypt 2022
  • IACR FSE 2019
  • CTCRYPT 2017
  • MMCC 2017
  • Arcticrypt 2016
  • China Crypt 2016
  • Rumanian Crypto days 2015 and 2017
  • SantaCrypt 2014
  • LightSec 2013
  • Balkan­Crypt 2013
  • WCC 2013
  • Latincrypt 2012
  •  
  • 2022 SKINNY is ISO standard (ISO/IEC 18033-7) as a Tweakable Block Cipher
  • 2020 IACR CRYPTO 2020, Best Paper Award and invitation to Journal of Cryptology
  • 2015 Heisenberg Professorship, a prestigious funding line for upcoming leaders by the DFG.
  • 2014 IACR FSE 2014, Best Paper Award and invitation to Journal of Cryptology
  • 2010 PRESENT is ISO standard (ISO/IEC 29192-2) for Lightweight Cryptography
  • 2010 German IT-Security Award (worth 100kEUR), first place
  • 2011 Erdos Number 2
  •  

see this page for a list of present and past courses.

Publications

2023

[1]
E. Kiltz, J. Pan, D. Riepel, M. Ringerud, und E. Kiltz, „Multi-user CDH Problems and the Concrete Security of NAXOS and HMQV“, 2023. doi: 10.1007/978-3-031-30872-7_25.
[2]
J. Duman u. a., „A Thorough Treatment of Highly-Efficient NTRU Instantiations“, 2023. doi: 10.1007/978-3-031-31368-4_3.
[3]
J. Duman u. a., „Generic Models for Group Actions“, 2023. doi: 10.1007/978-3-031-31368-4_15.
[4]
D. Riepel, E. Kiltz, T. Jager, und S. Liu, „Tightly-secure authenticated key exchange“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023. doi: 10.13154/294-9799.
[5]
E. Hauck, E. Kiltz, und N. Fleischhacker, „Privacy enhancing primitives“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023. doi: 10.13154/294-10514.
[6]
J. Alwen, D. Hartmann, E. Kiltz, M. Mularczyk, P. Schwabe, und E. Kiltz, „Post-Quantum Multi-Recipient Public Key Encryption“, Nov. 2023, Publiziert. doi: 10.1145/3576915.3623185.
[7]
D. Hartmann, E. Kiltz, und E. Kiltz, „Limits in the Provable Security of ECDSA Signatures“, 2023. doi: 10.1007/978-3-031-48624-1_11.
[8]
J. Alwen, J. Janneck, E. Kiltz, B. Lipp, und E. Kiltz, „The Pre-Shared Key Modes of HPKE“, 2023. doi: 10.1007/978-981-99-8736-8_11.
[9]
D. Hartmann, E. Kiltz, und N. Fleischhacker, „Limits and applications of digital signatures“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2023. doi: 10.13154/294-10922.
[1]
M. Abdalla, T. Eisenhofer, S. Kunzweiler, D. Riepel, und E. Kiltz, „Password-authenticated key exchange from group actions“, in Advances in Cryptology – CRYPTO 2022, Santa Barbara, Okt. 2022, Bd. 13507, S. 699–728. doi: 10.1007/978-3-031-15979-4_24.
[2]
J. Duman, D. Hartmann, S. Kunzweiler, J. Lehmann, D. Riepel, und E. Kiltz, „Group action key encapsulation and non-interactive key exchange in the QROM“, in Advances in Cryptology – ASIACRYPT 2022, 2022, Bd. 13794, S. 36–66. doi: 10.1007/978-3-031-22966-4_2.
[3]
J. Alwen, D. Hartmann, E. Kiltz, und M. Mularczyk, „Server-aided continuous group key agreement“, in Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, Nov. 2022, S. 69–82. doi: 10.1145/3548606.3560632.
 
[1]
P. Rösler, J. Schwenk, M. Fischlin, und E. Kiltz, „Cryptographic foundations of modern stateful and continuous key exchange primitives“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2021. doi: 10.13154/294-8012.
[2]
S. Han u. a., „Authenticated key exchange and signatures with tight security in the standard model“, in Advances in Cryptology – CRYPTO 2021, Aug. 2021, 1st ed. 2021., Bd. 12827, S. 670–700. doi: 10.1007/978-3-030-84259-8_23.
[3]
N. Döttling, D. Hartmann, D. Hofheinz, S. Schäge, B. Ursu, und E. Kiltz, „On the impossibility of purely algebraic signatures“, in Theory of cryptography, Raleigh, NC, USA, Nov. 2021, Bd. 13044, S. 317–349. doi: 10.1007/978-3-030-90456-2_11.
[4]
J. Duman, K. Hövelmanns, E. Kiltz, V. Lyubashevsky, und G. Seiler, „Faster lattice-based KEMs via a generic fujisaki-okamoto transform using prefix hashing“, in CCS ’21, Online, Nov. 2021, S. 2722–2737. doi: 10.1145/3460120.3484819.
[5]
J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, und D. Riepel, „Analysing the HPKE standard“, in Advances in cryptology – EUROCRYPT 2021, Zagreb, Juni 2021, Bd. 12696–12698, S. 87–116. doi: 10.1007/978-3-030-77870-5_4.
[6]
T. Jager, E. Kiltz, D. Riepel, und S. Schäge, „Tightly-secure authenticated key exchange, revisited“, in Advances in cryptology – EUROCRYPT 2021, Zagreb, Juni 2021, Bd. 12696–12698, S. 117–146. doi: 10.1007/978-3-030-77870-5_5.
[1]
K. Hövelmanns, E. Kiltz, S. Schäge, und D. Unruh, „Generic authenticated key exchange in the quantum random oracle model“, in Public-key cryptography – PKC 2020, Edinburgh, Apr. 2020, Bd. 12110–12111, S. 389–422. doi: 10.1007/978-3-030-45388-6_14.
[2]
M. Hoffmann, C. Paar, I. Verbauwhede, und E. Kiltz, „Security and subvertability of modern hardware: a journey through selected layers of hardware security“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2020. doi: 10.13154/294-7689.
[3]
E. Hauck, E. Kiltz, J. Loss, und N. K. Nguyen, „Lattice-based blind signatures, revisited“, 2020. https://eprint.iacr.org/2020/769.pdf
[4]
K. Hövelmanns, E. Kiltz, und A. May, „Generic constructions of quantum-resistant cryptosystems“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2020.
[5]
B. Auerbach, F. Giacon, und E. Kiltz, „Everybody’s a target: scalability in public-key encryption“, in Advances in cryptology – EUROCRYPT 2020, Zagreb, Mai 2020, Bd. 12105–12107, S. 475–506. doi: 10.1007/978-3-030-45727-3_16.
[6]
E. Hauck, J. Loss, N. K. Nguyen, und E. Kiltz, „Lattice-Based Blind Signatures, Revisited“, in Advances in cryptology – CRYPTO 2020, Aug. 2020, Bd. 12171, S. 500–529. doi: 10.1007/978-3-030-56880-1_18.
 
[1]
B. Auerbach, F. Giacon, und E. Kiltz, „Everybody’s a target: scalability in public-key encryption“, 10. April 2019. https://eprint.iacr.org/2019/364
[2]
B. Auerbach, E. Kiltz, B. Poettering, und S. Schoenen, „Lossy trapdoor permutations with improved lossiness“, in Topics in cryptology – CT_RSA 2019, San Francisco, Calif., 2019, Bd. 11405, S. 230–250. doi: 10.1007/978-3-030-12612-4_12.
[3]
B. Auerbach, E. Kiltz, und N.-G. Leander, „On the security of public-key encrytion in mass-surveillance settings“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2019.
[4]
F. Giacon, E. Kiltz, und N. Fleischhacker, „Strengthening public-key cryptography: robust constructions and multi-user security“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2019. doi: 10.13154/294-6567.
[5]
E. Hauck, E. Kiltz, und J. Loss, „A modular treatment of blind signatures from identification schemes“, in Advances in cryptology – EUROCRYPT 2019, Darmstadt, 2019, Bd. 11476–11478, S. 345–375. doi: 10.1007/978-3-030-17659-4_12.
[6]
M. Drijvers u. a., „On the security of two-round multi-signatures“, in 2019 IEEE Symposium on Security and Privacy (SP 2019), San Francisco, CA, 2019, S. 1084–1101. doi: 10.1109/sp.2019.00050.
[7]
J. Loss, E. Kiltz, und A. May, „New techniques for the modular analysis of digital signature schemes“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2019.
[8]
B. Auerbach, M.-L. Shnayien, E. Kiltz, und A. Tuschling, „Zwei Betrachtungen von Sicherheit und Privatheit nach Snowden“, Datenschutz und Datensicherheit, Bd. 43, S. 706–712, Nov. 2019, doi: 10.1007/s11623-019-1193-4.
[1]
B. Auerbach, E. Kiltz, B. Poettering, und S. Schoenen, „Lossy trapdoor permutations with improves lossiness“, 5. Dezember 2018. https://eprint.iacr.org/2018/1183
[2]
J. Bos u. a., „CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM“, in Proceedings, 3rd IEEE European Symposium on Security and Privacy, London, 2018, S. 353–367. doi: 10.1109/eurosp.2018.00032.
[3]
E. Kiltz, V. Lyubashevsky, und C. Schaffner, „A concrete treatment of Fiat-Shamir signatures in the quantum random-Oracle model“, in Advances in Cryptology – EUROCRYPT 2018, Tel Aviv, März 2018, Bd. 10820/10822, S. 552–586. doi: 10.1007/978-3-319-78372-7_18.
[4]
B. Auerbach, M. Bellare, und E. Kiltz, „Public-key encryption resistant to parameter subversion and its realization from efficiently-embeddable groups“, in Public-key cryptography – PKC 2018, Rio de Janeiro, 2018, Bd. 10769–10770, S. 348–377. doi: 10.1007/978-3-319-76578-5_12.
[5]
L. Ducas u. a., „CRYSTALS-Dilithium: a lattice-based digital signature scheme“, IACR transactions on cryptographic hardware and embedded systems, Bd. 2018, Nr. 1, S. 238–268, 2018, doi: 10.13154/tches.v2018.i1.238-268.
[6]
M. Fersch, E. Kiltz, und B. Poettering, „The provable security of elgamal-type signature schemes“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2018. [Online]. Verfügbar unter: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/6080
[7]
G. Fuchsbauer, E. Kiltz, und J. Loss, „The algebraic group model and its applications“, in Advances in cryptology – CRYPTO 2018, Santa Barbara, Calif., 2018, Bd. 10991–10993, S. 33–62. doi: 10.1007/978-3-319-96881-0_2.
[8]
S. A. Kakvi und E. Kiltz, „Optimal security proofs for full domain hash, revisited“, Journal of cryptology, Bd. 31, Nr. 1, S. 276–306, 2018, doi: 10.1007/s00145-017-9257-9.
[9]
K. Hövelmanns, E. Kiltz, S. Schäge, und D. Unruh, „Generic authenticated key exchange in the quantum random oracle model“, 2018. https://eprint.iacr.org/2018/928
[10]
F. Giacon, E. Kiltz, und B. Poettering, „Hybrid encryption in a multi-user setting, revisited“, in Public-key cryptography – PKC 2018, Rio de Janeiro, 2018, Bd. 10769–10770, S. 159–189. doi: 10.1007/978-3-319-76578-5_6.
[11]
E. Kiltz, „Ein vermeintlich unlösbares Problem“, Rubin, Bd. 28, Nr. 1, S. 41, 2018, [Online]. Verfügbar unter: http://news.rub.de/sites/default/files/rubin_01_2018.pdf
[1]
B. Auerbach, D. Cash, M. Fersch, und E. Kiltz, „Memory-tight reductions“, in Advances in Cryptology – CRYPTO 2017, Santa Barbara, Calif., 2017, Bd. 10401–10403, S. 101–132. doi: 10.1007/978-3-319-63688-7_4.
[2]
B. Auerbach, D. Cash, M. Fersch, und E. Kiltz, „Memory-tight reductions“, 2017. https://eprint.iacr.org/2017/675
[3]
F. Valovich, H. U. Simon, und E. Kiltz, „On positive connections between cryptography and differential privacy in the distributed model“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2017.
[4]
D. Hofheinz, K. Hövelmanns, und E. Kiltz, „A modular analysis of the Fujisaki-Okamoto transformation“, in Theory of cryptography, Baltimore, Md., 2017, Bd. 10677–10678, S. 341–371. doi: 10.1007/978-3-319-70500-2_12.
[5]
M. Fersch, E. Kiltz, und B. Poettering, „On the one-per-message unforgeability of (EC)DSA and its variants“, 2017. https://eprint.iacr.org/2017/890
[6]
E. Kiltz, K. Pietrzak, D. Venturi, D. Cash, und A. Jain, „Efficient authentication from hard learning problems“, Journal of cryptology, Bd. 30, Nr. 4, S. 1238–1275, 2017, doi: 10.1007/s00145-016-9247-3.
[7]
E. Kiltz, A. O’Neill, und A. Smith, „Instantiability of RSA-OAEP under chosen-plaintext attack“, Journal of cryptology, Bd. 30, Nr. 3, S. 889–919, 2017, doi: 10.1007/s00145-016-9238-4.
[8]
E. Kiltz, J. Loss, und J. Pan, „Tightly-secure signatures from five-move identification protocols“, 2017. https://eprint.iacr.org/2017/870
[9]
F. Heuer, E. Kiltz, und T. Jager, „On the selective opening security of public-key encryption“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2017. [Online]. Verfügbar unter: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/5326
[10]
M. Fersch, E. Kiltz, und B. Poettering, „On the one-per-message unforgeability of (EC)DSA and its variants“, in Theory of cryptography, Baltimore, 2017, Bd. 10678, S. 519–534. doi: 10.1007/978-3-319-70503-3_17.
[11]
D. Hofheinz, K. Hövelmanns, und E. Kiltz, „A modular analysis of the Fujisaki-Okamoto transformation“, 2017. https://eprint.iacr.org/2017/604/20170623:195510
[12]
F. Giacon, E. Kiltz, und B. Poettering, „Hybrid encryption in a multi-user setting, revisited“, 2017. https://eprint.iacr.org/2017/843
[13]
E. Kiltz, J. Loss, und J. Pan, „Tightly-secure signatures from five-move identification protocols“, in Advances in cryptology – ASIACRYPT 2017, Hongkong, 2017, Bd. 10624–10626, S. 68–94. doi: 10.1007/978-3-319-70700-6_3.
[1]
E. Kiltz, D. Masny, und J. Pan, „Optimal security proofs for signatures from identification schemes“, in Advances in Cryptology – CRYPTO 2016, Santa Barbara, Calif., Juli 2016, Bd. 9814–9816, S. 33–61. doi: 10.1007/978-3-662-53008-5_2.
[2]
F. Heuer, T. Jager, S. Schäge, und E. Kiltz, „Selective opening security of practical public-key encryption schemes“, IET information security, Bd. 10, Nr. 6, S. 304–318, Apr. 2016, doi: 10.1049/iet-ifs.2015.0507.
[3]
D. Masny, E. Kiltz, und S. Faust, „Cryptography from hard learning problems“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2016. [Online]. Verfügbar unter: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/files/4978/diss.pdf
[4]
F. Heuer, T. Jager, E. Kiltz, und S. Schäge, „On the selective opening security of practical public-key encryption schemes“, 31. März 2016. http://eprint.iacr.org/2016/342
[5]
D. Cash, E. Kiltz, und S. Tessaro, „Two-round man-in-the-middle security from LPN“, in Theory of cryptography, Tel Aviv-Jaffa, 2016, Bd. 9562/9563, S. 225–248. doi: 10.1007/978-3-662-49096-9_10.
[6]
R. Gay, D. Hofheinz, E. Kiltz, und H. Wee, „Tightly CCA-secure encryption without pairings“, in Advances in Cryptology – EUROCRYPT 2016, 2016, Bd. 9666, S. 1–27. doi: 10.1007/978-3-662-49890-3_1.
[7]
E. Kiltz, D. Masny, und J. Pan, „Optimal security proofs for signatures from identification schemes“, 23. Februar 2016. http://eprint.iacr.org/2016/191
[8]
R. Gay, D. Hofheinz, E. Kiltz, und H. Wee, „Tightly CCA-secure encryption without pairings“, 2. Februar 2016. http://eprint.iacr.org/2016/094
[9]
J. Pan, E. Kiltz, und T. Jager, „Improved security proofs and constructions for public-key cryptography“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2016. [Online]. Verfügbar unter: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/files/4979/diss.pdf
[10]
M. Fersch, E. Kiltz, und B. Poettering, „On the provable security of (EC)DSA signatures“, in CCS’16, Wien, 2016, S. 1651–1662. doi: 10.1145/2976749.2978413.
[11]
G. Fuchsbauer, F. Heuer, E. Kiltz, und K. Pietrzak, „Standard security does imply security against selective opening for Markov distributions“, in Theory of cryptography, Tel Aviv-Jaffa, 2016, Bd. 9562/9563, S. 282–305. doi: 10.1007/978-3-662-49096-9_12.
[1]
A. Escala, G. Herold, E. Kiltz, C. Ràfols Salvador, und J. L. Villar, „An algebraic framework for diffie–hellman assumptions“, Journal of cryptology, Bd. 30, Nr. 1, S. 242–288, Okt. 2015, doi: 10.1007/s00145-015-9220-6.
[2]
C. Bader, J. Schwenk, und E. Kiltz, „On the possibility and impossibility of tight reductions in cryptography“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2015. [Online]. Verfügbar unter: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/4513
[3]
G. Fuchsbauer, F. Heuer, E. Kiltz, und K. Pietrzak, „Standard security does imply security against selective opening for Markov distributions“, 6. September 2015. http://eprint.iacr.org/2015/853
[4]
D. Cash, E. Kiltz, und S. Tessaro, „Two-round man-in-the-middle security from LPN“, 23. Dezember 2015. http://eprint.iacr.org/2015/1220
[5]
E. Kiltz, D. Masny, und J. Pan, „Schnorr signatures in the multi-user setting“, 19. November 2015. https://eprint.iacr.org/2015/1122
[6]
E. Kiltz, D. Masny, und K. Pietrzak, „Simple chosen-ciphertext security from low-noise LPN“, 2015. https://eprint.iacr.org/2015/401
[7]
C. Bader, D. Hofheinz, T. Jager, E. Kiltz, und Y. Li, „Tightly-secure authenticated key exchange“, in Theory of cryptography, Warschau, 2015, Bd. 9014–9015, S. 629–658. doi: 10.1007/978-3-662-46494-6_26.
[8]
E. Kiltz, J. Pan, und H. Wee, „Structure-preserving signatures from standard assumptions, revisited“, in Advances in cryptology – EUROCRYPT 2015, Sofia, 2015, Bd. 9056–9057, S. 275–295. doi: 10.1007/978-3-662-48000-7_14.
[9]
O. Blazy, S. A. Kakvi, E. Kiltz, und J. Pan, „Tightly-secure signatures from chameleon hash functions“, in Public-key cryptography – PKC 2015, Gaithersburg, Md., 2015, Bd. 9020, S. 256–279. doi: 10.1007/978-3-662-46447-2_12.
[10]
F. Heuer, T. Jager, E. Kiltz, und S. Schäge, „On the selective opening security of practical public-key encryption schemes“, in Public-key cryptography – PKC 2015, Gaithersburg, Md., 2015, Bd. 9020, S. 27–51. doi: 10.1007/978-3-662-46447-2_2.
[11]
D. Cash, R. Dowsley, und E. Kiltz, „Digital signatures from strong RSA without prime generation“, in Public-key cryptography – PKC 2015, Gaithersburg, Md., 2015, Bd. 9020, S. 217–235. doi: 10.1007/978-3-662-46447-2_10.
[12]
M. Bellare, D. Hofheinz, und E. Kiltz, „Subtleties in the definition of IND-CCA: when and how should challenge decryption be disallowed?“, Journal of cryptology, Bd. 28, Nr. 1, S. 29–48, 2015, doi: 10.1007/s00145-013-9167-4.
[13]
E. Kiltz und H. Wee, „Quasi-adaptive NIZK for linear subspaces revisited“, in Advances in cryptology – EUROCRYPT 2015, Sofia, 2015, Bd. 9056–9057, S. 101–128. doi: 10.1007/978-3-662-46803-6_4.
[14]
E. Kiltz und H. Wee, „Quasi-adaptive NIZK for linear subspaces revisited“, 2015. http://eprint.iacr.org/2015/216
[15]
E. Kiltz, J. Pan, und H. Wee, „Structure-preserving signatures from standard assumptions, revisited“, 28. Juni 2015. http://eprint.iacr.org/2015/604
[16]
C. Bader, D. Hofheinz, T. Jager, E. Kiltz, und Y. Li, „Tightly-secure authenticated key exchange“, 2015.
[1]
C. Bader, D. Hofheinz, T. Jager, E. Kiltz, und Y. Li, „Tightly-secure authenticated key exchange“, 10. Oktober 2014. http://eprint.iacr.org/2014/797
[2]
M. Kallweit, H. U. Simon, und E. Kiltz, „Margin parameters for linear classification and their connections to selected complexity measures“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2014. [Online]. Verfügbar unter: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/KallweitMichael/diss.pdf
[3]
O. Blazy, E. Kiltz, und J. Pan, „(Hierarchical) identity-based encryption from affine message authentication“, in Advances in cryptology – CRYPTO 2014, Santa Barbara, Calif., 2014, Bd. 8616/8617, S. 408–425. doi: 10.1007/978-3-662-44371-2_23.
[4]
E. Kiltz, D. Masny, und K. Pietrzak, „Simple chosen-ciphertext security from low-noise LPN“, in Public-key cryptography – PKC 2014, 2014, Bd. 8383, S. 1–18. doi: 10.1007/978-3-642-54631-0_1.
[5]
C. Bader, D. Hofheinz, T. Jager, E. Kiltz, und Y. Li, „Tightly-secure authenticated key exchange“, 2014. http://eprint.iacr.org/2014/797
[6]
O. Blazy, E. Kiltz, und J. Pan, „(Hierarchical) identity-based encryption from affine message authentication“, 30. Juli 2014. http://eprint.iacr.org/2014/581
[7]
O. Blazy, S. A. Kakvi, E. Kiltz, und J. Pan, „Tightly-secure signatures from Chameleon hash functions“, 31. Dezember 2014. http://eprint.iacr.org/2014/1021
[1]
A. Escala, G. Herold, E. Kiltz, C. Ràfols Salvador, und J. L. Villar, „An algebraic framework for diffie-hellman assumptions“, in Advances in cryptology – CRYPTO 2013, Santa Barbara, Calif., 2013, Bd. 8042–8043, S. 129–147. doi: 10.1007/978-3-642-40084-1_8.
[2]
A. Escala, G. Herold, E. Kiltz, C. Ràfols Salvador, und J. L. Villar, „An algebraic framework for diffie-hellman assumptions“, 2013. http://eprint.iacr.org/2013/377
[3]
D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, und G. Segev, „More constructions of lossy and correlation-secure trapdoor functions“, Journal of cryptology, Bd. 26, Nr. 1, S. 39–74, 2013, doi: 10.1007/s00145-011-9112-3.
[4]
D. Hofheinz, E. Kiltz, und V. Shoup, „Practical chosen ciphertext secure encryption from factoring“, Journal of cryptology, Bd. 26, Nr. 1, S. 102–118, 2013, doi: 10.1007/s00145-011-9115-0.
[5]
E. Kiltz, K. Pietrzak, und M. Szegedy, „Digital signatures with minimal overhead from indifferentiable random invertible functions“, in Advances in cryptology – CRYPTO 2013, Santa Barbara, Calif., 2013, Bd. 8042–8043, S. 571–588. doi: 10.1007/978-3-642-40041-4_31.
[6]
E. S. V. Freire, D. Hofheinz, E. Kiltz, und K. G. Paterson, „Non-interactive key exchange“, in Public-key cryptography – PKC 2013, Nara, 2013, Bd. 7778, S. 254–271. doi: 10.1007/978-3-642-36362-7_17.
[1]
E. Kiltz, K. Pietrzak, und M. Szegedy, „Digital signatures with minimal overhead from indifferentiable random invertible functions“, 26. November 2012. http://eprint.iacr.org/2012/658
[2]
Y. Dodis, E. Kiltz, K. Pietrzak, und D. Wichs, „Message authentication, revisited“, 10. Februar 2012. http://eprint.iacr.org/2012/059
[3]
S. A. Kakvi und E. Kiltz, „Optimal security proofs for full domain hash, revisited“, in Advances in cryptology – EUROCRYPT 2012, Cambridge, 2012, Bd. 7237, S. 537–553. doi: 10.1007/978-3-642-29011-4_32.
[4]
D. Hofheinz und E. Kiltz, „Programmable hash functions and their applications“, Journal of cryptology, Bd. 25, Nr. 3, S. 484–527, 2012, doi: 10.1007/s00145-011-9102-5.
[5]
E. S. V. Freire, D. Hofheinz, E. Kiltz, und K. G. Paterson, „Non-interactive key exchange“, 2012. https://eprint.iacr.org/2012/732
[6]
D. Cash, D. Hofheinz, E. Kiltz, und C. Peikert, „Bonsai trees, or how to delegate a lattice basis“, Journal of cryptology, Bd. 25, Nr. 4, S. 601–639, 2012, doi: 10.1007/s00145-011-9105-2.
[7]
Y. Dodis, E. Kiltz, K. Pietrzak, und D. Wichs, „Message authentication, revisited“, in Advances in cryptology – EUROCRYPT 2012, Cambridge, 2012, Bd. 7237, S. 355–374. doi: 10.1007/978-3-642-29011-4_22.
[8]
M. Bellare, E. Kiltz, C. Peikert, und B. Waters, „Identity-based (lossy) trapdoor functions and applications“, in Advances in cryptology – EUROCRYPT 2012, Cambridge, 2012, Bd. 7237, S. 228–245. doi: 10.1007/978-3-642-29011-4_15.
[9]
R. Cramer, I. Damgård, E. Kiltz, S. Zakarias, und A. Zottarel, „DDH-like assumptions based on extension rings“, in Public key cryptography – PKC 2012, Darmstadt, 2012, Bd. 7293, S. 644–661. doi: 10.1007/978-3-642-30057-8_38.
[10]
S. Heyse, E. Kiltz, V. Lyubashevsky, C. Paar, und K. Pietrzak, „Lapin: an efficient authentication protocol based on Ring-LPN“, in Fast software encryption, 2012, Bd. 7549, S. 346–365. doi: 10.1007/978-3-642-34047-5_20.
[11]
S. A. Kakvi, E. Kiltz, und A. May, „Certifying RSA“, in Advances in Cryptology – ASIACRYPT 2012, Beijing, China, 2012, Bd. 7658, S. 404–414. doi: 10.1007/978-3-642-34961-4_25.
[1]
R. Cramer, I. B. Damgård, E. Kiltz, S. Zakarias, und A. Zottarel, „DDH-like assumptions based on extension rings“, 30. Mai 2011. https://eprint.iacr.org/2011/280
[2]
S. Schäge, J. Schwenk, und E. Kiltz, „Efficient and provably secure signature schemes in the standard model“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2011. [Online]. Verfügbar unter: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/start/1/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/Efficient+and+provably+secure+signature+schemes+in+the+standard+model/docId/509
[3]
E. Kiltz, A. O’Neill, und A. D. Smith, „Instantiability of RSA-OAEP under chosen-plaintext attack“, 2011. http://eprint.iacr.org/2011/559
[4]
D. Hofheinz, T. Jager, und E. Kiltz, „Short signatures from weaker assumptions“, in Advances in cryptology – ASIACRYPT 2011, Seoul, 2011, Bd. 7073, S. 647–666. doi: 10.1007/978-3-642-25385-0_35.
[5]
E. Kiltz, K. Pietrzak, D. Cash, A. Jain, und D. Venturi, „Efficient authentication from hard learning problems“, in Advances in cryptology – EUROCRYPT 2011, Tallinn, Estland, 2011, Bd. 6632, S. 7–26. doi: 10.1007/978-3-642-20465-4_3.
[1]
D. Galindo, J. Herranz, und E. Kiltz, „On the generic construction of identity-based signatures with additional properties“, Advances in mathematics of communications, Bd. 4, Nr. 4, S. 453–483, 2010, doi: 10.3934/amc.2010.4.453.
[2]
M. Abe, E. Kiltz, und T. Okamoto, „Chosen ciphertext security with optimal ciphertext overhead“, IEICE transactions E / A, Bd. 93, Nr. 1, S. 22–33, 2010, doi: 10.1587/transfun.e93.a.22.
[3]
S. Fehr, D. Hofheinz, E. Kiltz, und H. Wee, „Encryption schemes secure against chosen-ciphertext selective opening attacks“, in Advances in cryptology – EUROCRYPT 2010, Monaco ; Nizza, 2010, Bd. 6110, S. 381–402. doi: 10.1007/978-3-642-13190-5_20.
[4]
E. Kiltz und K. Pietrzak, „Leakage resilient ElGamal encryption“, in Advances in cryptology – ASIACRYPT 2010, Singapur, 2010, Bd. 6477, S. 595–612. doi: 10.1007/978-3-642-17373-8_34.
[5]
D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, und G. Segev, „More constructions of lossy and correlation-secure trapdoor functions“, in Public key cryptography – PKC 2010, Paris, 2010, Bd. 6056, S. 279–295. doi: 10.1007/978-3-642-13013-7_17.
[6]
K. Haralambiev, T. Jager, E. Kiltz, und V. Shoup, „Simple and efficient public-key encryption from computational Diffie-Hellman in the standard model“, in Public key cryptography – PKC 2010, Paris, 2010, Bd. 6056, S. 1–18. doi: 10.1007/978-3-642-13013-7_1.
[7]
D. Cash, D. Hofheinz, E. Kiltz, und C. Peikert, „Bonsai trees, or how to delegate a lattice basis“, in Advances in cryptology – EUROCRYPT 2010, Monaco ; Nizza, 2010, Bd. 6110, S. 523–552. doi: 10.1007/978-3-642-13190-5_27.
[8]
S. Faust, E. Kiltz, K. Pietrzak, und G. Rothblum, „Leakage-resilient signatures“, in Theory of cryptography, Zürich, 2010, Bd. 5978, S. 343–360. doi: 10.1007/978-3-642-11799-2_21.
[9]
R. Cramer, D. Hofheinz, und E. Kiltz, „A twist on the Naor-Yung paradigm and its application to efficient CCA-secure encryption from hard search problems“, in Theory of cryptography, Zürich, 2010, Bd. 5978, S. 146–164. doi: 10.1007/978-3-642-11799-2_10.
[10]
E. Kiltz, A. O’Neill, und A. D. Smith, „Instantiability of RSA-OAEP under chosen-plaintext attack“, in Advances in cryptology – CRYPTO 2010, Santa Barbara, CA, 2010, Bd. 6223, S. 295–313. doi: 10.1007/978-3-642-14623-7_16.
[11]
E. Kiltz, P. Mohassel, und A. O’Neill, „Adaptive trapdoor functions and chosen-ciphertext security“, in Advances in cryptology – EUROCRYPT 2010, Monaco ; Nizza, 2010, Bd. 6110, S. 673–692. doi: 10.1007/978-3-642-13190-5_34.
[12]
M. Abe, Y. Cui, H. Imai, und E. Kiltz, „Efficient hybrid encryption from ID-based encryption“, Designs, codes and cryptography, Bd. 54, Nr. 3, S. 205–240, 2010, doi: 10.1007/s10623-009-9320-0.
[13]
J. Herranz, D. Hofheinz, und E. Kiltz, „Some (in)sufficient conditions for secure hybrid encryption“, Information and computation, Bd. 208, Nr. 11, S. 1243–1257, 2010, doi: 10.1016/j.ic.2010.07.002.
[1]
M. Abe, Y. Cui, H. Imai, und E. Kiltz, „Efficient hybrid encryption from ID-based encryption“, 2009. http://eprint.iacr.org/2007/023
[2]
S. Faust, E. Kiltz, K. Pietrzak, und G. Rothblum, „Leakage-resilient signatures“, 2009. http://eprint.iacr.org/2009/282
[3]
E. Kiltz und K. Pietrzak, „On the security of padding-based encryption schemes: or why we cannot prove OAEP secure in the standard model“, in Advances in cryptology – EUROCRYPT 2009, Köln, 2009, Bd. 5479, S. 389–406. doi: 10.1007/978-3-642-01001-9_23.
[4]
E. Kiltz, K. Pietrzak, M. Stam, und M. Yung, „A new randomness extraction paradigm for hybrid encryption“, in Advances in cryptology – EUROCRYPT 2009, Köln, 2009, Bd. 5479, S. 590–609. doi: 10.1007/978-3-642-01001-9_34.
[5]
E. Kiltz und D. Galindo, „Direct chosen-ciphertext secure identity-based key encapsulation without random oracles“, Theoretical computer science, Bd. 410, Nr. 47–49, S. 5093–5111, 2009, doi: 10.1016/j.tcs.2009.08.007.
[6]
E. Kiltz und G. Neven, „Identity-based signatures“, in Identity-based cryptography, Bd. 2, M. Joye und G. Neven, Hrsg. Amsterdam [u.a.]: IOS Pr., 2009, S. 31–44. doi: 10.3233/978-1-58603-947-9-31.
[7]
D. Hofheinz und E. Kiltz, „Practical chosen ciphertext secure encryption from factoring“, in Advances in cryptology – EUROCRYPT 2009, Köln, 2009, Bd. 5479, S. 313–332. doi: 10.1007/978-3-642-01001-9_18.
[8]
R. Cramer, D. Hofheinz, und E. Kiltz, „Chosen-ciphertext secure encryption from hard algebraic set systems“, 2009. [Online]. Verfügbar unter: http://eprint.iacr.org/2009/142
[9]
D. Cash, E. Kiltz, und V. Shoup, „The twin Diffie-Hellman problem and applications“, Journal of cryptology, Bd. 22, Nr. 4, S. 470–504, 2009, doi: 10.1007/s00145-009-9041-6.
[10]
D. Hofheinz und E. Kiltz, „The group of signed quadratic residues and applications“, in Advances in cryptology – CRYPTO 2009, Santa Barbara, CA, 2009, Bd. 5677, S. 637–653. doi: 10.1007/978-3-642-03356-8_37.
[11]
M. Abe, E. Kiltz, und T. Okamoto, „Compact CCA-secure encryption for messages of arbitrary length“, in Public key cryptography – PKC 2009, Irvine, Calif., 2009, Bd. 5443, S. 377–392. doi: 10.1007/978-3-642-00468-1_21.
[12]
S. G. Choi u. a., „The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure“, Information processing letters, Bd. 109, Nr. 16, S. 897–901, 2009, doi: 10.1016/j.ipl.2009.04.007.
[13]
D. Cash, D. Hofheinz, und E. Kiltz, „How to delegate a lattice basis“, 2009. http://eprint.iacr.org/2009/351
[1]
E. Kiltz, „Chosen-ciphertext secure identity-based encryption in the standard model with short ciphertexts“, 19. November 2008. https://eprint.iacr.org/2006/122
[2]
E. Kiltz und Y. Vahlis, „CCA2 secure IBE: standard model efficiency through authenticated symmetric encryption“, in Topics in cryptology – CT-RSA 2008, San Francisco, Calif., 2008, Bd. 4964, S. 221–238. doi: 10.1007/978-3-540-79263-5_14.
[3]
I. B. Damgård, D. Hofheinz, E. Kiltz, und R. Thorbek, „Public-key encryption with non-interactive opening“, in Topics in cryptology – CT-RSA 2008, San Francisco, Calif., 2008, Bd. 4964, S. 239–255. doi: 10.1007/978-3-540-79263-5_15.
[4]
D. Cash, E. Kiltz, und V. Shoup, „The twin Diffie-Hellman problem and applications“, in Advances in cryptology, Istanbul, 2008, Bd. 4965, S. 127–145. doi: 10.1007/978-3-540-78967-3_8.
[5]
M. Abdalla u. a., „Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions“, Journal of cryptology, Bd. 21, Nr. 3, S. 350–391, 2008, doi: 10.1007/s00145-007-9006-6.
[6]
M. Abe, E. Kiltz, und T. Okamoto, „Chosen ciphertext security with optimal ciphertext overhead“, in Advances in Cryptology – ASIACRYPT 2008, 2008, Bd. 5350, S. 355–371. doi: 10.1007/978-3-540-89255-7_22.
[7]
M. Abdalla, E. Kiltz, und G. Neven, „Generalised key delegation for hierarchical identity-based encryption“, IET information security, Bd. 2, Nr. 3, S. 67–78, 2008, doi: 10.1049/iet-ifs:20070124.
[8]
D. Hofheinz und E. Kiltz, „Programmable hash functions and their applications“, in Advances in Cryptology – CRYPTO 2008, Santa Barbara, Calif., 2008, Bd. 5157, S. 21–38. doi: 10.1007/978-3-540-85174-5_2.
 
[1]
R. Cramer u. a., „Bounded CCA2-secure encryption“, in Advances in cryptology, Kuching, Malaysia, 2007, Bd. 4833, S. 502–518. doi: 10.1007/978-3-540-76900-2_31.
[2]
D. Hofheinz und E. Kiltz, „Secure hybrid encryption from weakened key encapsulation“, in Advances in cryptology – CRYPTO 2007, Santa Barbara, Calif., 2007, Bd. 4622, S. 553–571. doi: 10.1007/978-3-540-74143-5_31.
[3]
M. Abdalla, E. Kiltz, und G. Neven, „Generalized key delegation for hierarchical identity-based encryption“, in Computer security – ESORICS 2007, Dresden, 2007, Bd. 4734, S. 139–154. doi: 10.1007/978-3-540-74835-9_10.
[4]
R. Cramer, E. Kiltz, und C. Padró, „A note on secure computation of the Moore-Penrose pseudoinverse and its application to secure linear algebra“, in Advances in cryptology – CRYPTO 2007, Santa Barbara, Calif., 2007, Bd. 4622, S. 613–630. doi: 10.1007/978-3-540-74143-5_34.
[5]
E. Kiltz, P. Mohassel, E. Weinreb, und M. K. Franklin, „Secure linear algebra using linearly recurrent sequences“, in Theory of cryptography, Amsterdam, 2007, Bd. 4392, S. 291–310. doi: 10.1007/978-3-540-70936-7_16.
[6]
E. Kiltz, „Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman“, in Public Key Cryptography – PKC 2007, Beijing, 2007, Bd. 4450, S. 282–297. doi: 10.1007/978-3-540-71677-8_19.
[7]
E. Kiltz, „From selective-ID to full security: the case of the inversion-based Boneh-Boyen IBE scheme“, 2007. https://eprint.iacr.org/2007/033.pdf
[1]
E. Kiltz und D. Galindo, „Direct chosen-ciphertext secure identity-based key encapsulation without random oracles“, in Information security and privacy, Melbourne, 2006, Bd. 4058, S. 336–347. doi: 10.1007/11780656_28.
[2]
R. Cramer, D. Hofheinz, und E. Kiltz, „A note on bounded chosen ciphertext security from black-box semantical security“, 2006. https://eprint.iacr.org/2006/391
[3]
J. Herranz, D. Hofheinz, und E. Kiltz, „KEM/DEM: necessary and sufficient conditions for secure hybrid encryption“, 2006. http://eprint.iacr.org/2006/265.pdf
[4]
D. Galindo, J. Herranz, und E. Kiltz, „On the generic construction of identity-based signatures with additional properties“, in Advances in cryptology – ASIACRYPT 2006, 2006, Bd. 4284, S. 178–193. doi: 10.1007/11935230_12.
[5]
E. Kiltz, „Chosen-ciphertext security from tag-based encryption“, in Theory of cryptography, New York, NY, 2006, Bd. 3876, S. 581–600. doi: 10.1007/11681878_30.
[6]
D. Galindo und E. Kiltz, „Chosen-ciphertext secure threshold identity-based key encapsulation without random oracles“, in Security and cryptography for networks, Maiori, 2006, Bd. 4116, S. 173–185. doi: 10.1007/11832072_12.
[7]
J. Herranz, D. Hofheinz, und E. Kiltz, „The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure“, 2006. https://eprint.iacr.org/2006/207.pdf
[8]
E. Kiltz, „On the limitations of the spread of an IBE-to-PKE transformation“, in Public key cryptography – PKC 2006, New York, NY, 2006, Bd. 3958, S. 274–289. doi: 10.1007/11745853_18.
[9]
E. Kiltz und A. Winterhof, „Polynomial interpolation of cryptographic functions related to Diffie-Hellman and discrete logarithm problem“, Discrete applied mathematics, Bd. 154, Nr. 2, S. 326–336, 2006, doi: 10.1016/j.dam.2005.03.030.
[10]
I. B. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, und T. Toft, „Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation“, in Theory of cryptography, New York, NY, 2006, Bd. 3876, S. 285–304. doi: 10.1007/11681878_15.
[11]
E. Kiltz und E. Weinreb, „Secure linear algebra using linearly recurrent sequences“, 2006.
[12]
E. Kiltz und E. Weinreb, „Secure linear algebra using linearly recurrent sequences“, in Complexity of Boolean functions, 2006, Bd. 06111. [Online]. Verfügbar unter: http://drops.dagstuhl.de/opus/volltexte/2006/610/pdf/06111.KiltzEike.ExtAbstract.610.pdf
 
[1]
E. Kiltz, N.-G. Leander, und J. Malone-Lee, „Secure computation of the mean and related statistics“, in Theory of cryptography, Cambridge, MA, 2005, Bd. 3378, S. 283–302. doi: 10.1007/978-3-540-30576-7_16.
[2]
E. Kiltz, „Unconditionally secure constant round multi-party computation for equality, comparison, bits and exponentiation“, 2005. https://eprint.iacr.org/2005/066
[3]
E. Kiltz, A. Mityagin, S. Panjwani, und B. Raghavan, „Append-only signatures“, in Automata, languages and programming, Lissabon, 2005, Bd. 3580, S. 434–445. doi: 10.1007/11523468_36.
[4]
E. Kiltz und H. U. Simon, „Threshold circuit lower bounds on cryptographic functions“, Journal of computer and system sciences, Bd. 71, Nr. 2, S. 185–212, 2005, doi: 10.1016/j.jcss.2005.03.001.
[5]
M. Abdalla u. a., „Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions“, in Advances in Cryptology – CRYPTO 2005, Santa Barbara, Calif., 2005, Bd. 3621, S. 205–222. doi: 10.1007/11535218_13.
[1]
E. Kiltz, N.-G. Leander, und J. Malone-Lee, „Secure computation of the mean and related statistics“, in Theory of cryptography, Cambridge, MA, 2005, Bd. 3378, S. 283–302. doi: 10.1007/978-3-540-30576-7_16.
[2]
E. Kiltz, „Unconditionally secure constant round multi-party computation for equality, comparison, bits and exponentiation“, 2005. https://eprint.iacr.org/2005/066
[3]
E. Kiltz, A. Mityagin, S. Panjwani, und B. Raghavan, „Append-only signatures“, in Automata, languages and programming, Lissabon, 2005, Bd. 3580, S. 434–445. doi: 10.1007/11523468_36.
[4]
E. Kiltz und H. U. Simon, „Threshold circuit lower bounds on cryptographic functions“, Journal of computer and system sciences, Bd. 71, Nr. 2, S. 185–212, 2005, doi: 10.1016/j.jcss.2005.03.001.
[5]
M. Abdalla u. a., „Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions“, in Advances in Cryptology – CRYPTO 2005, Santa Barbara, Calif., 2005, Bd. 3621, S. 205–222. doi: 10.1007/11535218_13.
[1]E. Kiltz, „On the representation of Boolean predicates of the Diffie-Hellman function“, in STACS 2003, 2003, Bd. 2607, S. 223–233. doi: 10.1007/3-540-36494-3_21. [2]E. Kiltz und J. Malone-Lee, „A general construction of IND-CCA2 secure public key encryption“, in Cryptography and coding, 2003, Bd. 2898, S. 152–166. doi: 10.1007/978-3-540-40974-8_13. [3]E. Kiltz und H. U. Simon, „Complexity theoretic aspects of some cryptographic functions“, in Computing and combinatorics, Big Sky, Mont., 2003, Bd. 2697, S. 294–303. doi: 10.1007/3-540-45071-8_31. [4]E. Kiltz, H. U. Simon, und H. Dobbertin, „Complexity, theoretic lower bounds on cryptographic functions“, Universitätsbibliothek, Ruhr-Universität Bochum, Bochum, 2003. [Online]. Verfügbar unter: http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/KiltzEike/diss.pdf
[1]E. Kiltz, „A tool box of cryptographic functions related to the Diffie-Hellman function“, in Progress in cryptology, 2001, Bd. 2247, S. 339–350. doi: 10.1007/3-540-45311-3_32. [2]E. Kiltz, „A primitive for proving the security of every bit and about universal hash functions & hard core bits“, in Fundamentals of computation theory, 2001, Bd. 2138, S. 388–391. doi: 10.1007/3-540-44669-9_39.

Publications

20 Einträge « 2 von 2 »
Proceedings Article

McEliece Needs a Break - Solving McEliece-1284 and Quasi-Cyclic-2918 with Modern ISD

Andre Esser, Alexander May, Floyd Zweydinger

In: Advances in Cryptology (EUROCRYPT 22), S. 433–457, Springer, 2022.

Links | Schlagwörter: Crypto Flagship, Rank A*/A

Proceedings Article

How Not to Protect Your IP - An Industry-Wide Break of IEEE 1735 Implementations

Julian Speith, Florian Schweins, Maik Ender, Marc Fyrbiak, Alexander May, Christof Paar

In: Symposium on Security and Privacy (S&P 22), 2022.

Links | Schlagwörter: Rank A*/A, Security

Proceedings Article

Legendre PRF (Multiple) Key Attacks and the Power of Preprocessing

Alexander May, Floyd Zweydinger

In: Computer Security Foundations Symposium (CSF 22), S. 428–438, IEEE, 2022.

Links | Schlagwörter: Rank A*/A, Security

Proceedings Article

Quantum Period Finding is Compression Robust

Alexander May, Lars Schlieper

In: Transactions on Symmetric Cryptology (TOSC 22), S. 183–211, 2022.

Links | Schlagwörter: Crypto Area, Quantum

Proceedings Article

Partial Key Exposure Attack on Short Secret Exponent CRT-RSA

Alexander May, Julian Nowakowski, Santanu Sarkar

In: Advances in Cryptology (ASIACRYPT 21), S. 99–129, Springer, 2021.

Links | Schlagwörter: Crypto Flagship, Rank A*/A

Proceedings Article

How to Meet Ternary LWE Keys

Alexander May

In: Advances in Cryptology (CRYPTO 21) , S. 701–731, Springer, 2021.

Links | Schlagwörter: Crypto Flagship, Rank A*/A

Proceedings Article

How to Find Ternary LWE Keys Using Locality Sensitive Hashing

Elena Kirshanova, Alexander May

In: Cryptography and Coding (IMACC 21), S. 247–264, Springer, 2021.

Links | Schlagwörter: Crypto Others

Proceedings Article

Noisy Simon Period Finding

Alexander May, Lars Schlieper, Jonathan Schwinger

In: Cryptographers' Track at the RSA Conference (CT-RSA 21), S. 75–99, Springer, 2021.

Links | Schlagwörter: Crypto Others, Quantum

Proceedings Article

Towards Quantum Large-Scale Password Guessing on Real-World Distributions

Markus Dürmuth, Maximilian Golla, Philipp Markert, Alexander May, Lars Schlieper

In: Cryptology and Network Security (CANS 21), S. 412–431, Springer, 2021.

Links | Schlagwörter: Quantum, Security

Zeitschrift

Quantum Key Search for Ternary LWE

(Hrsg.)

Lecture Notes in Computer Science Bd. 12841, 2021, besucht am: 01.01.2021.

Links | Schlagwörter: Crypto Others, Quantum

20 Einträge « 2 von 2 »

Memberships

  • BITSI – Bochumer Verein zur Förderung der IT-Sicherheit und Informatik
  • CASA – DFG Excellence Cluster
  • QSI – EU Marie Curie Network
  • HGI – Horst Görtz Institute
  • IACR – Cryptology Research

Lectures (Moodle/Notes)

Former PhDs

  1. Önder Askin, 2024
  2. Floyd Zweydinger, 2023
  3. Lars Schlieper, 2022
  4. Alexander Helm, 2020
  5. Andre Esser, 2020
  6. Matthias Minihold, 2019 
  7. Leif Both, 2018
  8. Robert Kübler, 2018
  9. Elena Kirshanova, 2016
  10. Ilya Ozerov, 2016
  11. Gottfried Herold, 2014
  12. Alexander Meurer, 2014
  13. Mathias Herrmann, 2011
  14. Maike Ritzenhofen, 2010

Calvin & Hobbes

Prof. Dr. Gregor Leander

Symmetric Cryptography

Professor / Head of Chair

Address:
Ruhr-University Bochum
Faculty of Computer Science
Symmetric Cryptography
Universitätsstr. 150
--D-44801 Bochum

Room: MC 1/42

Telephone: +49(0)234 32 28402

Office Hours: By arrangement

E-Mail: gregor.leander(at)rub.de

Publications

Please consult my google scholar profile or my dblp entry for an up-to-date list of publications

Symmetric Crypto@RUB

My primary field of research is cryptography, more precisely symmetric cryptography. Symmetric cryptographic primitives protect a large percentage of today’s data, whether in transit or storage. Symmetric cryptography spans a wide range from theoretic considerations to practical impact in real world applications and I am interested in working on all ends. On the one hand, having a background in mathematics and a PhD focused on theoretical aspects of Boolean functions, I have certainly an intrinsic interest in the fundamental questions in symmetric cryptography. On the other hand, I have been involved in the design of ciphers and seeing them deployed massively in products as well as breaking and fixing ciphers already deployed in practice is a great experience.

I created the symmetric cryptography group at the Ruhr University Bochum in 2015 and since then my group has become a great place for new ideas, approaches, and fruitful discussions. We have regular visits that are a great source of collaboration and chances for the PhD students to build and deepen their scientific networks.

ToSC - IACR Transaction of Symmetric Cryptography

I also like to mention that I am the founder and managing editor of the journal IACR Transaction of Symmetric Cryptography, that transformed the conference FSE into a conference/journal hybrid. I created this diamond open access journal, published by the Ruhr University Bochum, out of the strong belief that (i) it significantly improves the quality of the publications compared to a conference-only model and (ii) the fact that we write, review and layout the papers already does not justify the cost and business model of most of the professional publishers in the area.

Organisation of Scientific Meetings

  • 2024 EUROCRYPT , Zurich , program co-chair
  • 2022 Symmetric Cryptography Seminar, Dagstuhl, co-organizer
  • 2020 Symmetric Cryptography Seminar, Dagstuhl, co-organizer
  • 2019 FrisiaCrypt, Borkum, general co-chair
  • 2018 Symmetric Cryptography Seminar, Dagstuhl, co-organizer
  • 2016 Fast Software Encryption, Bochum, general chair
  • 2015 Fast Software Encryption, Istanbul, program chair
  • 2014 EUROCRYPT , Copenhagen , general co-chair
  • 2011 Workshop on Lightweight Cryptography, program co-chair
  • 2011 Fast Software Encryption, Copenhagen , general co-chair
  • 2011 Symmetric Key Encryption Workshop, general and program co-chair

Invited Talks

  • Indocrypt 2022
  • Santacrypt 2022
  • IACR FSE 2019
  • CTCRYPT 2017
  • MMCC 2017
  • Arcticrypt 2016
  • China Crypt 2016
  • Rumanian Crypto days 2015 and 2017
  • SantaCrypt 2014
  • LightSec 2013
  • Balkan­Crypt 2013
  • WCC 2013
  • Latincrypt 2012

Prizes and Awards

  • 2022 SKINNY is ISO standard (ISO/IEC 18033-7) as a Tweakable Block Cipher
  • 2020 IACR CRYPTO 2020, Best Paper Award and invitation to Journal of Cryptology
  • 2015 Heisenberg Professorship, a prestigious funding line for upcoming leaders by the DFG.
  • 2014 IACR FSE 2014, Best Paper Award and invitation to Journal of Cryptology
  • 2010 PRESENT is ISO standard (ISO/IEC 29192-2) for Lightweight Cryptography
  • 2010 German IT-Security Award (worth 100kEUR), first place
  • 2011 Erdos Number 2

Teaching

see this page for a list of present and past courses.